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Abstract

Comparing genetic and phenotypic similarity among unrelated individuals seems a promising way

to quantify the genetic component of traits while avoiding the problematic assumptions plaguing

twin- and other kin-based estimates of heritability. One approach uses a Genetic Relatedness

Estimation through Maximum Likelihood (GREML) model for individuals who are related at less

than .025 to predict their phenotypic similarity by their genetic similarity. Here we test the key

underlying assumption of this approach: that genetic relatedness is orthogonal to environmental

similarity. Using data from the Health and Retirement Study (and two other surveys), we show

two unrelated individuals may be more likely to have been reared in a similar environment (urban

versus non-urban setting) if they are genetically similar. This effect is not eliminated by controls

for population structure. However, when we include this environmental confound in GREML

models, heritabilities do not change substantially and thus potential bias in estimates of most

biological phenotypes is probably minimal.

Ascertaining the proportion of variance in a quantitative trait—such as height or IQ—that is

due to genetic variation has long been of interest to a wide range of scientists 1–5. For human

populations, where experimentation is not possible, the workhorse of such analysis has been

the twin or extended twin design, where the average relatedness of various kin pairs is

correlated with their phenotypic similarity in order to ascertain the effect of shared genotype

on a given outcome6,7. The reigning critique of this approach is that it is difficult to

eliminate the possibility that increased similarity between, say, monozygotic twins as

compared to, for example, dizygotic twins is due to more similar environments and not

solely their greater genetic similarity 8,9.

Among the recent and novel approaches to overcome this potential environmental

confounding are studies that correlate phenotypic similarity with genotypic similarity across

the genome among pairs of individuals who are less than 2.5 percent related as computed by

identity by state (IBS) and are therefore considered non-kin10–12. Simply described, a
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genetic relatedness matrix (GRM) is constructed in which each cell is filled by a measure of

2N gametic correlation between pairs of individuals (the rows and columns) summed across

a set of markers that have been pruned for linkage disequilibrium. These values are then

used to estimate phenotypic similarity between the pairs. This Genetic Relatedness

Estimation through Maximum Likelihood (GREML) approach yields estimates of narrow-

sense (additive) heritability (h2) that are lower than but approaching those obtained from

traditional twin-based approaches and has been deployed for diverse phenotypes, including

height 13, schizophrenia 10, asthma 14, smoking 15, body mass index 16, educational

attainment 17 and political and economic preferences 18.

However, like twin based models, the GREML approach relies on one key assumption about

the relationship between genetic similarity and environmental similarity. Although those

who share genetic variation may experience more similar environments due to population

structure, admixture and, of course, extended family ties, GREML assumes that those who

are less related than 2nd cousins share alleles in an essentially random fashion that is itself

uncorrelated with environmental similarity. The motivating notion is that at these low levels

of relatedness, relative genetic similarity is driven by the randomness of recombination and

allele segregation and not by underlying kinship structure. As such, parental relatedness and

relevant environmental conditions should be orthogonal to respondent relatedness.

To support this claim that relatedness among these pairs of individuals is random (and thus

uncorrelated with potential environmental confounders), Yang et al. (2010) show

correlations in relatedness levels between chromosomes in a supplemental table.11 Their

logic is that if the person-wide genetic relatedness measure between individuals (i.e. gametic

correlation) was reflecting population structure (and, thus, covaried with environment),

pairwise genetic relatedness would be correlated across those individuals’ chromosomes.

But if the distribution of pairwise relatedness is really just the result of randomization during

meiosis, then each chromosome should be independent, demonstrating no correlation. Yang

et al. find no single pair of chromosomes for which the p-value of the correlation between

the genetic relatedness of those two chromosomes is less than 0.00022, which corresponds

to a 0.05 alpha level with a Bonferroni correction for the 231 comparisons they make across

the bivariate combinations of the autosomal chromosomes. However, this strikes us as the

wrong statistical test: We are not concerned as to whether the relatedness of a specific pair

of chromosomes co-varies below a strict Type I error threshold. Rather, we are worried that

there is an overall pattern of relatedness in the data and thus should apply a more sensitive

test that minimizes Type II error. Along these lines, in Figure 1, we present a histogram of

their 231 reported p-values and show that there is indeed an excess of low p-values,

particularly below the p<.10 threshold as well as a dearth of high p-values (p>.90) as

compared to a random distribution. Indeed, when we perform a Kolmogorov-Smirnov test

on their reported distribution, we find it to deviate from the theoretically expected (uniform)

distribution (D^+ = 0.1892, p-value = 7.037e-08). While we do not know the signs of the

associated coefficients (since they were not reported by Yang et al.), the overall non-random

distribution of correlations suggests that the data fail the test for randomization of alleles

across chromosomes.
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With this in mind, we do not believe that this core assumption that the environmental

similarity between pairs of unrelated persons is uncorrelated with their genetic similarity

