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Abstract

We have reported previously that p115Rho guanine nucleotide exchange factor, its upstream 

activator Gα13, and its effector RhoA are able to inhibit HIV-1 replication. Here, we show that 

RhoA is able to inhibit HIV-1 gene expression through the NFAT-binding site in the HIV long-

terminal repeat. Constitutively active NFAT counteracts the inhibitory activity of RhoA, and 

inhibition of NFAT activation also inhibits HIV-1 gene expression. We have shown further that 

RhoA inhibits NFAT-dependent transcription and IL-2 production in human T cells. RhoA does 

not inhibit nuclear localization of NFAT but rather, inhibits its transcriptional activity. In addition, 

RhoA decreases the level of acetylated histone H3, but not NFAT occupancy, at the IL-2 

promoter. These data suggest that activation of RhoA can modulate IL-2 gene expression by 

inhibiting the transcriptional activity of NFAT and chromatin structure at the IL-2 promoter during 

T cell activation.
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INTRODUCTION

The HIV-1 virus targets the CD4+ T cell, subverting biological processes in the cell to 

further its own reproduction. Replication of HIV requires many of the same transcription 

factors used by T cells during activation, including NF-κB and NFAT [1–7]. We have 
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reported previously that p115Rho guanine nucleotide exchange factor (GEF) interacts 

directly with the C terminus of HIV gp41 [8]. Furthermore, expression of p115RhoGEF, its 

upstream activator Gα13, or its downstream effector RhoA causes a decrease in HIV 

replication [9]. Given the close relationship between T cell activation and HIV replication, 

we were interested in looking at how RhoA inhibits HIV replication and whether it also 

affects T cell activation.

RhoA is a small GTPase with a well-characterized role in cytoskeletal rearrangement. Upon 

activation, RhoA causes the formation of stress fibers in cells [10]. In lymphocytes, this 

function of RhoA is critical for the proper homing of cells to areas of infection [11]. 

Evidence has shown that RhoA is required for the process of leukocyte rolling and 

diapedesis or migration beneath the endothelial layer of cells [12]. In addition, RhoA is 

involved in the assembly of the immunological synapse, an area on the cell surface where 

elements of the immune signaling apparatus congregate, allowing for proper activation of 

the T cell [13].

In some cells, RhoA has been shown to play a more direct role in signal transduction. Welsh 

et al. [14] demonstrated a dependence on RhoA for ERK activity during the G1 phase of the 

cell cycle. Without ERK activation, there is no cyclin D induction, leading to a block in cell 

cycle progression [14]. The specific role of RhoA in signaling pathways turned on during T 

cell activation has not been examined thoroughly, although reports have shown that the 

GTPase is able to activate the NFAT-binding partner AP-1 [15] as well as NF-κB [16 –18]. 

In addition, RhoA and its upstream activator Gα13 have been shown to increase the activity 

of phospholipase Cε (PLCε), leading to increased levels of intracellular calcium [19].

The NFAT family of proteins was first discovered by identification of factors involved in 

the up-regulation of IL-2 in response to TCR stimulation [20]. Since that time, NFAT 

proteins have been implicated in a wide variety of cellular processes including cardiac 

hypertrophy, learning and memory, and adipocyte differentiation [21, 22]. Immunologically 

relevant genes regulated by NFAT include IL-2, IL-4, IL-5, GM-CSF, TNF-α, CD40 ligand 

(CD40L), and FasL. NFAT family proteins are regulated primarily through calcium levels in 

the cell. Upon stimulation, an increase in intracellular calcium turns on the serine/threonine 

phosphatase calcineurin, which then binds to NFAT and dephosphorylates the protein, 

allowing NFAT nuclear translocation. The immunosuppressive drugs FK506 and 

Cyclosporin A work through inhibition of calcineurin—preventing NFAT-dependent 

transcription [23]. Studies have shown that p38MAPK, ERK, and JNK can potentially 

phosphorylate NFAT, inhibiting its translocation [24].

