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The 52-adrenergic receptor ($2AR) is a seven-transmembrane (7TM) G-protein coupled receptor that is expressed on cells of the
pulmonary, cardiac, skeletal muscle, and immune systems. Previous work has shown that stimulation of this receptor on immune
cells has profound effects on the regulatory activity of both adaptive and innate immune cells. This review examines the functional
dichotomy associated with stimulation of $2AR and microglial cells. As well, recent studies targeting these receptors with long-

acting agonists are considered with respect to their therapeutic potential in management of Parkinsonys disease.

1. Introduction

Neurodegenerative disorders, such as Alzheimer’s, Hunting-
ton’s, and Parkinson’s disease, are characterized by the pro-
gressive loss of the structure and function of neurons. Specif-
ically, Parkinson’s disease is characterized by the death of
dopaminergic (DA) neurons (cell groups A8 and A9) in the
midbrain, substantia nigra (SN), and striatum. Over time, this
leads to impaired motor skills, shaking, slowness of move-
ment, and postural instability, well known symptoms of PD.
In addition, many patients experience dementia and execu-
tive dysfunction. A recent study of an unselected population-
representative cohort (n = 142) highlights the poor prognosis
of PD patients as evidenced by a 55% mortality rate within 10
years of diagnosis [1]. Of the survivors, 68% and 46% had pos-
tural instability and dementia, respectively; 23% had not yet
progressed to either of these irreversible disease milestones.
Since the late 1960s, levodopa has been a key treatment
and is the gold standard nearly 50 years later [2]. Converted
to dopamine within the brain, it is used to control the motor
symptoms of the disease but is ineffective with respect to
dementia, freezing, or autonomic functions. A host of other
treatments have been developed centered primarily around

maintaining or increasing dopamine concentrations within
the brain, such as dopamine agonists, MAO B inhibitors, cat-
echol o-methyltransferase (COMT) inhibitors, anticholiner-
gics, and amantadine. Stem cell transplant therapy and deep
brain stimulation have also been explored with varying
results.

What is known about neurodegenerative disorders in
general and in Parkinson’s disease in particular is that the
progressive nature is in part associated with chronic inflam-
mation and microglial activation [3]. Although a variety of
triggers, including inherited genetic mutations and environ-
mental toxins, can initiate the advent of neurodegeneration,
inflammation is now recognized as an underlying mechanism
that drives the progressive nature of Parkinson’s disease [4-8].
As such, this review will examine the research exploring
potential therapeutic targets aimed at abrogating the inflam-
matory dysfunction.

2. The Dysfunctional Immune System in
Parkinson’s Disease

Well over two decades ago, it was first recognized that acti-
vated microglia and neuroinflammation were associated with
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FIGURE 1: Model of neurodegeneration attributed to reactive microgliosis in Parkinson’s disease.

the SN lesions of PD patients when observed postmortem
[8, 9]. Additionally, an accidental human neurotoxin model
of Parkinson’s disease also implicated activated microglia
and chronic neuroinflammation in progressive loss of SN
neurons [10, 11]. In this report, a group of drug users were
exposed at relatively young ages to 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) as a contaminant in street-drugs.
Each developed progressive Parkinsonian symptoms years
after exposure. Postmortem analyses indicated the presence
of neuroinflammation, activated microglia, and active neu-
rodegeneration in the SN up to 15 years after systemic expo-
sure to the MPTP contaminant [11]. Similar findings resulted
from experiments with a long-term primate model of MPTP-
induced SN degeneration [12]. These studies demonstrate that
once a trigger initiates neuroinflammation in the SN, the
condition can persist for long periods causing progressive loss
of DA neurons.

Microglia are the innate immunity cells resident in the
brain and are a major source of proinflammatory factors, such
as tumor necrosis factor « (TNFe), interleukin-1 § (IL-1p),
interleukin-6 (IL-6), reactive oxygen species (ROS), and
nitric oxide as well as many others [3]. Microglia can also
play beneficial roles in maintaining brain homeostasis and
produce factors involved in neural cell survival, proliferation,
growth, and motility. Microglia also secrete anti-inflamma-
tory factors, including transforming growth factor 8 (TGF-
B). As active immune sentinels, microglia have been observed
in vivoto continually extend processes to probe their microen-
vironment even when in the so-called “resting” state [13].
However, after insult, microglia are rapidly activated, migrate
to the site of injury, and phagocytose injured and dying cells
[13].

