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West Nile virus (WNV), Dengue virus (DEN), Ross Riv-
er virus (RRV), Venezuelan equine encephalitis virus 
and chikungunya virus represent significant public 
health and economic burdens, especially in developing 
areas where these diseases are most prevalent. There are 
more than 500 known arboviruses and approximately 
100 of them are known to cause human disease. During 
the past 20 years many factors have converged to cause 
a dramatic resurgence or emergence of epidemic arbo-
viral diseases affecting both humans and domestic ani-
mals. Some of these factors include demographics, so-
cial changes, urban sprawl, changes in agricultural 
practices, genetic changes in pathogens and global cli-
mate changes.

  To successfully develop prophylactic and therapeutic 
interventions to lessen the toll on human and animal 
health, key interactions between these viruses, their in-
vertebrate vectors and their vertebrate hosts must be un-
derstood. Pathogenic viruses interface with a suscepti-
ble host at many points including viral entry, pathogen 
recognition by the host and engagement of effector mol-
ecules of the innate and adaptive immune systems. Gly-
can components of enveloped viruses have been shown 
to facilitate many of these pathogen-host interactions, 
making viral glycan-mediated interactions rational tar-
gets for therapeutic intervention. This review will pro-
vide a comprehensive overview of glycan-mediated in-
teractions between arboviruses and their mammalian 
hosts.
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 Abstract 

 Arthropod-borne viruses (arboviruses) are a significant cause 

of human and animal disease worldwide. Multiple interac-

tions between virus and the host innate immune system ul-

timately determine the pathogenesis and clinical outcome 

of the infection. Evidence is rapidly emerging that suggests 

viral glycans play a key role in viral pathogenesis by regulat-

ing host cell tropism and interactions with the host innate 

immune response. Glycan-mediated interactions are espe-

cially important for arboviruses which must adapt to vari-

able glycosylation systems and cellular receptors within 

both vertebrate and invertebrate hosts. This review focuses 

on emerging evidence which supports a crucial role for viral 

glycans in mediating host cell tropism and regulating the in-

nate antiviral response.  Copyright © 2009 S. Karger AG, Basel 

 Introduction 

 Arthropod-borne viruses (arboviruses) are respon-
sible for a large number of diseases worldwide. Infec-
tions with arboviruses such as Rift Valley fever virus, 
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  Glycosylation in Vertebrate and Invertebrate Hosts 

 Glycosylation is the enzymatic process by which sac-
charides are covalently linked to proteins and lipids co- 
and post-translationally. Glycosylation serves to increase 
protein diversity and function and this is particularly im-
portant for viruses, where different glycosylation states 
can increase the functional diversity of proteins encoded 
within a relatively ‘simple’ genome. Three types of glyco-
sylation have been described thus far: N-linked, O-linked 
and C-linked. The most common form in viruses is N-
linked glycosylation, where a high mannose core is at-
tached to the amide nitrogen of asparagine within the 
conserved motif Asn-X-Ser/Thr. N-linked glycosylation 
of viral envelope proteins allows for proper folding and 
intracellular trafficking which facilitates efficient virion 
production and release. Viral N-linked glycans also in-
teract with cellular receptors thus increasing viral infec-
tivity and/or altering viral recognition by host immune 
cells. While both mammalian and insect cells produce 
N-linked glycoproteins, there are fundamental differenc-
es in the processing pathways, and these differences may 
be particularly important for arboviruses, which must 
successfully replicate within and make the transition be-
tween vertebrate and invertebrate hosts. Differences in 
glycosylation processes between vertebrate and inverte-
brate systems are briefly discussed below, and the reader 
is directed to the following excellent articles for more in-
depth information  [1, 2] .