Other pathways have also been implicated in NFAT regulation at the level of nuclear 

translocation and DNA binding. Once the protein enters the nucleus, kinases, including 

glycogen synthase kinase 3, phosphorylate NFAT, preventing DNA binding and leading to 

nuclear export [25]. Furthermore, NFAT proteins typically have a binding partner, which 

stabilizes their interaction with the DNA. Although several transcription factors can act in 

this capacity, the predominant protein is AP-1 [26], a heterodimer comprised of c-jun and 

Fos [27], which are activated by MAPK pathways that can also be initiated upon TCR 

ligation. Fos is transcriptionally up-regulated through ERK, and JNK phosphorylates jun 
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leading to its activation and nuclear translocation [27, 28]. Some studies have shown that 

NFAT plays a role in anergy induction as well as activation in T cells. Stimulation of T cells 

with ionomycin alone activates NFAT in the absence of factors including AP-1 and leads to 

the up-regulation of “anergic factors,” which block activation instead of the up-regulation of 

IL-2 production and proliferation [29, 30]. In addition, recent reports have shown that 

alternate family members can replace Fos and jun in the formation of a heterodimer, which 

is still able to bind DNA cooperatively with NFAT but give the complex an inhibitory 

function [27, 31–33].

Here, we demonstrate that activated RhoA is able to inhibit NFAT-dependent transcription 

from the HIV long-terminal repeat (LTR) and the IL-2 promoter. RhoA did not affect NFAT 

nuclear localization in response to Ca++-mediated activation. The RhoA-GTPase did, 

however, inhibit the transactivation potential of NFAT. In stimulated T cells, expression of 

activated RhoA also led to a decrease in the level of acetylated histone H3 at the IL-2 

promoter but not the occupancy of NFAT at the IL-2 promoter. RhoA activation may, 

therefore, affect chromatin remodeling at the IL-2 promoter and the ability of NFAT to 

transactivate DNA.

MATERIALS AND METHODS

Luciferase assays

Jurkat T cells were transfected according to the manufacturer’s protocol using Geneporter 

transfection reagent from Gene Therapy Systems (San Diego, CA, USA). Approximately 1 

ug DNA was transfected into 2 × 105 cells in 30 ul RPMI with 6 ul Geneporter and 130 ul 

unsupplemented RPMI. After 4 h, 3.6 ul Transfection Booster #1 (GTS Genlantis, San 

Diego, CA, USA) along with 162.4 ul complete RPMI was added to the cells. When a GFP 

control construct was added to DNA mixtures to monitor transfection efficiency, 20–25% of 

cells were transfected using this method. After 2 days, T cells were activated with 2 ug/ml 

PHA and 1 uM ionomycin for 5 h. T cells were then lysed in 0.5% Nonidet P-40 lysis 

buffer, and luciferase activity was measured using the AutoLumat luminometer from Perkin 

Elmer (Wellesley, MA, USA). HIV LTR luciferase deletion mutants [34] were the gift of 

Drs. Jianming Li and Xiao-Fan Wang (Duke University, Durham, NC, USA). The HIV LTR 

luciferase point mutants used were as described in ref. [1], and the NFAT-luciferase 

construct [35] was the gift of Dr. Gerald Crabtree (Stanford University, Stanford, CA, 

USA).

Transactivation assay

For the transactivation assays, 5× GAL4-luciferase was transfected along with NFAT/GAL4 

or NF-κB/GAL4 (gifts of Dr. Mohamed Oukka, Harvard Medical School, Boston, MA, 

USA; see ref. [36]) and RhoA63L or vector as described above. Unstimulated Jurkat T cells 

were cultured for 2 days and then lysed using 5× lysis buffer from the Promega luciferase 

assay system. Luciferase activity was measured using the Fluostar Optima luminescent plate 

reader from BMG Labtech (Germany).
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Retroviral transduction

Retroviruses were made in A293T cells by transfection using calcium phosphate as 

described previously [37]. Retrovirus was added to Jurkat T cells or human PBMCs in the 

presence of 8 ug/ml polybrene. Cells sat at room temperature for 30 min followed by 3 h of 

centrifugation at room temperature at 2000 g. After 2 days in culture, cells were monitored 

for GFP expression by FACScan analysis.