In Parkinson’s disease, it is these activated microglia that
become self-propelling mediators of neuronal cell death lead-
ing to chronic inflammation. Once a trigger induces initial
injury or death of DA neurons, activated microglia perpetuate
the death of more neurons through the cyclic processes of
pro-inflammatory reactive microgliosis [3, 14, 15]. In this
manner, microglia mediate the progressive loss of DA neu-
rons giving rise to characteristic postmortem PD reports of

activated microglia, chronic inflammation, and loss of DA
neurons within the SN. We have developed a model for the
etiology of progressive Parkinson’s disease (Figure 1). In this
model, we believe that a direct neurotoxin, such as MPTP, or
an inflammatory trigger, such as LPS, can lead to the direct
or indirect activation of microglia. Animal models of neu-
rodegeneration triggered by toxin exhibit similar progressive
destruction of the SN.

3. f2-Adrenergic Receptors

Microglia express high levels of $2AR at the cell surface
[16]. Interestingly, several studies found that depletion of the
endogenous 2AR agonist, norepinephrine (NE), caused
increased microglial-induced neuroinflammation and that
administration of NE protects cortical neurons from microgl-
ial-induced cell death [17, 18]. Furthermore, NE adminis-
tration dose-dependently blocked microglial expression of
the inflammatory mediators NOS2 and IL-1f3, and these anti-
inflammatory effects could be completely reversed by coap-
plication of the 2AR-specific antagonist, ICI-118,551 [18].
Together, these findings implicate S2AR as playing a key reg-
ulatory role in microglia activation.

Specifically, in humans the p2-adrenergic receptor
(B2AR) is a 413 amino acid long glycoprotein that is a mem-
ber of the seven-transmembrane (7TM) family of G-pro-
tein coupled receptors [19, 20]. Adrenergic receptors are
subdivided into three groups (f1, 32, and 33) which are
expressed in a variety of cell and tissue types, with the S2AR
subtype classically occurring in the various cells of the
pulmonary, cardiac, skeletal muscle, and immune systems
[19]. Therapies that modulate S2AR responses are well docu-
mented for uses in treating asthma and other respiratory
diseases, as well as hypertension and angina.

4. f2AR Agonists

Beta-adrenergic receptor agonists are a group of drugs that
are mimetics of endogenously occurring catecholamines,
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including epinephrine, norepinephrine, and dopamine. Ago-
nists can be either direct interacting with the receptors or
indirect in that they do not stimulate receptor activation but
induce the release of endogenous catecholamines. There are
multiple synthetic S2AR agonists which act mainly in the
smooth muscle and endothelial cells of the pulmonary sys-
tem, vasculature, bronchial tree, colon, and uterus. S2AR
agonists have two functional forms: short-acting agonists
used predominantly as fast-acting bronchodilators in treating
asthma and other acute bronchial disorders, and long-acting
agonists that are used to manage and control chronic, long-
term bronchial diseases, such as chronic obstructive pul-
monary disease (COPD). f2AR agonists have also been used
to prevent premature labor by administration systemically to
act upon the smooth muscle of the uterus.

4.1. Short-Acting versus Long-Acting B2AR Agonists. The
molecular characteristics of the particular agonist determine
the mode of interactions with S2AR and ultimately the man-
ner in which downstream effects are generated. Agonists that
have hydrophilic properties are able to access the receptor
directly from the aqueous extracelluar environment. These
agonists thus have relatively rapid effects and are generally
termed “short-acting” due to the rapid onset and short dura-
tion of their stimulatory activity upon the receptor. Long-
acting agonists are generally lipophilic and are taken up into
the cell membrane where they slowly leach-out to access the
B2AR over longer periods of time, thus producing more long
lasting effects [19, 21]. Studies have shown that the 3-ARs are
also stereospecific and that this enantiomeric specificity can
be important for agonist-induced functional responses from
the stimulation of the receptor [22]. Furthermore, stereos-
electivity by the receptor can determine the immunomod-
ulatory effects of B2AR stimulation, especially with regards
to the response of activated macrophages [19, 22]. However,
studies have also shown in a model of cerebroischemic stroke
that while two enantiomers of a lipophilic S2AR-agonist pro-
vide neuroprotection by activating astrocytes and inducing
production of neurotropic factors, one racemate might also
induce more adverse side-effects [23, 24].

5. B2AR Agonists in Neuroprotection

Long-acting B2AR agonists that are typically used as bron-
chodilators in the treatment of asthma have also shown to
have trophic effects in tissue culture models of CNS injury
[25,26]. Up-regulation of B2ARs after brain damage in vivo is
associated with astrocyte activation and neuroprotection [27,
28]. Induction of neurotrophic growth factors and astrocyte
activation by long-acting S2AR-agonists has been found
to mediate neuroprotection in several in vivo models of
neuronal damage [23, 29, 30]. 32ARs are also expressed in
microglial cells and have been shown to mediate the inhibi-
tion of microglia activation [31]. However, B2AR antagonists
are reported in another study to block IL-6 production and
acute inflammatory response, as well as to provide neuro-
protection in a model of hemorrhagic stroke [32]. In con-
trast, the same antagonist (butoxamine) did not have any

