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Abstract
Background—Increasing evidence suggests that autism is a disorder of distributed neural
networks that may exhibit abnormal developmental trajectories. Characterisation of white matter
early in the developmental course of the disorder is critical to understanding these aberrant
trajectories.

Methods—A cross-sectional study of 2- to 6-year-old children with autism was conducted using
diffusion tensor imaging combined with a novel statistical approach employing fractional
anisotropy distributions. Fifty-eight children aged 18–79 months were imaged: 33 were diagnosed
with autism, 8 with general developmental delay, and 17 were typically developing. Fractional
anisotropy values within global white matter, cortical lobes and the cerebellum were measured and
transformed to random F distributions for each subject. Each distribution of values for a region
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was summarised by estimating δ, the estimated mean and standard deviation of the approximating
F for each distribution.

Results—The estimated δ parameter, δ̂, was significantly decreased in individuals with autism
compared to the combined control group. This was true in all cortical lobes, as well as in the
cerebellum, but differences were most robust in the temporal lobe. Predicted developmental
trajectories of δ̂ across the age range in the sample showed patterns that partially distinguished the
groups. Exploratory analyses suggested that the variability, rather than the central tendency,
component of δ̂ was the driving force behind these results.

Conclusions—While preliminary, our results suggest white matter in young children with
autism may be abnormally homogeneous, which may reflect poorly organised or differentiated
pathways, particularly in the temporal lobe, which is important for social and emotional cognition.
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Introduction
Autism is a developmental disorder that is characterised by an onset in early childhood and a
triad of impairments: (1) deficits in reciprocal social interaction; (2) delayed and/or
abnormal language and communication skills; and (3) a narrow range of interests,
dependence on routine or ritual, and/or repetitive movements (American Psychiatric
Association 2000). A complex and heterogeneous disorder, its neural substrates are a subject
of ongoing investigation; however, relatively few studies addressing brain structure and
function have been performed in young children. The most consistent neurobiological
finding is an enlargement of brain volume (Piven et al. 1996; Courchesne et al. 2001;
Hazlett et al. 2005), which is detectable as early as 2 years of age, affects both white and
grey matter volume, and may be related to decreased axonal pruning early in development
(Frith 2003).

Brain imaging studies have also specifically implicated circumscribed networks in relation
to certain symptomatic domains, such as temporal (Aylward et al. 1999; Adolphs et al.
2001) and fronto-striatal (Sears et al. 1999; Carper & Courchesne 2005) networks that may
underlie social/emotional and ritualistic/repetitive behaviour, respectively. Recently,
functional connectivity studies have addressed the ability of the nodes of such networks to
work in concert, and many have suggested that communication between these nodes may be
suboptimal in autism (Noonan et al. 2009; Minshew & Keller 2010).

Increased white matter volume and the implication of neural network integrity raised by
functional connectivity studies suggest that there may be differences in white matter tracts
forming physical connections between brain areas in autism. Diffusion tensor imaging (DTI)
indirectly measures the integrity of these tracts via known tissue water diffusion properties
within axons. DTI employs a modification in the application of the standard radio frequency
gradients in magnetic resonance imaging (MRI), rendering it sensitive to tissue water
diffusion (Basser & Pierpaoli 1996). In white matter, the myelin sheath and the physical
structure of axons impose physical boundaries to the direction of water diffusion, so that
diffusion primarily occurs along the axis of the fibre bundles (Beaulieu 2002), rather than in
a freely diffusing state. This directionality is represented by a ratio that describes the
diffusion along this primary direction relative to the other two orthogonal directions in three-
dimensional space; the most commonly used variant of this ratio is fractional anisotropy
(FA). At each voxel of the image, FA expresses the deviation of the diffusion from that of
spherical or isotropic diffusion, characteristic of what would be seen in freely diffusing
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tissue, such as cerebrospinal fluid within the ventricles. Although the relation between FA
and underlying histological properties is not fully understood, particularly in areas of
crossing or diverging fibres, higher FA measured in the centre of a fibre bundle (where
variability is lowest) is generally interpreted to indicate stronger, more coherently bundled,
or more heavily myelinated white matter tracts (Beaulieu 2002). By unveiling the integrity
and coherence of brain white matter representing fibre projections, DTI has the potential to
contribute a much richer understanding of white matter structure than conventional MRI
alone.