Intracellular cytokine staining

Transduced Jurkat T cells were activated with 2 ug/ml PHA and 1 uM ionomycin for 5 h. 

After the 1st h, 10 ug/ml Brefeldin-A was added to the cultures. After 5 h, cells were 

permeabilized in Becton Dickson Permeabilization 2 buffer and stained for 30 min with a 

monoclonal PE-conjugated anti-IL-2 (Caltag Laboratories, Burlingame, CA, USA). Cells 

were gated for GFP and analyzed by FACS. Transduced, primary, human PBMCs were 

stimulated with anti-CD3 and anti-CD28 for 24 h. During the last 4 h, Brefeldin-A was 

added to cultures, and cells were stained as described above.

Immunofluorescence staining

U20S cells (1×105) were plated on coverslips in 12-well plates and allowed to grow 

overnight. The following day, the cells were transfected with flag-tagged, wild-type NFAT 

[24], along with pCDNA3 or activated RhoA and serumstarved overnight. Cells were 

activated for 30 min with 5 mM CaCl2 and 1 uM ionomycin and then fixed with 4% 

paraformaldehyde for 15 min at room temperature, rinsed with PBS, permeabilized with 

0.2% Trition for 5 min at 4°C, and rinsed again three times with PBS. Cells were blocked in 

PBS, 0.5% BSA, at room temperature and then stained in PBS, 0.5% BSA, with a mouse 

antiflag antibody (Sigma Chemical Co., St. Louis, MO, USA) for 1 h, followed by three 

washes in PBS and secondary staining with rhodamine-conjugated anti-mouse antibody for 

1 h at room temperature. Cells were washed five times for 5 min in PBS. In the final wash, 1 

ul 4′,6-diamidino-2-phenylindole was added to 1 ml PBS for nuclear staining. Coverslips 

were mounted on slides and allowed to dry overnight in the dark at room temperature. 

Several hundred NFAT+ cells were then scored blindly for nuclear NFAT.

Chromatin immunoprecipitation (ChIP)

For ChIP analysis, the ChIP assay kit from Upstate Cell Signaling Solutions (Lake Placid, 

NY, USA) was used according to protocol. Briefly, 1 × 107-transduced Jurkat T cells for 

each immunoprecipitation condition were left unstimulated or stimulated with 2 ug PHA and 

1 uM ionomycin for 40 min followed by a 20-min incubation with 1% formaldehyde at 

37°C. After incubation with formaldehyde, glycine was added to the cultures to a final 

concentration of 125 mM. Cells were then washed twice with cold 1× PBS plus PMSF and 

protease inhibitors. Cells were lysed in 300 ul SDS lysis buffer and incubated with shaking 

for 10 min at 4°C followed by sonication for a single 1-min burst and eight rounds of 35 s 

(1-s pulse, 0.8-s rest). This process produced fragments ranging between 500 and 2000 bp. 

Sonicates were then precleared with 60 ul salmon sperm DNA/protein A agarose slurry for 

30 min with rotation at 4°C. After clearing, the lysates were divided evenly for overnight 

incubation with no antibody, with 10 ug α-acetylated H3 (K9 and K14) antibody (Upstate 
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Cell Signaling Solutions) or with 25 ug α-NFATc1 (Santa Cruz Biotechnology, Santa Cruz, 

CA, USA). On the following day, the antibody/protein complexes were immunoprecipated 

with 60 ul salmon sperm/ protein A agarose slurry for 2 h, followed by one wash each at 4°C 

with low salt, high salt, and LiCl wash buffers and two washes with 1× tris-EDTA buffer. 

Complexes were eluted in elution buffer (1% SDS, 0.1 M NaHCO3) during two washes for 

15 min at room temperature. NaCl (20 ul 5 M) was added to 500 ul eluate and left overnight 

at 65°C to reverse the protein DNA cross-linking. The following day, 10 ul 0.5 M EDTA, 20 

ul Tris-HCl (pH 6.5), and 2 ul 10 mg/ml proteinase K were added and incubated for 1 h at 

45°C. DNA was then recovered by phenol/chloroform extraction and resuspended in 30 ul 

water.