neuroprotective effect in a model of focal cerebral ischemia
[30]. In fact, in this model butoxamine actually abrogated the
neuroprotection provided by treatment with S2AR agonists
[30]. It is suggested that the different results for neuropro-
tection have more to do with the two different models of
stroke brain-damage and the mechanisms responsible for the
damage [33]. Additionally, in a rat model of traumatic brain
injury (TBI), stimulation of S2AR with agonist decreased
brain function impairment and improved recovery after
injury [34]. This latter study found that the agonist stimulated
neuroprotection after TBI correlated with decreased levels
of blood glutamate levels which are typically elevated in
response to injury and are generally neurotoxic [34]. How-
ever, a major caveat in interpreting all of these studies is that
the models required pretreatment with the f2ARs agonists
(or antagonist) in order for neuroprotection. In contrast,
in an LPS-stimulated chronic model of Parkinson’s disease,
treatment with the long-acting agonist salmeterol after initi-
ation of the disease prevented neurotoxicity via inhibition of
reactive microglia [35].

6. B2AR Agonists in the Treatment of
Parkinson’s Disease

In 2011, we looked at the effects of both the short-acting
B2AR agonist, salbutamol, and a variety of long-acting S2AR
agonists, including salmeterol, on the survival of DA neurons
after induction of inflammation in different disease models
of Parkinson’s disease [35]. In mixed cell-cultures composed
of primary mesencephalic neurons and glial cells that were
treated with LPS, the long-acting agonists protected DA neu-
rons from inflammation-induced cytotoxicity as did salbu-
tamol. However, a short-acting agonist was able to confer
neuro-cell protection only at much higher concentrations. In
contrast to these beneficial effects in an inflammation-based
model of neurotoxicity, we found that salmeterol treatment
had less pronounced protective effects in a similar mixed
cell model which featured induction of DA neuron death by
MPTP. The MPTP metabolite MPP+ mediates direct toxicity
on the neurons themselves and this neuronal death leads to
the induction of reactive microgliosis, whereas LPS-induced
neurotoxicity is mediated by the direct action of LPS on
microglial cells leading to their production of inflammatory
mediators, which leads to neuronal death and the continuing
cycle of reactive microgliosis [3, 36]. However, when tested
in two in vivo models of PD, the LPS-stimulated long-term
mouse model and the acute MPTP model, salmeterol also
exhibited some neuroprotective effects either by pretreatment
(in the LPS-induced model) or by treatment with salmeterol
post MPTP-injections respectively. These results suggested
to us that long-acting S2AR agonists, such as salmeterol,
might be developed for their anti-inflammatory effects to
attenuate the progressive loss of DA neurons characteristic in
Parkinson’s disease and improve motor activity in patients.
Additional studies using non-MPTP models of PD should
help determine whether use of agonists such as salmeterol
could prove beneficial in the management of Parkinson’s
disease.



7. B2AR Agonists and Signaling Pathways

In addition to their role in stimulating G-protein coupled sig-
naling, B2AR agonists also transduce signals from the recep-
tor through its association with S-arrestins [37]. In addition
to mediating receptor desensitization through blocking G-
protein coupling with S2AR [38], - arrestin can also link
B2AR to the activation of other signaling pathways, such as
the MAPK signaling cascade and the kinase complex that
regulates activation/inhibition of the transcription factor,
NF-«B [37, 39]. Earlier studies found that the inflammatory
effects of S2AR agonists at high concentrations were medi-
ated through PB2AR-induced cAMP production [40-42].
However, Qian and colleagues showed that, in primary
murine-microglia cultures, the addition of low concentra-
tions of salmeterol inhibited the LPS-induced production of
inflammatory mediators, such as reactive oxygen species
(ROS), TNFa, and nitric oxide (NO) [35]. This inhibition is
B2AR and B-arrestin dependent but cAMP independent [35].
Thus, low doses of salmeterol might inhibit inflammation and
promote neuroprotection by regulating receptor association
with -arrestins and f-arrestins-mediated function in other
signaling pathways such as NF-«B pathway and the MAPK
signaling cascade.