Studies of white matter development in childhood and adolescence as measured by DTI
consistently demonstrate that FA increases with age throughout brain white matter (see
review by Cascio et al. 2007), presumably reflecting ongoing myelination during early
childhood and increased organisation and coherence of white matter tracts throughout
development. DTI may be a particularly promising tool for the study of autism, whose
neural underpinnings are likely to involve a distributed network of developing brain systems
(Müller 2007). Voxel-based morphometry studies have demonstrated widespread white
matter volumetric abnormalities in autism (McAlonan et al. 2005; Mengotti et al. 2011),
particularly in limbic regions, supporting the hypothesis that aberrant neural connectivity is
a key factor in autism (Courchesne & Pierce 2005; Minshew & Williams 2007).
Tractography studies that utilise FA to trace probable fibre paths suggest that fronto-striatal
and fronto-limbic circuits (Kumar et al. 2010; Langen et al. 2011) as well as commissural
connections (Pugliese et al. 2009; Kumar et al. 2010; Lo et al. 2011) are compromised in
autism.

In a preliminary DTI study of high functioning older children and adolescents with autism
compared to matched controls (Barnea-Goraly et al. 2004), widespread reduction in mean
FA, including regions implicated in autism such as the temporal lobe, was seen throughout
the cerebral cortex using a voxel-based analysis method. More recently, Alexander et al.
(2007) demonstrated reduced FA in the corpora callosa of a subgroup of individuals with
autism, for whom cognitive abilities were lower than both controls and other autism groups.
Keller et al. (2007) noted decreased FA in both the corpus callosum and internal capsule of a
large sample of adolescents and adults with autism, and Lee and colleagues observed
decreased FA in the superior temporal gyrus and temporal stem (Lee et al. 2007). Among
other diffusion anomalies, widespread decreases in FA were recently reported in the corpus
callosum, internal capsule, anterior thalamic radiation, and inferior and superior longitudinal
fasciculi (SLF) in a large sample of children and adolescents with autism spectrum disorder
(ASD) (Shukla et al. 2011). Jou and colleagues replicated these findings in another recent
study, demonstrating reduced FA in the SLF as well as several other long-range fibre tracts
( Jou et al. 2011). In contrast to these studies which focused on older children, adolescents or
adults, a recent study by Ben Bashat et al. (2007) found increased FA in a small (n = 7)
group of preschoolers with autism compared to typically developing (TYP) controls,
suggesting a complex developmental trajectory of white matter pathways in autism.
Although this study was preliminary, a recent follow-up study replicated this result
(Weinstein et al. 2011). A comprehensive examination of FA in a large sample of young
children with autism is important to clarify the picture of early emerging brain differences
that may give rise to the disorder.

In the current study, we present DTI data from a large sample of young children with autism
compared to a group including TYP children and children with developmental delay (DD)
without autism. This sample overlaps with that of a previous study (Hazlett et al. 2005), in
which we reported generalised brain volume differences that were particularly robust in
white matter. In this report, we also introduce an alternative analysis approach that greatly
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improves statistical power within a neuroimaging framework and provides a means to
summarise the entire distribution of FA values within individual regions of interest (ROIs).

The methods used in this study are based on the principle that, because FA values are
bounded by 0 and 1 and are calculated from the covariance of a Gaussian distribution that
describes water diffusion, FA itself cannot be Gaussian. Thus, using mean FA directly in a
parametric mixed model violates its statistical assumptions, and a viable alternative is to
describe FA in terms of its distribution among the voxels in a ROI. The rationale for the use
of this method is based on first principles of statistics and is described briefly in the
Statistical Analysis section. Further detail on the theory and use of this method can be found
in Supporting Information and in Clement et al. (2008; Clement-Spychala et al. 2010).

Methods
Sample

A subset of the sample used in our longitudinal study of brain development in autism
(Hazlett et al. 2005) was used for this study. In this subset, 33 were diagnosed with autism, 8
with DD without autism, and 17 were TYP. During the course of the longitudinal study, an
upgraded sequence was adopted; the subset included in this report comprises 66
observations from 58 children who were scanned using the newer DTI sequence. A small
number in each group had data from two observation points (three each in the autism and
TYP groups, two in the DD group); these observations were separated by 2 years’ time. We
used a hierarchical model to account for the lack of independence between these repeated
observations in eight participants. The participants were from the south-eastern USA and
were recruited and characterised as described previously (Hazlett et al. 2005): children with
DD were included to enrich the control sample with subjects who were comparable to the
subjects with autism in cognitive development.