Real-time PCR

Real-time PCR was used to analyze DNA pulled down by ChIP. We designed primers for 

the IL-2 promoter (forward: CACCTAAGTGTGGGCTAATGTAACA; reverse: 

CTGATGACTCTTTGGAATTCTTTAAACC), along with the TAM/FAM-labeled probe 

(AGAGGGATTTCACCTACATCCATTCAGTCAGTC). DNA from final ChIP 

preparations was diluted 1:2, and 5 ul of this dilution was used per reaction. A standard 

curve was produced using a dilution series from genomic DNA from the same cell type used 

for ChIP. Samples were run in duplicate. The average of duplicate samples was normalized 

by dividing the average of the quantitation from the input DNA of the same cell type and 

condition.

RESULTS

RhoA specifically inhibits transcription from the HIV LTR through the NFAT-binding site

We reported previously that RhoA, its upstream activator p115RhoGEF (p115), and Gα13, a 

heterotrimeric G protein that activates p115, are able to inhibit HIV replication [9]. 

Similarly, ectopic expression of constitutively active RhoA (RhoA-63L) in Jurkat T cells 

inhibited HIV-1 gene expression upon coinfection with a vesicular stomatitis virus (VSV)-

G-pseudotyped HIV-luciferase reporter virus (Fig. 1a). To further analyze how this pathway 

is able to inhibit HIV-1 infection, we transfected Jurkat T cells with the HIV-1 LTR, driving 

a luciferase reporter gene along with RhoA63L. We found that expression of activated 

RhoA leads to decreased LTR-luciferase expression in a dose-dependent manner (Fig. 1b). 

To show the specific inhibition of HIV LTR, we transfected pAX-lacZ, a promoter shown 

previously to be unaffected by Dbl family proteins including p115 [38, 39], into Jurkat cells, 

along with the HIV LTR, in the presence or absence of constitutively active RhoA. We 

showed that RhoA is able to inhibit transcription specifically from the HIV LTR but not 

from the pAX promoter (Fig. 1c).

To understand the mechanism of this inhibition, we looked for the involvement of a specific 

cis-acting element in the HIV LTR. Wild-type or mutant LTR luciferase constructs were 

used to identify mutations, which become resistant to inhibition by RhoA. Analysis of a 

series of LTR deletion mutants showed that the core region of the promoter, containing two 

NF-κB sites and a NFAT-binding site, was important for the ability of RhoA to inhibit 

transcription (Fig. 2a). To determine which of these sites was important in RhoA inhibition 
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of the LTR, we used a group of LTR point mutants [1]. Although mutations in the NF-κB 

sites of the LTR led to reduced overall activity from the promoter, only the mNFAT mutant 

showed consistent lack of inhibition by RhoA (Fig. 2b). A summary of the relative 

inhibition by RhoA from the deletion and site-specific mutants is presented in Figure 2c. 

These data indicate that RhoA is able to inhibit the HIV LTR through the NFAT-binding 

site.

RhoA inhibits NFAT-dependent transcription in T cells

The fact that RhoA is inhibiting HIV transcription through the NFAT-binding site in the 

LTR implies that RhoA is acting on the NFAT pathway in the T cell. NFAT activity has 

been reported to enhance HIV-1 gene expression [1], and inhibition of NFAT activation 

with FK506 reduced HIV-1 gene expression in Jurkat T cells infected with VSV-G-

pseudotyped HIV-luciferase reporter virus (Fig. 3a). To further support the finding that 

RhoA inhibits the LTR in a NFAT-dependent manner, we made use of a NFAT construct 

with serine-to-alanine mutations at serines 172 and 187 (NFATca). These mutations prevent 

the phosphorylation of NFAT, causing the nuclear localization of the protein and making it 

constitutively active [24]. The cotransfection of LTR-luciferase and RhoA63L with the 

NFATca mutant counteracts inhibition of the HIV promoter by RhoA (Fig. 3b). We 

proceeded to examine whether RhoA also inhibited other NFAT-dependent promoters. We 

used a NFAT luciferase construct with three copies of the NFAT-binding site from the IL-2 

promoter, driving a luciferase reporter to study this question [35]. In the presence of RhoA, 

transcription from the 3× NFAT promoter decreased up to fivefold in activated T cells (Fig. 