  Mammalian Cell Glycosylation 
 In mammalian cells, attachment of the mannose oc-

curs co-translationally followed by extensive trimming 
and remodeling that culminates in transit through the 
endoplasmic reticulum and Golgi. Initially the glycan 
chains have high mannose content and are referred to as 
‘high mannose’ or ‘simple’ glycans. In the remodeling 
phase, different terminal monosaccharides are added to 
the mannose chain such that the overall effect is the pro-
duction of glycans which exhibit a high degree of com-
plexity, which are thereby termed ‘complex’ glycans. An-
other mammalian form, the hybrid glycan, occurs as an 
intermediate between simple and complex glycan end 
products. Furthermore, high mannose glycans can also 
be found on mature proteins, likely due to protein folding 
which shields high mannose glycans during protein tran-
sit through the endoplasmic reticulum/Golgi. This pre-
vents glycan processing and allows high mannose chains 
to emerge as end product glycans  [2] . Finally, the ability 
to add multiple glycan branches to a single core structure 

further increases the heterogeneity of mammalian com-
plex glycans.

  Insect Cell Glycosylation 
 Early studies revealed differences in both structure 

and function of viral N-linked glycans produced by mos-
quito versus mammalian cell lines. In general, glycans 
produced by mosquito cells are far less complex than 
mammalian-cell-derived viral glycans. Within insect 
cells, homologues of mammalian enzymes involved in 
trimming of N-linked glycans were present while only a 
few enzymes involved in remodeling or elongation were 
identified  [2, 3] . Thus, the predominant viral glycopro-
teins produced in insect cells are high-mannose or pauci-
mannose.

  Mammalian Lectins 

 Lectins are glycan-binding proteins which bind spe-
cific glycan moieties via one or more carbohydrate-rec-
ognition domains. It has become evident that lectins play 
a role in key processes of the host innate immune re-
sponse to pathogens: (1) pathogen recognition and inter-
nalization by antigen presenting cells; (2) initiating anti-
gen presenting cell differentiation and maturation, and 
(3) interacting with Toll-like receptors (TLRs) to initiate 
pathogen-specific DC differentiation and immune re-
sponses via cytokine expression. There are 3 lectin recep-
tor families involved in glycan recognition: galectins, si-
alic acid-binding immunoglobulin-like lectins (siglecs), 
and C-type lectin receptors (CLRs). For the purposes of 
this review only CLRs, glycan-binding receptors that act 
in a calcium-dependent manner, will be discussed. Many 
CLRs are expressed on antigen-presenting cells, such as 
macrophages and DCs, and some have also been identi-
fied on NK or endothelial cells  [4–6] . Several key CLRs 
expressed on DCs, such as the mannose receptor, DEC205, 
and dendritic cell-specific ICAM-3-grabbing non-integ-
rin (DC-SIGN) are involved in glycan-mediated patho-
gen recognition and internalization of antigen for load-
ing on MHC class II molecules  [4] . Soluble lectins such as 
the mannose-binding lectin bind glycans on the surface 
of pathogens leading to complement activation or direct 
pathogen opsonization  [7] . Furthermore, there are sev-
eral examples of CLRs either modifying or suppressing 
TLR-mediated signals. The HIV gp120 protein has been 
shown to induce IL-10 production and prevent DC matu-
ration in a glycan-dependent manner  [8] . Ligation of DC-
SIGN by the mycobacterial cell wall component Man-
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LAM alters lipopolysaccharide (LPS) mediated TLR sig-
naling  [9] . Furthermore, ligation of the mannose receptor 
has been shown to inhibit pro-inflammatory cytokine in-
duction, while signaling through BDCA-2, a CLR ex-
pressed on plasmacytoid dendritic cells, inhibits TLR-in-
duced type I IFN induction  [10, 11] .

  Arbovirus Glycan-Mediated Cell Tropism, 

Attachment and Entry 

 The interaction of virus with its host cell receptor is a 
critical factor in determining host and tissue tropism. 
Since arboviruses transmit between arthropods and ver-
tebrates in nature, these viruses must either adapt to re-
ceptors conserved in both hosts or diversify to interact 
with multiple receptors in different hosts. Many arbovi-
ruses target DCs for viral replication after transmission 
from the mosquito vector  [12–14] . In particular, imma-
ture DCs express a large variety of CLRs which can func-
tion as antigen uptake receptors, including DC-SIGN and 
mannose receptor. In addition to their role as antigen re-

ceptors, CLRs that facilitate productive infection by in-
creasing the efficiency of virus binding, but whose pres-
ence is not absolutely required for viral entry, are often 
referred to as attachment factors  [15] . DC-SIGN repre-
sents a common attachment factor for multiple viral 
pathogens, including HIV, Ebola, and arboviruses within 
the  Flaviviridae  and  Togaviridae   [13–15] .