71. Anti-Inflammation and NF-kB. It has been shown that
B2AR agonists, at low concentrations, stimulate anti-inflam-
matory effects by negative regulation of the transcription
factor NF-«B [39]. -arrestin2 is a binding partner of IxBa
which is an inhibitor of NF-«xB activation [39]. NF-xB is a
ubiquitously expressed transcription factor that regulates
transcription of genes involved in immunity and inflamma-
tion [43]. Five members of the NF-«xB/Rel family of proteins,
including p50, p52, p65 (RelA), c-Rel, and RelB, are expressed
in mammalian cells. These NF-«xB proteins form various
homo- and hetero-dimers in the cell cytosol where they are
held in the inactive state by association with inhibitory
proteins called IxBs [44]. A variety of signaling pathways
converge at a kinase complex (NF-xB-inducing kinase/NIK
and IxB kinase/IKKa-IKKB-IKKy) that regulates NF-xB
activation by controlling the association with IxBs. When
activated, the catalytic subunits of this kinase complex (IKK«
and IKKf3) phosphorylate IxBe and target it for degradation.
Degradation of IkBa releases NF-«xB and unmasks the nuclear
signal domain which targets NF-«B translocation to the
nucleus where it binds to the «B site, and is functionally
active in transcription of inflammatory genes. In this way,
regulation of NF-xB transcription activity depends upon
interaction with IxB, and in turn, proteins such as $-arrestin
that bind the IxB kinase complex and regulate IxB are critical
for regulating both IxB and NF-«xB. Low-dose salmeterol
has been shown to inhibit NF-xB activation suppressing its
translocation to the nucleus [35]. Thus the beneficial effects
of salmeterol might be exerted at least in part through f3-
arrestin-mediated control of NF-«B.

7.2. Anti-Inflammation and MAPK. Activation of S2AR can
also stimulate the MAPK signaling cascade via a G-pro-
tein-independent but S-arrestin-dependent mechanism [45].
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Previous studies also showed that activation of 32AR with
high concentrations of salmeterol (10°M to 10°°M)
induced the MAPK signaling pathway leading to increased
phosphorylation of ERK1/2 and resulting in proinflammatory
effects in macrophages and primary microglia [46]. However,
this proinflammatory effect is mediated through activation
of the cAMP pathway, although it is PKA-independent. Of
key interest is that these same high doses of salmeterol
increased neurotoxicity in mixed cell cultures and that this
was mediated through increased NADPH oxidase activity
through an ERK-dependent pathway [47]. Conversely, low
concentrations of salmeterol greatly reduced the LPS-stim-
ulated phosphorylation/activation of components of the
MAPK, namely, ERK1/2, p38, and JNK [35]. Thus, lower
concentrations of the 52AR agonist apparently produce anti-
inflammatory effects by inhibiting both MAPK cascade sig-
naling and NF-«B activation. Further supporting evidence is
that low-dose salmeterol inhibits a common upstream effec-
tor for both MAPK and NF-xB; TGF-beta activated kinase 1
(TAKI) has been shown to be a key regulatory component
in various signaling pathways involved in immunity and
inflammation [48]. Both MAPK and NF-«xB are downstream
targets of TAKI which is also the convergent effector for
LPS/TRL- and TNFa-stimulated inflammation. Low doses of
salmeterol (107 M and 107 M) can inhibit the activating
phosphorylation of TAKI in primary microglia. This suggests
that the inhibitory effect on MAPK signaling and NF-xB
activation involves inhibition of TAKI. However, the link(s)
between inhibition of TAKI and the f-arrestin-dependent
anti-inflammatory effects of low-dose salmeterol has yet to
be determined.

7.3. Anti-Inflammatory Effects of Low-Dose Salmeterol. Pre-
vious results have shown that 2AR agonists are known to
activate MAPKSs via both Gs-dependent and Gs-independent
mechanisms. A Gs-independent increase in phosphorylation
of ERK occurres following high doses of salmeterol treatment
in RAW264 macrophage cells and primary microglia cells
[46], which mediates a proinflammatory and neurotoxic
effect [47]. Conversely, much lower doses of salmeterol
(107'° — 107" M) have no proinflammatory effects but rather
show dramatic inhibition of MAPK molecules ERK, JNK,
and p38 in LPS-activated primary microglia. Although both
effects appear to work independently of PKA activation, the
proinflammatory effect of high-dose salmeterol is through
the activation of the cAMP/EPAC pathway, and the inhibitory
effect of low-dose salmeterol is independent of cAMP induc-
tion as well as PKA and EPAC activity. Rather, it appears
as though the inhibitory activity of salmeterol is due to
the activation of f-arrestin-2, which functionally inhibits
both NF-xB [39] and MAP-K [49]. In addition, low doses
of salmeterol have a significant inhibitory effect on the
LPS-mediated activation of NF-xB and the production of
inflammatory mediators normally under NF-«B and MAP-
K regulation, such as TNF-a and NO. However, this anti-
inflammatory action of salmeterol may be selective only
for certain proinflammatory pathways in microglial cells
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FIGURE 2: Molecular mechanism of the inhibitory function of salmeterol-mediated S2AR activation.

because low-dose salmeterol is able to inhibit the activation
of superoxide production by LPS but not by PMA (which
functions through the PKC pathway). Therefore, it appears
that low-dose salmeterol can be potently but selectively anti-
inflammatory in microglial cells by targeting the NF-xB
and MAPK signaling pathways following pro-inflammatory
activation, as depicted in the model (Figure 2).