Subjects with autism were referred after receiving a clinical diagnosis of an ASD; diagnosis
was confirmed with the Autism Diagnostic Interview – Revised (ADI-R; LeCouteur et al.
2003) and Autism Diagnostic Observation Schedule (ADOS; Lord et al. 1999) and finalised
with an expert clinical DSM-IV diagnosis. All subjects in the autism group met criteria on
both the ADOS and ADI-R, as well as received an expert DSM-IV diagnosis of autistic
disorder. Subjects with DD were referred only if they had no known identifiable cause for
their delay (e.g. prematurity, genetic disorder or neurological disorder) and had no indication
of a pervasive developmental disorder. Subjects were excluded for having evidence of a
medical condition thought to be associated with autism, including fragile X syndrome,
tuberous sclerosis, gross central nervous system injury (e.g. cerebral palsy, significant
perinatal or postnatal complications or trauma, drug exposure), seizures, and significant
motor or sensory impairments. Descriptive statistics can be found in Table 1.

Image acquisition and processing
All scans were acquired on a 1.5 T GE Signa Advantage MR scanner. T1-weighted
structural images were acquired using a 3D IR prepped SPGR protocol with a 256 × 256 ×
124 image matrix at 0.78125 × 0.78125 × 1.5 mm resolution. DTI images were acquired
using four repetitions of a 12-direction spin-echo single-shot echo planar imaging sequence
with a 128 × 128 × 30 image matrix at 1.875 × 1.875 × 3.8 mm resolution (with a 0.4 mm
gap) using a b-value of 1000 s/mm2.

Each DTI slice was screened for motion and other artefacts using custom software that
automatically removed slices or shots falling outside predetermined parameters (http://
www.ia.unc.edu/dev/download/dtichecker/index.htm), including slice-to-slice and average-
to-average motion, and to correct for the latter. Subsequently, both the correction of eddy
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current-based image distortions using mutual information-based unwarping and the
calculation of the diffusion tensor elements, eigenvectors and eigenvalues were performed
using another custom program (Tensorcalc, Stanford University: http://rsl.stanford.edu/
moseley/tensorcalc/). These eigenvectors and values were then used to compute FA maps
using a customised program: (http://www.ia.unc.edu/dev/download/fibertracking/
index.htm).

The 66 FA maps were then coregistered into the same coordinate system using both affine
(scaling and translation) and non-linear (fluid warping) coregistration. These coregistered
FA maps were then combined with a ROI mask comprising a white matter segmentation
map and lobe parcellation map created using a semi-automated method (Yushkevich et al.
2006) from a population atlas of all subjects’ structural MRI with associated tissue
segmentation (Hazlett et al. 2005). The goal of this combination of masks was the isolation
of white matter within each of the cortical lobes, and the cerebellum. Because of the lack of
clear landmarks to mark the boundary between parietal and occipital lobe, this method
yields a parcellation that does not separate these two lobes. This application of white matter
mask and lobe parcellation to the individual coregistered FA maps allowed the extraction of
FA values for global (whole brain) white matter, white matter in each cortical lobe, and the
cerebellum (see Fig. 1).

Outcome variable derivation and statistical analysis
Raw FA values were transformed to B values, and the distribution of these values was used
to approximate a beta distribution using two summary parameters estimated from the

distribution of the raw B values (resulting in ); for details,
see Supporting Information). The raw FA distributions, transformed to the B variable, are
overlaid with the approximated beta distributions in Fig. S1 for six randomly chosen
participants. The plots in Fig. S1 illustrate how accurately the transformation represents the
raw data, but the bounded nature of the beta distribution resulted in limitations to fit at the
boundaries of the distribution (Fig. S1A, top-right and bottom-left). Because of this
limitation, beta distributions were then transformed to a non-bounded F distribution using
first principles and a well-known statistical transformation meant to spread the data for
statistical analysis. An estimated mean and standard deviation of the approximating F were
calculated for each distribution. This transformation yields a non-bounded distribution, and
unlike the beta value, the F value varies in the same direction as FA, which simplifies
understanding of the relationship between the outcome variable and the physical property
that it represents. A further strength of this conversion is that summary statistics are used to
calculate the F distribution values rather than individual FA values, resulting in an
inherently more reliable and stable variable that is both statistically and scientifically
sufficient, as evidenced by how well the distributions fit the real data (Fig. S1B).