  DCs and macrophages are the initial targets of DEN 
infections following delivery by the mosquito vector  [12, 
16] . DC-SIGN serves as an entry receptor for DEN and 2 
putative glycosylation sites (Asn-67 and Asn-153) are re-
quired for full viral infectivity  [17, 18] . DEN viruses lack-
ing Asn-67 were able to infect mammalian cells and 
translate and replicate the viral genome but were unable 
to produce infectious particles. Further, loss of the glycan 
at position 67 reduced infection of immature DCs, sug-
gesting interaction between this glycan and DC-SIGN. 
Viruses lacking Asn-153 were also impaired for infectiv-
ity of mammalian cells lines. In contrast, loss of one or 
both glycosylation sites had no effect on replication and 
propagation of viruses in mosquito cells. Further, mos-
quito cell-produced DEN but not mammalian cell de-

Table 1. Arboviral glycan function and interaction with host lectins

Virus Role for viral glycans Host lectin Ref.

Dengue Attachment/infectivity
Blocks DC maturation
Specifically stimulates pro-inflammatory
cytokines without altering INF-� production

DC-SIGN (DCs)
CLEC5A

17, 18, 52
33
34

Dengue1 Attachment/infectivity MR (macs) 19

West Nile virus Attachment/infectivity
Evasion of DC maturation
Neuroinvasion
Engages lectin complement pathway

DC-SIGN

Unknown

20, 21, 53

46
West Nile virus1 Reduces IFN-� in plasmacytoid DCs

Blocks dsRNA-induced type I IFN and
proinflammatory cytokines

37
36

Alphaviruses (Sindbis, RRV,
VEE, EEE, WEE)1

Attachment DC-SIGN
L-SIGN

14, 24

Alphaviruses (RRV, VEE,
and Barmah Forest virus)

Mammalian glycans increase type I IFN, mosquito glycans
increase infectivity

Unknown 38, 39

Sindbis2 Decrease complement activation via alternative pathway 45

dsRNA = Double-stranded RNA; MR = mannose receptor; EEE= eastern equine encephalitis; VEE = Venezuelan equine encepha-
litis; WEE = western equine encephalitis. 

1 Phenotype specific to virus propagated in mosquito cells. 2 Phenotype specific to virus propagated in mammalian cells.
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rived DEN virus binds the mannose receptor on macro-
phages and initiates a productive infection  [19] .

  The E protein of WNV plays an important role in vi-
ral replication and maturation, receptor binding, mem-
brane fusion and virus assembly. Strains of WNV are 
divided into two lineages (L1 and L2) which differ in 
their virulence such that L1 strains are more frequently 
associated with severe disease in humans, including 
more severe neurological disease. While most L1 strains 
have a conserved N-linked glycosylation site on the E 
protein, this motif is lacking in most L2 strains. Recent-
ly it was shown that glycosylated WNV infected DC-
SIGN expressing DCs more efficiently and resulted in 
increased production of pro-inflammatory cytokines 
compared to non-DC-SIGN expressing cells  [20] . It was 
suggested that the increased pathogenicity of L1 strains 
is linked to their ability to engage DC-SIGN which en-
hances viral infection and increases tissue damage medi-
ated by increased pro-inflammatory cytokines. In sup-
port of this, naturally occurring variants of WNV with 
different amino acid sequence changes at an N-linked 
glycosylation site in the E protein were assessed for 
pathogenicity in a mouse model  [21] . Mice infected sub-
cutanteously with viruses displaying a glycosylated E 
protein developed lethal infections while nonglycosyl-
ated viruses produced minimal mortality. In contrast, all 
mice inoculated intracerebrally with the differentially 
glycosylated forms of WNV succumbed rapidly to the 
infection. Thus, glycosylation of the WNV E protein ap-
pears to be a determinant of neuroinvasiveness; however, 
it remains to be determined exactly which murine 
lectin(s) contribute to this process and whether this re-
flects a role for the E protein in viral binding/entry, mod-
ulation of the innate immune response, or avoidance of 
innate immune effector pathways such as the comple-
ment cascade.