3c), further supporting the conclusion that RhoA inhibits HIV-1 LTR promoter activity by 

inhibiting NFAT-dependent transcription.

We looked at the ability of RhoA to affect an endogenous indicator of NFAT activity—

production of IL-2. We transduced Jurkat T cells with a retrovirus expressing RhoA63L and 

GFP or with the GFP control vector. Transduction with both viruses resulted in >90% 

positive cells, monitored by GFP expression (data not shown). We proceeded to activate the 

transduced Jurkat cells. Five hours after activation, the cells were stained for intracellular 

IL-2. Production of IL-2 was reduced by twofold (Fig. 4a) in cells expressing RhoA63L. 

Primary, human PBMCs were also transduced with control or RhoA63L retrovirus vectors. 

IL-2 production in the GFP+ populations of these primary cells was then assessed by 

intracellular staining. In human primary cells expressing RhoA63L, IL-2 was again reduced 

by approximately twofold (Fig. 2b). Together, these results demonstrate that activation of 

RhoA signaling leads to inhibition of NFAT activity and IL-2 gene expression.

RhoA inhibits the transactivation activity of NFAT but not NFAT nuclear translocation

To explain the effect of RhoA on NFAT-dependent transcription and IL-2 production, we 

examined whether RhoA was affecting the nuclear translocation of the NFAT protein. After 

activation, cells transfected with RhoA or vector showed efficient NFAT nuclear 

localization (Supplemental Fig. 1), demonstrating that activated RhoA does not inhibit 

nuclear translocation of NFAT during Ca2+-mediated activation. Nuclear extracts were also 

prepared from untransduced or RhoA63L-transduced Jurkat T cells, and EMSA was 

performed using the NFAT-binding site from the IL-2 promoter. NFAT showed no decrease 
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in binding to the probe in the presence of activated RhoA, with or without activation of the 

cells (Supplemental Fig. 1).

An alternative explanation for the decrease in NFAT-dependent transcription in the presence 

of constitutively active RhoA could be that it is a result of a change in the ability of NFAT 

to transactivate gene expression. To determine whether RhoA was affecting this capacity, 

we transfected Jurkat T cells with a 5× GAL4-luciferase construct, along with GAL4/NFAT 

or GAL4/NF-κB fusion constructs in the presence or absence of RhoA [36]. We found that 

there was an approximate twofold decrease in transcription from the 5× GAL4-luciferase 

promoter driven by GAL4/NFAT in the presence of RhoA in Jurkat T cells (Fig. 5). In 

contrast, active RhoA showed no effect of the GTPase on the transactivation activity of NF-

κB fused with the GAL4 DNA-binding domain. These data suggest that RhoA inhibition of 

NFAT-dependent transcription is caused by an effect on the transactivation activity of 

NFAT.

RhoA decreases levels of acetylated histone 3 at the IL-2 promoter

Recent work has shown that NFAT can play an important role in the production and 

maintenance of anergy in T cells [40]. In addition, studies have shown that NFAT is able to 

influence the process of chromatin remodeling, allowing for access of transcription factors 

to the promoter region of genes regulated by NFAT [41–43]. We therefore questioned 

whether expression of activated RhoA in T cells caused changes in the chromatin structure 

of genes involved in T cell activation. To investigate this question, we analyzed the IL-2 

promoter using ChIP. Jurkat cells transduced with constitutively active RhoA or a control 

vector were activated for 40 min with PHA and ionomycin or left untreated, then fixed, 

lysed, and sonicated. The sonicated lysates were immunoprecipitated with an antibody 

against NFAT or with an antiacetylated histone 3 antibody as an indication of active 

chromatin. Immunoprecipitated DNA was analyzed by real-time PCR for the IL-2 promoter. 