We used the single value δ, representing the mean plus one standard deviation (δ = μ + σ) of
the F distribution as our outcome variable. δ and similar robust measures have been used in
previous imaging studies (Puff et al. 1994; Clement et al. 2008; Clement-Spychala et al.
2010). Because each statistic is based on thousands of FA data values, the beta and
equivalent F moment estimates can be expected to follow Gaussian distributions rather well
(a standard consequence of large-sample theory for maximum likelihood estimates; this
assumption is confirmed in Fig. S1). General linear mixed models assuming Gaussian
distributions of residuals were fitted using the mixed procedure (Brown & Prescott 2006) in
sas (version 8.2) separately for the global white matter, lobe and cerebellum ROIs, based on
Restricted Maximum Likelihood Estimation. Group, age and gender served as between-
participant predictors for the analysis of all ROIs. For the lobe and cerebellum models, side
(hemisphere) was also included as a within-participant predictor, as was lobe in the lobe
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model. The age and gender variables were centred about 4 years and 0.8 respectively, the
approximate overall mean age and proportion of male participants.

Our primary planned analysis consisted of three separate models with δ̂ as the outcome
variable for global white matter, individual cerebral lobes and the cerebellum. Further
planned analyses included tests of group by lobe interactions, regardless of the outcome of
the main lobes model. In secondary analyses, we explored the contributions of slice
thickness and cognitive development scores. Finally, a secondary analysis that explored the
relative contributions of the components of δ (μ and σ) was performed.

Results
Primary analysis

Model diagnostic analysis—All assumptions, especially the assumption of Gaussian
distribution, must always be checked in a mixed model. Hence for each model we conducted
thorough regression diagnostic analysis following the principles outlined in Chapter 7,
Assumption Diagnostics, in Muller & Fetterman (2002). All results supported the validity of
the assumption.

Results for global white matter—For global white matter, the model revealed a
statistically significant effect of group (F2,54 = 7.77, P = 0.0011), with the autism group
having a significantly lower δ̂ than the combined control group (F1,54 = 14.73, P < 0.0003).
This difference seems to be driven by a significant difference between the autism and TYP
groups (F1,54 = 14.65, P < 0.0003). As expected, a significant effect of age (F1,54 = 39.69, P
< 0.0001) was also observed. In Fig. 2, predicted change with age in each of the three groups
is illustrated. The typical group shows the steepest linear increase in predicted δ̂ with age,
while the DD group’s slope is shallowest; however, there was no significant interaction
between age and group. The model output is summarised in Table S1.

Results for cerebral lobes—We analysed voxels within the white matter mask first for
all cerebral lobes together in the linear mixed model, and then separately for each lobe in
follow-up tests. The linear mixed model (summarised in Table S2) for the lobe analysis
revealed that δ̂ differed significantly by lobe (F2,110 = 18.23, P < 0.001), group (F2,54 = 5.21,
P = 0.0085), side (hemisphere) (F1,320 = 145.02, P < 0.0001) and age (F1,320 = 21.74, P <
0.0001), while a test for interaction between age and group was nearly significant (F2,320 =
2.96, P = 0.053). Follow-up analyses revealed significant differences between the autism
and combined control groups (F1,320 = 8.82, P = 0.0032), reflected in significant differences
between both the autism and TYP groups (F1,320 = 6.26, P = 0.0128), and between the
autism and DD groups (F1,320 = 4.83, P = 0.0287); the overall lower predicted values of δ̂ in
the autism group compared to both control groups are depicted in Fig. 3. A statistically
significant interaction between group and age for the DD versus typical groups (F1,320 =
5.65, P = 0.0181) was also observed, but other group by age interactions did not reach
significance.

Although there was no overall statistically significant interaction between group and lobe,
several significant relationships emerged when the groups were compared with pre-planned
t-tests, based on previous studies indicating reduced structural integrity of white matter in
ASD (Barnea-Goraly et al. 2004, 2010; Keller et al. 2007). The autism and combined
control groups differed significantly in the δ̂ value for all three lobes, as summarised in
Table S3. However, when a Bonferroni correction was used to correct for multiple tests,
only the group differences in the temporal lobe survived.
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Results for cerebellum—The linear mixed model for the cerebellum analysis (also
limited to voxels within the white matter mask) yielded significant effects of group (F2,54 =
15.57, P < 0.0001), side (F1,54 = 63.74, P < 0.0001) and age (F1,54 = 28.16, P < 0.0001) in δ̂.
The autism group differed significantly from the combined control group (F1,54 = 6.00, P =
0.0176). When analysing the autism group compared to the control groups separately, the
autism group was significantly different only from the TYP group (F1,54 = 4.6, P = 0.0364).
The results of the model are summarised in Table S4. No significant interactions between
group and age were found; the predicted δ̂ values as a function of age are illustrated in Fig.
4. As in the previous models, the autism and typical groups follow similar trajectories, but
the autism group has a much lower level of predicted δ̂, while the DD group has a static
level of predicted δ̂ throughout the 5-year span.