  In addition to DC-SIGN, WNV glycans are also rec-
ognized and bound by DC-SIGNR (L-SIGN or CD209L) 
a CLR expressed on microvascular endothelial cells, es-
pecially in the liver sinusoids and lymph nodes  [13] . In 
fact, DC-SIGNR more efficiently promoted WNV infec-
tion than did DC-SIGN, especially when the virus was 
produced in human cell lines. Although a single N-linked 
glycosylation site on either the prM or E glycoprotein of 
WNV was sufficient for DC-SIGNR-mediated infection, 
preferential use of DC-SIGNR was a specific to the WNV 
E protein. While mannose-rich glycans on WNV were 
required for interaction with DC-SIGN, complex glycans 
mediated reporter virus interactions with DC-SIGNR 
 [22] .

  Alphaviruses encode for two glycoproteins, E1 and E2, 
which are involved in cellular attachment and entry via 
glycan mediated interactions. The E1 protein directs the 
membrane fusion process, and E2 is postulated to func-
tion as a cell receptor-binding domain for several alpha-
viruses  [23] . DC-SIGN and L-SIGN have been suggested 
to be attachment receptors for Sindbis virus via envelope 
glycan moieties  [14] . Infection with Sindbis was greatly 
enhanced when virus was produced in either mosquito 
cells or in mammalian cells under conditions that pre-
vented glycan remodeling and eliminated complex gly-
cans. Studies with other alphaviruses including eastern 
equine encephalitis, western equine encephalitis, RRV, 
and Venezuelan equine encephalitis virus produced in 
mammalian versus mosquito cells indicated that multi-
ple alphaviruses can use CLRs as attachment receptors 
when complex glycan processing is limited  [24] .

  Though CLRs such as DC-SIGN can clearly mediate 
or enhance viral entry, there is also evidence which sug-
gests that pathogens manipulate DC function through 
distinct mechanisms that abrogate antigen processing or 
alter TLR-mediated signaling. This implies that adapta-
tion of a pathogen to allow interaction with DC-SIGN 
might support pathogen survival  [25–27] . The best stud-
ied example of DC-SIGN subversion by a virus comes not 
from an arbovirus but from HIV-1. Although the infec-
tion of DCs by HIV-1 remains somewhat controversial, 
the HIV-1 gp120 protein binds with high affinity to DC-
SIGN  [28, 29] . However, binding of HIV-1 by DC-SIGN 
does not result in internalization for antigen presenta-
tion, but rather DC-SIGN acts as a  trans -receptor that ef-
ficiently transmits the attached HIV-1 particle to target T 
cells  [30] . Furthermore, HIV gp120 interactions with 
mannose binding lectins on dendritic cells have been 
shown to suppress DC function and enhance IL10 pro-
duction, thereby modifying DC functional activity and 
also potentially shaping the host cytokine response with-
in the infected host  [8] .

  Taken together the data reviewed above depict critical 
roles for N-linked glycans in early steps of the viral in-
fection cycle including cell tropism, cell attachment and 
entry. Further, the importance of contributions by viral 
glycan interactions to pathogenesis and virulence is be-
coming increasingly clear. Therefore although glycan-
mediated interactions are not unique to arboviruses, dif-
ferences in glycosylation processes between mosquito 
and mammalian cells make the study of arbovirus gly-
can-mediated interactions especially intriguing.
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  Viral Glycan-Mediated Modulation of Host Innate 

Immunity 

 IFN and Cytokine Response 
 A growing body of evidence suggests that CLRs can 

modulate the host cytokine response. Several CLRs have 
been shown to down-regulate pro-inflammatory cyto-
kine responses, suggesting that viruses interface with 
these receptors to avoid or suppress the host antiviral re-
sponse and enhance viral replication. For example, acti-
vated DCs undergo a process of maturation which in-
cludes down-regulation of cell surface CLRs to render 
DCs less permissive to infection  [31] . A number of DC-
targeting pathogens have evolved mechanisms to block 
DC maturation mediated by inflammatory   cytokines 
such as TNF- �  and IFN- �  [reviewed in  32 ]. Although 
DEN induces TNF- �  production and maturation   of by-
stander cells, it blocks DC maturation and subsequent 
antigen presentation by rendering infected DCs   refrac-
tory to TNF- �  stimulation  [33] . Though the viral media-
tors of this process are not known, it is interesting to note 
that the HIV gp120 protein has been shown to exhibit a 
similar effect upon DC maturation through interactions 
with CLRs  [8] . In contrast, interaction between DEN and 
another CLR, CLEC5A, stimulates pro-inflammatory 
cytokine production without affecting IFN- �  production 
such that binding of DEN virus to CLEC5A initiates a 
signaling cascade leading specifically to pro-inflamma-
tory cytokine release  [34] .