74. B-Arrestin-Biased Agonism. [-arrestin-biased agonism
has been shown for a variety of S2AR agonists [37]. These
agonists show preferential activation of noncanonical signal-
ing that favors -arrestin-mediated signals from the receptor
over cAMP/PKA-mediated pathways. However, in the study
by Drake and colleagues, salmeterol was not amongst these
B-arrestin-biased agonists. Significantly, these studies used
salmeterol at receptor-saturating yM concentrations and
showed that at these doses, salmeterol stimulated the produc-
tion of cCAMP and instigated cAMP-induced signaling [37].
Qian et al,, in a 2009 study, found much the same results, that
at high concentration, salmeterol increased the production of
cAMP and downstream factors such NADPH oxidase activity
[47]. These results are in sharp contrast to the effects of
low concentrations of the same agonist, namely, that 10~ to
107" M salmeterol does not stimulate increased cAMP and
its downstream effectors but activates a 3-arrestin-mediated

reduction in some of these same downstream signaling events
[35]. A distinction between the f-arrestin biased agonists
and the nonbiased agonists reported by Drake et al. is the
existence of a different structural characteristic between the
two groups (the B-arrestin biased group all have an a-carbon
ethyl substituent moiety lacking in the nonbiased group) [37].
It is interesting that Qian and colleagues essentially instigated
the same -arrestin-favored signaling by drastically reducing
doses of salmeterol, a supposedly nonbiased 2AR agonist.
Thus, 2AR agonists provide wide possibilities for utilizing
biased signaling properties, from whatever mechanism of the
bias, to develop therapeutic potential in novel disease back-
grounds. In the case of inflammatory diseases such as Parkin-
sons disease, agonists, such as salmeterol, might be used
therapeutically not only for their ability to inhibit inflam-
mation and stop progressive neurotoxicity, but also to stimu-
late preferential signaling cascades that foster neurogenesis.

Salmeterol applied at concentrations from 1 nM to 100 nM
has been shown to promote proliferation in adult rat dentate
gyrus-derived neural precursor cells (ADP) [50]. Further-
more, it has also been found that neural progenitor cell
proliferation is not necessarily cAMP-CREB-dependent [51].
Given that low doses of salmeterol preferentially stimulate
B-arrestin signaling effectors as opposed to cAMP signaling
events, the potential for neurogenic effects is intriguing at the
least.



8. Concluding Remarks

The neuroprotective effects of B2AR activation by higher
doses of B2AR agonists have been reported in other con-
ditions, such as amyotrophic lateral sclerosis [52], cerebral
ischemia [53], and spinal cord injury-induced locomotor dys-
function [54]. Although it is not yet clear how the S2AR
agonists exhibit all of these neuroprotective properties, sev-
eral studies have suggested that S2AR agonists function to
stimulate glutathione-dependent antioxidant processes from
nerve cells [30]. Meanwhile, others have reported that neu-
rotrophic factors from activated astrocytes induced by f2AR
agonists contribute to neuroprotection [55]. We propose that
the major neuroprotective activity of S2AR agonists in
Parkinson’s disease models is due to their anti-inflammatory
properties. It is clear that the effectiveness of the 2AR
agonist, salmeterol, and the other long-acting S2AR agonists
at low concentrations is due to their anti-inflammatory effect
on microglia and not to a direct protective effect on DA-
neurons or through an astrocyte-dependent effect. Given the
effectiveness of these compounds at such low concentrations
in inhibiting inflammatory responses, they appear to have
significant potential in regulating CNS inflammation and the
treatment of chronic inflammatory disorders of CNS.

Abbreviations

B2AR: [2-adrenergic receptor

DA:  Dopaminergic

IL: Interleukin

MPTP: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine
ROS:  Reactive oxygen species

SN:  Substantia nigra

TNFa: Tumor necrosis factor .

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] C.H. Williams-Gray, S. L. Mason, J. R. Evans et al., “The Cam-
PaIGN study of Parkinson’s disease: 10-year outlook in an inci-
dent population-based cohort;” Journal of Neurology, Neurosur-
gery, and Psychiatry, vol. 84, no. 11, pp. 1258-1264, 2013.

[2] O. Rascol, A. Lozano, M. Stern, and W. Poewe, “Milestones in
Parkinson’s disease therapeutics,” Movement Disorders, vol. 26,
no. 6, pp. 1072-1082, 2011.

[3] M. L. Block and J.-S. Hong, “Microglia and inflammation-
mediated neurodegeneration: multiple triggers with a common
mechanism,” Progress in Neurobiology, vol. 76, no. 2, pp. 77-98,
2005.

[4] A. L. Bartels and K. L. Leenders, “Neuroinflammation in the
pathophysiology of Parkinson’s disease: evidence from animal
models to human in vivo studies with [11C]-PK11195 PET,
Movement Disorders, vol. 22, no. 13, pp. 1852-1856, 2007.

[5] W. Dauer and S. Przedborski, “Parkinson’s disease: mechanisms
and models,” Neuron, vol. 39, no. 6, pp. 889-909, 2003.