Secondary exploratory analyses
Alternative outcome measures—A separate multivariate model was run using each of
the two components of δ̂ (F-mean and F-standard deviation) as outcome variables separately,
revealing that group differences were driven almost entirely by the standard deviation
component. Follow-up group tests for the standard deviation model yielded significant
differences for the autism versus TYP (t = −4.07, P = 0.002) and autism versus DD (t =
−3.18, P = 0.0018) groups, but no significant differences for the TYP versus DD group,
using F-standard deviation (F-SD) as the outcome variable. No significant differences in any
group comparisons were found using the F-mean as the outcome variable. The F-SD
outcome variable is a reflection of the variability of FA values within the distribution. The
exploratory results suggest that the autism group has similar overall FA levels within a ROI,
but less variation in FA compared to the other two groups.

Importantly, we also explored the nontransformed FA distribution properties as outcome
measures, which resulted in a substantial loss of power, similar to the loss of power that
might be observed in simply taking the mean FA value. The transformation to an F
distribution is based completely on the first principles of statistics and allows for the
summarisation of the entire data set, which provides greater power to detect specific
differences.

Additional predictors—Because the groups’ mean estimated IQs differ, we ran the
global model with cognitive development score included as a predictor. No significant main
effects or interactions between cognitive development score and group were found to predict
δ. This provides validation for the consideration of the two control groups as a combined
group, although results are also presented for the groups separately.

Although a nominal value of 4 mm was specified for the z-direction of the diffusion-
weighted images, we found upon inspection of the data that thickness actually varied
between 4.09 and 4.21 mm. This variability was wider than expected, and the source of it
was unknown. As a result, each model was also run with slice thickness included as a
covariate. Thickness did have a significant effect on the outcome measure δ (F1,54 = 9.77, P
= 0.0029), but the significant differences reported in the above section, as well as the
predicted trajectories with age, were not altered by the addition of this covariate. Thus, we
are confident that the variability in slice thickness does not represent a confound that affects
the group differences highlighted in this report but wish to point out that potential variability
in slice thickness is a factor that future experiments should take into account.

Discussion
This study employed a novel approach for the analysis of diffusion data, focusing on FA
distributions rather than mean FA values in the brain ROIs. Using this technique, we noted
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significant group differences in cerebral and cerebellar white matter. The autism group had
significantly lower δ values than the combined control group, both globally, and within
specific cortical lobes, as well as in the cerebellum, reflecting lower/more variable
anisotropy and thus potentially less efficient white matter transduction, under the hypothesis
that the structural property of FA is linked to the functional efficacy of fibre pathways.
Although this was not a longitudinal study, the predicted trajectories of δ between ages 1.5
and 6.5 years followed group-specific patterns, with the DD group exhibiting a flat
trajectory and the autism group increasing in a manner more similar to the typical group,
despite its lower overall δ values. The only statistically significant difference in group
trajectory was between the typical and DD groups.

The statistical approach we employed is an alternative that addresses the high dimension,
small sample size problem inherent in neuroimaging, reducing thousands of voxels
accurately to two summary parameters via transformation of the FA values into standard
distributions with well-known statistical properties. This analysis method provides
considerable sensitivity to detect group differences (Clement-Spychala et al. 2010). In the
analysis, we considered F distribution means, the SDs and the combination of these values
(δ = μ + σ) as potential outcome measures. While our primary analysis of δ revealed
significant group differences, closer inspection revealed that these differences were driven
almost entirely by the standard deviation component of δ. Therefore, the standard deviation
(F-SD) was considered as the main outcome variable for secondary analyses. The
exploratory results suggest that the variability of FA values within the distributions was the
key factor in distinguishing the groups. This diminished variability in FA may reflect a
decrease in the differentiation that typically occurs during brain maturation. Although it is
possible that this occurs prenatally as diminished neural proliferation, migration,
differentiation of neural progenitor cells into specific types of neurons, or axon guidance to
specific targets, it is more likely to occur postnatally, during the period in which additional
axon growth is followed by pruning of superfluous connections. It is during the early
postnatal period that behavioural differences begin to emerge (DSM-IV) and previous
studies implicate early postnatal brain overgrowth (Hazlett et al. 2005), which would be
consistent with this idea. Our results are consistent with other DTI studies employing more
traditional analysis approaches and finding abnormal developmental trajectories of white
matter maturation (Ben Bashat et al. 2007; Shukla et al. 2011). The transformations we
applied to the FA values do not change the biological significance of the outcome variable;
rather they allow us to describe FA more comprehensively within a circumscribed region of
the brain than would be possible with only a mean value, particularly for a non-normal,
bounded distribution such as FA.