  Another Flavivirus, WNV, has also been shown to 
modify host responses through glycan dependent inter-
actions with the host. In vitro macrophage studies de-
signed to elucidate mechanisms by which glycosylation of 
the WNV E protein facilitates neuroinvasion showed that 
the pro-inflammatory cytokines IL-1 �  and TNF- �  were 
up-regulated only by glycosylated virus  [35] . WNV E pro-
tein was shown to block both type I IFN production and 
pro-inflammatory cytokine production induced by viral 
double-stranded RNA  [36] . Most interestingly, this effect 
was induced by WNV derived from mosquito cells, but 
not mammalian cells, suggesting that high mannose N-
linked glycans on the mosquito-derived virus might ac-
tively inhibit type I IFN induction and thereby promote 
viral infection. Similarly, infection of myeloid DCs or 
plasmacytoid DCs (pDCs) with mosquito- vs. mamma-
lian-derived WNV resulted in comparable levels of IFN-
 �  induction in myeloid DCs but IFN- �  expression was 
abolished in pDCs stimulated with mosquito-derived vi-
rus  [37] . These same experiments demonstrated that 
mosquito cell virus did not interfere with the ability of 

Sendai virus to induce IFN synthesis in pDC cultures, 
suggesting that the mosquito cell-derived WNV was not 
actively inhibiting pDC function.

  Studies with the alphaviruses, RRV, Barmah Forest vi-
rus (BFV) and Venezuelan equine encephalitis virus also 
demonstrated that mosquito cell-derived viruses were 
poor inducers of type I IFN in myeloid dendritic cells, 
further suggesting that several arboviruses might be ca-
pable of suppressing, avoiding, or modifying host antivi-
ral responses through the actions of high mannose N-
linked glycans  [38] . Further analysis of RRV demonstrat-
ed that, unlike WNV, where the viral E protein suppressed 
type I IFN induction, lack of a type I IFN response by 
mosquito-derived RRV did not appear to be due to an ac-
tive suppressive effect  [39] . Instead, induction of high lev-
els of type I IFN by RRV in myeloid DCs required the 
presence of complex N-linked glycans on the virus, sug-
gesting that the mosquito-derived virus might avoid in-
duction of high type I IFN levels simply due to its lack of 
complex N-linked glycans. This finding is supported by 
studies with several other viruses that suggest that the 
presence of complex N-linked glycans promotes induc-
tion of the type I IFN response  [40] . However, the mech-
anisms underlying this process are poorly understood 
and require further investigation.

  Viral Glycan Interactions with Host Complement 
System 
 Though the role of glycosylation in regulating type I 

IFN and inflammatory cytokine responses by mosquito-
borne viruses is a relatively new area of research, N-linked 
glycans have long been known to regulate interactions 
with another arm of the innate immune system, the com-
plement cascade. The complement cascade plays a central 
role in regulating viral infections, both by direct inhibi-
tion of the virus and through regulation of other arms of 
the innate and adaptive immune system  [41] . Several 
studies have concluded that complement controls WNV 
infection, in part, by inducing a protective antibody re-
sponse  [42] . While mice deficient in key components of 
all 3 activation pathways showed increased susceptibility 
to severe WNV-mediated disease, loss of the lectin path-
way resulted specifically in deficient B and T cell respons-
es to WNV. Complement also plays a significant role in 
regulating alphavirus infection. In the case of Sindbis vi-
rus, complement controls peripheral replication, while 
potentially contributing to virus-induced disease in the 
CNS  [43] . Complement does not appear to control Ross 
River virus infection, but instead is up-regulated in the 
joints of persons suffering from RRV-induced arthritis, 
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and complement activation is required for virus-induced 
inflammatory myositis in a mouse model of RRV-in-
duced inflammation  [44] .