Journal of Immunology Research

[6] H.-M. Gao, J. Jiang, B. Wilson, W. Zhang, J.-S. Hong, and B.
Liu, “Microglial activation-mediated delayed and progressive
degeneration of rat nigral dopaminergic neurons: relevance to
Parkinson’s disease,” Journal of Neurochemistry, vol. 81, no. 6, pp.
1285-1297, 2002.

[7] H.-M. Gao and J.-S. Hong, “Why neurodegenerative diseases
are progressive: uncontrolled inflammation drives disease pro-
gression,” Trends in Immunology, vol. 29, no. 8, pp. 357-365,
2008.

[8] P.L.McGeer,S.Itagaki, B. E. Boyes, and E. G. McGeer, “Reactive
microglia are positive for HLA-DR in the substantia nigra of
Parkinson’s and Alzheimer’s disease brains,” Neurology, vol. 38,
no. 8, pp. 1285-1291, 1988.

[9] P. L. McGeer, S. Itagaki, H. Akiyama, and E. G. McGeer, “Rate
of cell death in parkinsonism indicates active neuropathological
process,” Annals of Neurology, vol. 24, no. 4, pp. 574-576, 1988.

[10] J. W. Langston, I. Irwin, E. B. Langston, and L. S. Forno, “1-
Methyl-4-phenylpyridinium ion (MPP+): identification of a
metabolite of MPTP, a toxin selective to the substantia nigra,”
Neuroscience Letters, vol. 48, no. 1, pp. 87-92, 1984.

[11] J. W. Langston, L. S. Forno, J. Tetrud, A. G. Reeves, J. A. Kaplan,
and D. Karluk, “Evidence of active nerve cell degeneration in
the substantia nigra of humans years after 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine exposure,” Annals of Neurology, vol.
46, no. 4, pp. 598-605, 1999.

[12] P. L. McGeer, C. Schwab, A. Parent, and D. Doudet, “Presence
of reactive microglia in monkey substantia nigra years after
I-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration,’
Annals of Neurology, vol. 54, no. 5, pp. 599-604, 2003.

[13] A.Nimmerjahn, E. Kirchhoff, and E Helmchen, “Neuroscience:
resting microglial cells are highly dynamic surveillants of brain
parenchyma in vivo,” Science, vol. 308, no. 5726, pp. 1314-1318,
2005.

[14] M. K. McCoy and M. G. Tansey, “INF signaling inhibition in
the CNS: implications for normal brain function and neurode-
generative disease,” Journal of Neuroinflammation, vol. 5, article
45, 2008.

[15] L. Qian and P. M. Flood, “Microglial cells and Parkinson’s dis-
ease,” Immunologic Research, vol. 41, no. 3, pp. 155-164, 2008.

[16] K. E Tanaka, H. Kashima, H. Suzuki, K. Ono, and M. Sawada,
“Existence of functional 1- and [32-adrenergic receptors on
microglia,” Journal of Neuroscience Research, vol. 70, no. 2, pp.
232-237,2002.

(17] M. T. Heneka, E. Galea, V. Gavriluyk et al., “Noradrenergic
depletion potentiates -amyloid-induced cortical inflamma-
tion: implications for Alzheimer’s disease,” Journal of Neuro-
science, vol. 22, no. 7, pp. 2434-2442, 2002.

[18] J. L. M. Madrigal, D. L. Feinstein, and C. Dello Russo,
“Norepinephrine protects cortical neurons against microglial-
induced cell death,” Journal of Neuroscience Research, vol. 81, no.
3, pp. 390-396, 2005.

[19] M. Johnson, “Beta2 -adrenoceptors: mechanisms of action of
beta2-agonists,” Paediatric Respiratory Reviews, vol. 2, no. 1, pp.
57-62, 2001.

[20] B. K. Kobilka, R. A. E Dixon, and T. Frielle, “cDNA for
the human f2-adrenergic receptor: a protein with multiple
membrane-spanning domains and encoded by a gene whose
chromosomal location is shared with that of the receptor
for platelet-derived growth factor;” Proceedings of the National
Academy of Sciences of the United States of America, vol. 84, no.
1, pp. 46-50, 1987.



Journal of Immunology Research

(21]

(22]

[25]

[26

[27

(30]

[31

(32]

(33]

(34]

M. Johnson, “The B-adrenoceptor,” American Journal of Respi-
ratory and Critical Care Medicine, vol. 158, no. 5, pp. S146-S153,
1998.

C. A. Izeboud, R. M. Vermeulen, A. Zwart, H.-P. Voss, A. S.
J. P. Van Miert, and R. E Witkamp, “Stereoselectivity at the
B2-adrenoceptor on macrophages is a major determinant of
the anti-inflammatory effects of 82-agonists,” Naunyn-Schmi-
edeberg’s Archives of Pharmacology, vol. 362, no. 2, pp. 184-189,
2000.