The data in Table S2 and Fig. 3 suggest that there are different patterns over time that
partially distinguish the groups. A nearly significant interaction between age and group was
observed, with a significant contrast in the TYP versus DD comparison. Although the small
size of the DD group prevents firm conclusions, the impression from these tests and Fig. 3 is
that the trajectory is steepest in the TYP group, and shallowest in the DD group, while that
of the autism group is intermediate between them.

The lobe analysis revealed that group differences in frontal, temporal and occipital-parietal
lobes distinguished the autism group from the combined control group. Both the temporal
and frontal lobes have been heavily implicated in autism: the temporal lobe being the hub of
a wide neural network mediating social and emotional processes (Bauman & Kemper 1985;
Schultz et al. 2000; Amaral & Corbett 2003; Boddaert et al. 2004; Mosconi et al. 2005), and
the frontal lobe a key structure in executive abilities such as set shifting and cognitive
flexibility (Turner 1999; Schmitz et l. 2006; Shafritz et al. 2008). Although multiple
interpretations of reduced FA variability are plausible, one possibility is that it reflects early
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disruption of widespread cortical networks in autism, which is consistent with a growing
literature emphasising autism as a cortical disconnection syndrome (Geschwind & Levitt
2007; Minshew & Williams 2007). Occipital and parietal cortex, as well as superior
temporal sulcus, a site of group differences in Lee et al.’s (2007) study, are largely devoted
to processing sensory information, and the evidence of their disruption early in autism
suggests that sensory processing deficits should be more closely examined in autism.
However, after correcting for multiple comparisons, the only group differences that
remained were in the temporal lobe, consistent with many other studies demonstrating that
social cognition mediated by the temporal lobe is among the most fundamental deficits in
ASD. In spite of this, the direction of difference was quite consistent across all three lobes
(see Table S3), suggesting more widespread differences in FA variability that may be
detectable with increased power.

We also noted group differences in the cerebellum, with the autism group again displaying
significantly lower δ̂ than both control groups. A similar pattern was also observed when
predicting δ̂ over time; the autism group did increase predicted δ with age, but overall δ̂ was
greatly decreased relative to both control groups. Reported volumetric differences of the
cerebellum in autism are proportional to overall differences in brain volume (Sparks et al.
2002; Palmen et al. 2005). While cerebellar white matter increase has been reported in
young children with autism (Courchesne et al. 2001), we did not observe this in a recent
study of a larger sample of 2-year-olds (Hazlett et al. 2005). In spite of this, we find
significant differences in the FA distribution in the cerebellum in these same young children,
suggesting that the early stages of cerebellar white matter organisation into fibre pathways
are somehow altered in autism, without affecting overall white matter volume in the
cerebellum. This is consistent with a more recent report showing reduced FA in cerebellar
output pathways in ASD (Catani et al. 2008).

To our knowledge, this is the first report of the properties of FA distributions in young
children with autism. The abnormal δ̂ values, driven by the standard deviation of the
transformed F distributions, may reflect more homogeneous white matter in autism, typical
of what would be expected in younger children. Although the use of a novel statistical
method was a unique advantage, the study was limited by the large neuroanatomical regions
from which the FA values were extracted. Current research in our group focuses on new
methods for population-based statistics of individual fibre tracts (Goodlett et al. 2006),
segmented from high-resolution DTI on three Tesla scanners.

The variability in image slice thickness was another limitation intrinsic to the imaging
hardware and/or acquisition software. This variable did not affect any group differentially,
thus our findings are not compromised, but this is a potential confounding variable that
future studies should take steps to monitor.