  The complement cascade, like other pattern recogni-
tion systems, is activated by conserved, non-self, molecu-
lar patterns. Of particular importance for complement 
activation is the presence or absence of sialic acid. Sindbis 
virus derived from mosquito cells activates the comple-
ment cascade via the alternative pathway more efficient-
ly than the same virus derived from mammalian cells, 
while neuraminidase treatment of mammalian-cell-de-
rived virus also led to enhanced complement activation, 
suggesting that sialic acid content on the virion plays a 
major role in regulating complement activation  [45] . This 
suggests that virus initially delivered by the mosquito 
vector may be more susceptible to complement-mediated 
clearance than the virus produced in subsequent rounds 
of replication within the host. Though previous studies 
with Sindbis virus focused on complement activation via 
the alternative pathway, there is some evidence to suggest 
that arbovirus N-linked glycans may interact with other 
arms of the complement cascade. Though mosquito-
borne viruses have not been shown to directly activate the 
mannose-binding lectin pathway of complement activa-
tion, WNV-induced immune responses are partially reg-
ulated by the this pathway  [46] . Polymorphisms in the 
mannose-binding lectin gene have also been associated 
with susceptibility to DEN virus-induced thrombocyto-
penia  [47] . Furthermore, SIGN-R1, a CLR with homology 
to DC-SIGN, has been shown to directly initiate activa-
tion of the classical pathway of complement activation 
during bacterial infection  [48] . Given the role of SIGN-R1 
and other CLRs in recognition of mosquito-borne virus-
es, it is certainly possible that this pathway will be in-
volved in complement activation during arbovirus infec-
tion. Therefore, additional studies are required to more 
fully dissect the interactions between N-linked glycans 
on mosquito-borne viruses and the host complement 
cascade that determine the outcome of virus-induced 
disease.

  Additional Viral Glycan-Mediated Interactions with 
Host Innate Immunity 
 Pattern recognition receptors such as TLRs or cyto-

solic helicases like retinoic-acid-inducible-gene I (RIG-1) 
and melanoma differentiation-associated gene (Mda5) 
couple pathogen recognition to downstream induction of 
genes involved in the innate immune response  [49] . The 
evidence for direct CLR signaling and downstream im-
mune activation is far less abundant, but is beginning to 

emerge. In addition, crosstalk between CLRs and TLRs 
has been described. In the presence of TLR signaling, my-
eloid DC co-stimulatory molecules are up-regulated, and 
antigen uptake and presentation through CLRs can initi-
ate immunity through T cell stimulation  [50] . CLR mod-
ulation of TLR signaling was recently demonstrated for 
several pathogens that bind DC-SIGN  [27] . The evidence 
for CLR-TLR crosstalk on plasmacytoid DCs, the major 
IFN- � -producing cell type, is also just beginning to 
emerge. An interesting connection was recently demon-
strated for DC immunoreceptor, a CLR with putative im-
mune-inhibitory function, and TLR9 on human plasma-
cytoid DCs  [51] . While triggering of TLR9 leads to pDC 
maturation and reduced DC immunoreceptor cell sur-
face expression, DC immunoreceptor triggering inhibits 
TLR9-induced IFN- �  production without changing the 
maturation state of the pDC. Although characterization 
of CLR-TLR crosstalk is only beginning to occur, several 
viruses have already been shown to exploit the system by 
targeting CLRs to subvert CLR-TLR communication and 
escape detection  [50] .

  Concluding Remarks 

 Glycosylation is clearly important to both the patho-
gen and the host. While mammalian lectins recognize 
pathogens and alert the immune system, some lectins 
recognize pathogens but a lack of direct signaling capac-
ity or negative signaling capacity leads to exploitation of 
these receptors for undetected pathogen entry. Under-
standing how viruses interface with and/or exploit host 
glycan binding proteins will not only enhance our gen-
eral understanding of arbovirus-induced disease, but 
may ultimately lead to the development of new vaccines 
or therapies that take advantage of our ability to modify 
or inhibit viral interactions with glycan binding pro-
teins.
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