Consistent with the NFAT nuclear localization and the EMSA-based DNA-binding assays, 

ChIP, with α-NFATc1, showed that there was increased binding of the protein to the IL-2 

promoter upon cellular activation in the presence or absence of RhoA (Fig. 6b). When α-

AcH3 ChIP was similarly analyzed, RhoA-expressing cells showed an approximately 

threefold decrease compared with vector-expressing cells in the level of AcH3 at the IL-2 

promoter in the unstimulated condition (Fig. 6a). We also found that although the level of 

AcH3 at the IL-2 promoter increased with stimulation in vector-transduced cells, the amount 

of active chromatin in RhoA-transduced cells decreased under the same conditions (Fig. 6a). 

The acetylation of H3 at the actin promoter was not affected by RhoA (data not shown). 

These findings suggest that activated RhoA causes a change in the IL-2 promoter at the level 

of chromatin organization.

DISCUSSION

We have shown that RhoA decreases HIV replication by decreasing LTR-driven gene 

expression and that the inhibition of the HIV LTR is dependent on its NFAT-binding site. In 

addition, we have shown that RhoA is able to inhibit NFAT-dependent transcription as well 

as IL-2 production. We have gone on to demonstrate that RhoA did not inhibit NFAT 
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nuclear translocation or NFAT DNA binding. Expression of activated RhoA did, however, 

decrease the transactivation activity of NFAT in T cells. Finally, we have shown by ChIP 

that in the presence of constitutively active RhoA, the chromatin at the IL-2 promoter is less 

acetylated upon activation of the T cell compared with the chromatin of vector control cells, 

indicating a decrease in promoter activity.

The dependence of HIV on T cell activation to further its own replication has made the virus 

a useful tool for furthering our understanding of factors important during this process. 

Earlier work from this lab showed that the Gα13, p115RhoGEF, and RhoA pathway is able 

to inhibit HIV replication [8, 9]. It is interesting that mice lacking G2A, a G-protein-coupled 

receptor (GPCR), which has been shown to activate the Gα13 pathway, develop a late onset, 

autoimmune disorder, implying an important role for the Gα13 signaling pathway, including 

RhoA, in the regulation of T cell activation [44, 45]. Although the underlying mechanism 

behind the development of autoimmunity in these mice is not fully understood, we show 

here that activation of the downstream effector of Gα13, RhoA, can lead to inhibition of 

transcription from the HIV LTR and the IL-2 promoter. These findings suggest that 

extracellular signaling through specific GPCRs may be able to modulate not only T cell 

activation but also HIV transcription, thus providing a potential target pathway for helping 

to control the virus.

T cell anergy is a state of unresponsiveness to TCR stimulation characterized in part by lack 

of IL-2 production [46], a phenotype similar to that seen here in the RhoA63L-expressing T 

cells. Recent work has indicated that NFAT plays an important role, not only in promoting T 

cell activation but also in preventing it. NFAT1 has been identified as a potential anergy 

factor, shown to be important in up-regulation of a panel of genes associated with anergy, 

and T cells lacking NFAT1 are resistant to anergy induction [29]. NFAT functions as a 

transcriptional regulator of anergy when AP-1 is not present to serve as a binding partner—

in a situation where the T cell is not fully activated. In addition, work by Heissmeyer et al. 

[40] shows that pretreatment of cells with ionomycin leads to cyclosporine A-sensitive 

anergy induction. Here, we have demonstrated a reduction in T cell responsiveness in the 

presence of constitutively active RhoA. It is interesting that although constitutively active 

RhoA did not inhibit the nuclear translocation of NFAT upon Ca2+ stimulation of U2OS 

cells, we did observe that RhoA63L expression in these cells led to an increase in nuclear 

translocation of NFAT in the absence of stimulation (Supplemental Fig. 1). It is unlikely that 

RhoA activates NFAT family proteins directly to cause translocation. One possible 

candidate effector in this process is PLCε. Wing et al. [19] showed recently that RhoA was 

able to activate PLCε directly through a unique, ~65 amino acid insert in the protein’s Y box 