An important finding was the patterns predicted trajectories of the three groups throughout
the age range of the sample (2 to 6 years). In the lobes analysis, a small group of children
with non-specific DD maintained a steady level of δ̂ relative to controls throughout the age
range. As can be seen from Fig. 3, this translates to an abnormally high level of δ̂ in DD
relative to the typical group until about age 3 or 4, at which point the typical control group,
which starts with lower δ̂, but increases steadily, catches up and surpasses the DD sample. It
is important to note, however, that although the overall interaction between group and age
was significant for the lobes analysis, it was not for the global analysis, and that contrasts
among the three groups only showed significant interactions between group and age for the
typical and DD groups. It is possible that increased heterogeneity in the ASD group limited
statistical power to detect the difference from the DD group that is suggested by Figs 2–4.
Our preliminary analyses separating the components of δ̂ suggest that these differences
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reflect the predicted individual variability in FA among the groups. This suggests that an
autismspecific reduction of variability in white matter diffusion, beyond what is seen in
general delay, is present in the first 5 years of life. In addition, although the size of the DD
group limits definitive conclusions, the flat slope in the DD group is consistent with a
longitudinal study by Shaw et al. (2006) in which the trajectory of change in cortical
thickness was associated with generalised intellectual ability, suggesting that early brain
plasticity is closely related to cognitive development. This early window is a critical time in
neural development, and the impact of early white matter organisation is fundamental to
properly functioning neural networks that process information and allow behavioural
adaptation throughout the lifespan. A better understanding of emerging neural connections
during this window has potential to yield biomarkers or other important tools that could be
used clinically in the assessment and treatment of autism.

Future studies should focus on: (1) more comprehensive exploration of the variability in FA
distributions; (2) longitudinally following this and other samples to determine how the
trajectories change in later childhood and adolescence; (3) combining DTI measures in more
circumscribed areas, for example in well defined fibre tracts of interest associated with
specific brain function, with functional imaging to elucidate the most important neural
networks affected in autism; (4) replication with a larger idiopathic DD group; and (5)
relating the dysfunction in these systems to the complement of behavioural symptoms that
characterise autism.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Creation of cortical regions of interest. Lower left panel (C): cortical lobe parcellation map.
Panels A, B and D: axial, sagittal and coronal views of the thresholded white matter mask
superimposed on the cortical segmentation map.

Cascio et al. Page 14

J Intellect Disabil Res. Author manuscript; available in PMC 2013 November 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Predicted global δ estimated using Restricted Maximum Likelihood Estimation mixed model
as a function of age by group. Dotted line: subjects with repeated measures. AUT, autism;
DD, developmental delay; TYP, typically developing.
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Figure 3.
Predicted δ estimated using Restricted Maximum Likelihood Estimation mixed model
averaged across lobes and hemispheres as a function of age by group. Dotted line: subjects
with repeated measures. AUT, autism; DD, developmental delay; TYP, typically
developing.
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Figure 4.
Predicted cerebellar δ estimated using Restricted Maximum Likelihood Estimation mixed
model as a function of age by group. Dotted line: subjects with repeated measures. AUT,
autism; DD, developmental delay; TYP, typically developing.
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Table 1

Summary demographic data on the sample

Autism TYP DD Total

N participants 33 17 8 58

N observations 36 20 10 66

IQ* [Mean (SD)] 57.3 (17.3) 110.5 (18) 58.9 (10.1) 73.1 (29.3)

VIQ 53.9 (12.9) 95.9 (10.4) 64.2 (13.7)

PIQ 25.6 (10.1) 54.9 (8.6) 28.7 (8.2)

Age [Mean years (SD)] 4.6 (1.1) 3.2 (1.3) 3.93 (1.1) 4.1 (1.3)

% Male 91.7 80 50 81.8

ADI Social Composite 20.11 (5.9) – –

ADOS Communication + Social Interaction 17.2 (3.3) – –

Age is the mean for all observations in the group.

*
Estimated IQ, based on measures of cognitive development (Vineland Adaptive Behavior Scale), from which the communication domain was

used to compute verbal IQ (VIQ) and Mullen Scales of Early Learning, from which the visual reception and fine motor subtests were used to
compute performance IQ (PIQ).

TYP, typically developing; DD, developmentally delayed; ADI, Autism Diagnostic Interview (Social composite cut-off for autism – 10); ADOS,
Autism Diagnostic Observation Schedule.
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