C. Culmsee, V. Junker, S. Thal et al., “Enantio-selective effects of
clenbuterol in cultured neurons and astrocytes, and in a mouse
model of cerebral ischemia,” European Journal of Pharmacology,
vol. 575, no. 1-3, pp. 57-65, 2007.

I. Semkova, M. Schilling, P. Henrich-Noack, A. Rami, and J.
Krieglstein, “Clenbuterol protects mouse cerebral cortex and rat
hippocampus from ischemic damage and attenuates glutamate
neurotoxicity in cultured hippocampal neurons by induction of
NGE’ Brain Research, vol. 717, no. 1-2, pp. 44-54, 1996.

C. Culmsee, R. K. Stumm, M. K.-H. Schifer, E. Weihe, and J.
Krieglstein, “Clenbuterol induces growth factor mRNA, acti-
vates astrocytes, and protects rat brain tissue against ischemic
damage,” European Journal of Pharmacology, vol. 379, no. 1, pp.
33-45,1999.

P. Follesa and I. Mocchetti, “Regulation of basic fibroblast
growth factor and nerve growth factor mRNA by f-adrenergic
receptor activation and adrenal steroids in rat central nervous
system,” Molecular Pharmacology, vol. 43, no. 2, pp. 132-138,
1993.

C. Hodges-Savola, S. D. Rogers, J. R. Ghilardi, D. R. Timm, and
P. W. Mantyh, “Beta-adrenergic receptors regulate astrogliosis
and cell proliferation in the central nervous system in vivo,”
Glia, vol. 17, no. 1, pp. 52-62, 1996.

P. W. Mantyh, S. D. Rogers, C. J. Allen et al., “B2-adrenergic
receptors are expressed by glia in vivo in the normal and injured
central nervous system in the rat, rabbit, and human,” Journal of
Neuroscience, vol. 15, no. 11, pp. 152-164, 1995.

C. Culmsee, I. Semkova, and J. Krieglstein, “NGF mediates the
neuroprotective effect of the f2-adrenoceptor agonist clen-
buterol in vitro and in vivo: evidence from an NGF-antisense
study,” Neurochemistry International, vol. 35, no. 1, pp. 47-57,
1999.

V. Junker, A. Becker, R. Hithne et al., “Stimulation of 3-adren-
oceptors activates astrocytes and provides neuroprotection,’
European Journal of Pharmacology, vol. 446, no. 1-3, pp. 25-36,
2002.

H. Fujita, J. Tanaka, N. Maeda, and M. Sakanaka, “Adrenergic
agonists suppress the proliferation of microglia through f2-
adrenergic receptor,” Neuroscience Letters, vol. 242, no. 1, pp. 37-
40, 1998.

H. Kato, M. Kawaguchi, S. Inoue, K. Hirai, and H. Furuya,
“The effects of -adrenoceptor antagonists on proinflammatory
cytokine concentrations after subarachnoid hemorrhage in
rats,” Anesthesia and Analgesia, vol. 108, no. 1, pp. 288-295, 2009.

C. Culmsee, “Targeting f32-adrenoceptors for neuroprotection
after cerebral ischemia: is inhibition or stimulation best?” Anes-
thesia and Analgesia, vol. 108, no. 1, pp. 3-5, 2009.

A. Zlotnik, Y. Klin, B. E Gruenbaum et al., “f2 Adrenergic-
mediated reduction of blood glutamate levels and improved
neurological outcome after traumatic brain injury in rats,
Journal of Neurosurgical Anesthesiology, vol. 24, no. 1, pp. 30-38,
2012.

(35]

[37]

(38]

[41]

(42]

(43]

(47]

[48]

(49]

L. Qian, H. Wu, S.-H. Chen et al., “B2-adrenergic receptor
activation prevents rodent dopaminergic neurotoxicity by
inhibiting microglia via a novel signaling pathway;” Journal of
Immunology, vol. 186, no. 7, pp. 44434454, 2011.

L. Qian, S. T. Kai, S.-J. Wei et al., “Microglia-mediated neuro-
toxicity is inhibited by morphine through an opioid receptor-
independent reduction of NADPH oxidase activity,” Journal of
Immunology, vol. 179, no. 2, pp. 1198-1209, 2007.

M. T. Drake, J. D. Violin, E. J. Whalen, J. W. Wisler, S. K.
Shenoy, and R. J. Lefkowitz, “B-arrestin-biased agonism at the
B2-adrenergic receptor,;” The Journal of Biological Chemistry,
vol. 283, no. 9, pp. 5669-5676, 2008.