(below the .025 threshold) has not been adequately interrogated. In the present study, we test

the key GREML assumption by asking whether the childhood environments of subjects are

more similar if they are more related genetically. If pairs of individuals both experienced an

urban (or, by contrast, non-urban) environment growing up this is likely to have the effect of

making their formative social and physical environment more similar. Thus, if relatedness

predicts environmental similarity in this way, it could confound the premise of GREML-

based methods of estimating the genetic component of phenotypes. It makes no difference

whether urbanicity is itself causal of the phenotype under consideration; it may be acting

merely as a proxy for other, more relevant environmental factors—such as social class,

nutritional status and so forth—that are themselves related, through environmental channels,

to the offspring phenotype (such as height, BMI or education). That said, a large literature

shows that urbanicity is correlated with a range of outcomes studied by geneticists, ranging

from mental health 19–21 to immunological response 21,22 to education 23.

Health and Retirement Study (HRS) data allow us to estimate the heritability of urban

childhood residence as well as how urban residence during childhood affects GREML

estimates of other putatively heritable traits. We used the standard GREML analysis (using

GCTA software 12) to estimate heritability, with population stratification controlled by

principal components (PCs) (see Supplementary Materials: Methods). As shown in the first

row of Table 1 below, in the HRS sample with two principal components controlled, urban

childhood— putatively a childhood environmental variable based on circumstance and

parental choices—is indeed highly heritable at 29 percent. Because we suspected that the

nonzero heritability might be a result of geographic population structure, we then reran the

analysis with 10 and 25 PCs included as controls. These controls attenuated, but did not

eliminate, the effect we discovered. Thus, it seems that controls for population structure

through deployment of PCs does not adequately address this confounding. We replicated

this finding with data from the National Longitudinal Survey of Adolescent Health (Add

Health) as well as with another childhood phenotype—maternal education—in Add Health

and in the Framingham Heart Study (FHS). Both Add Health and FHS are underpowered to

generate statistically precise GREML heritability estimates, but ordinary least square

regressions show magnitudes of estimates in line with the HRS results (see Supplementary

Materials). Finally, we deployed a more stringent, one percent cut-off for the relatedness

matrix, but this, too, was underpowered (also see Supplementary Materials).

Despite the apparent heritability of childhood residence, when we control for this possible

confounder in analysis of common human phenotypes of interest—height, BMI and years of

schooling—we find that the differences between the “naïve” models and the ones that hold

childhood urbancity constant are negligible and not statistically significant. In fact, the only

phenotype for which the heritability changes to any noticeable degree is respondent

education, which drops by a statistically insignificant two percentage points (p=0.8203) in

the model with only two PCs. This makes sense: Of the three phenotypes, we would expect

height to be the least influenced by childhood environment, BMI in the middle and

education to be the most affected by potential environmental confounds. Because controlling

for more PCs did not appear to eliminate the heritability of a putatively environmental

Conley et al. Page 3

J Hum Genet. Author manuscript; available in PMC 2014 August 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



confound—urban childhood—we then tried to see if using a more restrictive relatedness cut-

off (.01) would address the “problem.” However, when we used this more restrictive cut-off,

sample sizes dropped too drastically to yield adequate power. (Results are shown in

Supplemental Table S1.)

Our findings have implications not only for GREML analysis of heritability but for genome-

wide analysis more broadly. Namely, some scholars have claimed that PCs adequately

control for population stratification, especially when data show no evidence of “early take-

off” (i.e. across the vast majority of the distribution of p-values, they match what one would

expect from chance)24,25. Our results suggest that directly modeling error terms as a linear

function of relatedness in a sample may be also be necessary to adjust for stratification 26.

Finally, and most importantly, while the key assumption of GREML analysis that the

genotype-environment correlation (rGE) is zero is violated, the consequences of that

violation appear to be trivial. We cautiously conclude that GREML is a valid estimation

technique for heritability but recommend that going forward, researchers test for the

violation of this assumption (and robustness to violations) in their own datasets as a standard

sensitivity analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Histogram of p-values from pairwise-chromosome regressions of relatedness as presented in

Supplementary Table 2 of Yang et al. Nat. Genet. 42, 565–569 (2010) “Common SNPs

explain a large proportion of the heritability for human height.” Note excess of low p-values,

particularly less than 0.10. This suggests that there is a significant pattern of covariance

between independently segregating genomic segments and thus potential non-randomness in

overall relatedness (i.e. potential covariance with population structure and thus

environmental confounders): Kolmogorov-Smirnov test: (D^+ = 0.1892, p-value =

7.037e-08).
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