[19]. PLC isozymes are responsible for cleaving phosphatidylinositol 4,5, bisphosphate to 

produce 1,4,5-triphosphate (IP3) and diacylglycerol [47]. IP3 causes the release of 

intracellular calcium stores, which can then lead to the activation of calcineurin [48] and 

subsequently, NFAT. These findings, in combination with our observation, may provide a 

potential mechanism of RhoA-mediated inhibition of T cell activation. The possibility exists 

that early translocation of NFAT puts the protein in contact with different binding partners 

in the nucleus, which result in NFAT acting as a repressor of IL-2 transcription rather than 

as an activator. This is supported by the data presented in Figure 5, showing that RhoA 

decreases the ability of NFAT to transactivate DNA. RhoA may thus be able to affect which 
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cofactors are available for NFAT-dependent transcription on several different levels, 

through a direct effect on NFAT-binding partners and through an indirect effect on the 

timing of NFAT translocation, perhaps preventing the recruitment of a transcriptional 

activation complex. In support of this possibility, Bodor and colleagues [49, 50] have 

described the interaction of NFAT with the inducible cAMP early repressor, which lacks a 

transactivation domain, leading its interaction with NFAT to result in the prevention of the 

recruitment of the CBP/p300 histone acetylase complex to the promoter and thus, to 

inhibition of transcription. Further analysis of which cofactors bind with NFAT at the IL-2 

promoter in the presence of constitutively active RhoA may shed light on how NFAT is able 

to induce T cell anergy as well as activation.

RhoA is a downstream effector of many different pathways, and under some conditions, 

activation of the GTPase could actually lead to enhancement of IL-2 transcription. For 

example, RhoA has well-documented roles in the activation of NF-κB and AP-1 [15–18]. It 

is interesting that Jurkat T cells cotransfected with constitutively active NFAT and 

RhoA63L actually showed consistently higher levels of activity from the NFAT-luciferase 

construct than cells transfected with constitutively active NFAT alone (data not shown). 

Again, an effect of activated RhoA on NFAT-binding partners including AP-1 may explain 

the enhancement when constitutively active NFAT and RhoA63L are expressed.

Finally, although it has been shown that RhoA can cause inhibition of HIV, a mechanism for 

this inhibition has not been described. Here, we have shown that activation of RhoA can 

lead to a decrease in the ability of NFAT to activate transcription, but the overall influence 

of RhoA on NFAT-dependent transcription may be the result of a combination of effects. In 

this study, we have used the constitutively active mutant of RhoA, RhoA63L, to study the 

effects of the GTPase on T cell activation. Previous work from this lab, however, has shown 

that expression of a mutant of p115RhoGEF, which lacks GEF activity and therefore, cannot 

activate RhoA but is still able to inhibit Gα12 and Gα13, leads to enhancement of HIV 

replication and NFAT-dependent transcription (ref. [9] and data not shown). These 

observations suggest that the Gα13-p115RhoGEF-RhoA pathway plays a role specifically in 

down-modulating T cell activation and HIV replication. Further examination of ligands and 

GPCRs, which use Gα13, may therefore lead to novel methods of modulating T cell 

activation with potential uses in controlling not only HIV but also autoimmune disorders.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
RhoA specifically inhibits HIV-1 LTR activity. (a) Jurkat T cells were transduced with 

control or RhoA63L vectors, followed by infection with HIV-luciferase virus pseudotyped 

with VSV-G. After 2 days, cells were harvested, and luciferase activity was measured. RLU, 

Relative light units. (b) Jurkat T cells were cotransfected with HIV-1 LTR-luciferase, the 

HIV Tat protein, and vector (pcDNA3) or the constitutively active RhoA63L. After 2 days, 

cells were harvested, and luciferase activity was measured. Shown are data representative of 

at least 10 experiments. (c) Jurkat T cells were transfected with the HIV LTR-luciferase and 

pAX-lacZ in the presence or absence of RhoA63L. Post-transfection (48 h), cell lysates were 

measured for luciferase activity as well as lacZ activity. In the presence of RhoA63L, the 

LTR was inhibited by 4.5-fold, and lacZ expression from the pAX promoter was unaffected. 