L. M. Luttrell and R. J. Lefkowitz, “The role of 3-arrestins in the
termination and transduction of G-protein-coupled receptor
signals,” Journal of Cell Science, vol. 115, no. 3, pp. 455-465, 2002.
D. S. Witherow, T. R. Garrison, W. E. Miller, and R. J. Lefkowitz,
“B-arrestin inhibits NF-«B activity by means of its interaction
with the NF-«B inhibitor I«kB«,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 101, no.
23, pp- 8603-8607, 2004.

C.-H. Hung, Y.-T. Chu, Y.-M. Hua et al., “Effects of formoterol
and salmeterol on the production of Thl- and Th2-related
chemokines by monocytes and bronchial epithelial cells,” Euro-
pean Respiratory Journal, vol. 31, no. 6, pp. 1313-1321, 2008.

A. Severn, N. T. Rapson, C. A. Hunter, and E Y. Liew, “Regu-
lation of tumor necrosis factor production by adrenaline and
B-adrenergic agonists,” Journal of Immunology, vol. 148, no. 11,
pp. 3441-3445, 1992,

T. van der Poll, J. Jansen, E. Endert, H. P. Sauerwein, and S. J.
H. van Deventer, “Noradrenaline inhibits lipopolysaccharide-
induced tumor necrosis factor and interleukin 6 production in
human whole blood;” Infection and Immunity, vol. 62, no. 5, pp.
2046-2050, 1994.

P. A. Baeuerle and D. Baltimore, “IxB: a specific inhibitor of the
NF-xB transcription factor;” Science, vol. 242, no. 4878, pp. 540—
546, 1988.

A. S. Baldwin Jr., “The NF-«xB and IxB proteins: new discoveries
and insights,” Annual Review of Immunology, vol. 14, pp. 649-
681, 1996.

S. K. Shenoy, M. T. Drake, C. D. Nelson et al., “B-arrestin-
dependent, G protein-independent ERK1/2 activation by the 2
adrenergic receptor,” The Journal of Biological Chemistry, vol.
281, no. 2, pp. 1261-1273, 2006.

K. S. Tan, A. G. Nackley, K. Satterfield, W. Maixner, L.
Diatchenko, and P. M. Flood, “B2 adrenergic receptor acti-
vation stimulates pro-inflammatory cytokine production in
macrophages via PKA- and NF-«xB-independent mechanisms,”
Cellular Signalling, vol. 19, no. 2, pp. 251-260, 2007.

L. Qian, X. Hu, D. Zhang et al, “B2 adrenergic receptor
activation induces microglial NADPH oxidase activation and
dopaminergic neurotoxicity through an ERK-dependent/pro-
tein kinase A-independent pathway,” Glia, vol. 57, no. 15, pp.
1600-1609, 2009.

H. Sakurai, “Targeting of TAKI in inflammatory disorders and
cancer, Trends in Pharmacological Sciences, vol. 33, no. 10, pp.
522-530, 2012.

M. Tipping, Y. Kim, P. Kyriakakis, M. Tong, S. Y. Shvartsman,
and A. Veraksa, “f-arrestin Kurtz inhibits MAPK and Toll sig-
nalling in Drosophila development,” The EMBO Journal, vol. 29,
no. 19, pp. 3222-3235, 2010.

T. Masuda, S. Nakagawa, S. Boku et al., “Noradrenaline
increases neural precursor cells derived from adult rat



[51

(54]

55]

dentate gyrus through beta2 receptor; Progress in Neuro-
Psychopharmacology & Biological Psychiatry, vol. 36, no. 1, pp.
44-51, 2012.

S. Nakagawa, J.-E. Kim, R. Lee et al., “Regulation of Neuroge-
nesis in Adult Mouse Hippocampus by cAMP and the cAMP
Response Element-Binding Protein,” Journal of Neuroscience,
vol. 22, no. 9, pp. 3673-3682, 2002.

Y. D. Teng, H. Choi, W. Huang et al., “Therapeutic effects of clen-
buterol in a murine model of amyotrophic lateral sclerosis,”
Neuroscience Letters, vol. 397, no. 1-2, pp. 155-158, 2006.

C. Culmsee, V. Junker, W. Kremers, S. Thal, N. Plesnila, and
J. Krieglstein, “Combination therapy in ischemic stroke: syn-
ergistic neuroprotective effects of memantine and clenbuterol,”
Stroke, vol. 35, no. 5, pp. 1197-1202, 2004.

R.J. Zeman, H. Peng, Y. Feng, H. Song, X. Liu, and J. D. Etlinger,
“P2-adrenoreceptor agonist-enhanced recovery of locomotor
function after spinal cord injury is glutathione dependent,
Journal of Neurotrauma, vol. 23, no. 2, pp. 170-180, 2006.

I. Semkova and J. Krieglstein, “Neuroprotection mediated via
neurotrophic factors and induction of neurotrophic factors,”
Brain Research Reviews, vol. 30, no. 2, pp. 176-188, 1999.

Journal of Immunology Research