Data from six independent experiments are summarized.
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Fig. 2. 
RhoA inhibition of HIV LTR is dependent on the NFAT-binding site. The HIV LTR 

deletion mutants (a) or point mutants of the HIV LTR NF-κB/NFAT enhancer (b) were 

transfected into Jurkat T cells with vector or RhoA63L, and luciferase activity was measured 

48 h post-transfection. (c) Summary of the HIV LTR deletion and point mutants used to 

define cis-acting elements involved in RhoA-mediated inhibition of the promoter. +++, 

Strong inhibition (>3×); ++, moderate inhibition (1.5–3×); –, no inhibition (<1.5×). Data 

shown are representative of four experiments. Error bars represent the standard deviation of 

duplicate samples in one experiment. NRE, Negative regulatory element; KB, NF-κB; SP1, 

specificity protein 1; mKB1, point mutation in NF-κB1; luc wt, luciferase wild-type.
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Fig. 3. 
RhoA inhibits NFAT to inhibit HIV-1 LTR expression. (a) Jurkat T cells (2×105) were 

transfected with the 3 NFAT-luc construct in the presence or absence of RhoA. After 2 days, 

cells were stimulated with PHA and ionomycin for 5 h or left unstimulated. RhoA inhibited 

luciferase expression significantly (*, P<0.01) from the NFAT promoter in stimulated Jurkat 

T cells. Shown are representative data for at least six independent experiments. (b) 

Constitutively active NFAT counteracts RhoA inhibition. Jurkat T cells were transfected 

with HIV LTR-luciferase construct and the HIV Tat protein in the presence or absence of 

RhoA63L and/or constitutively active NFAT. The presence of constitutively active NFAT 

prevents HIV LTR inhibition by RhoA. NFATca,. (c) Jurkat T cells were pretreated with 

FK506 to inhibit NFAT activation, followed by infection with HIV-luciferase virus 

pseudotyped with VSV-G and activation with PHA and ionomycin. After 2 days, cells were 

harvested, and luciferase activity was measured. Data shown are representative of four 

experiments. Error bars represent the standard deviation of duplicate samples in one 

experiment. NFATca, constitutively active NFAT.
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Fig. 4. 
RhoA inhibits IL-2 expression during T cell activation. (a) Jurkat T cells transduced with 

vector or with RhoA63L were stimulated with PHA and ionomycin for 5 h. Cells were then 

stained for intracellular IL-2. The presence of active RhoA decreased IL-2 production by 

~50% (n=2). (b) Primary human PBMCs were transduced retrovirally with control vector or 

constitutively active RhoA. After activation, intracellular IL-2 was measured. The 

percentage of IL-2-positive cells is shown. Data shown are representative of two 

independent experiments.
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Fig. 5. 
RhoA decreases the transactivation activity of NFAT. Jurkat T cells were transfected with 

5× GAL4-luciferase and plasmids encoding the GAL4-NFAT or GAL4-NF-κB fusion 

proteins in the presence or absence of RhoA63L. After 48 h, the cells were harvested, and 

luciferase activity was measured to determine transcriptional activation. Data are shown as 

percent activity relative to vector from four (GAL4-NFAT) or three (GAL4-NF-κB) 

independent experiments.
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Fig. 6. 
RhoA decreases the level of histone 3 acetylation at the IL-2 promoter in T cells. Jurkat T 

cells transduced with vector or RhoA63L were left unstimulated or activated with PHA and 

ionomycin. ChIP, using an antiacetylated H3 antibody (a) or an anti-NFATc1 antibody (b), 

was performed. The amount of ChIP DNA was measured by real-time, quantitative PCR of 

the IL-2 promoter. Input chromatin DNA (10% of total) was also measured for each sample. 

The relative NFAT binding is determined by the amount of anti-NFATc1 ChIP/input DNA. 

Data shown are representative of five independent experiments.
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