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Abstract

We evaluate the use of three different exposure metrics to estimate maternal agricultural pesticide

exposure during pregnancy. Using a geographic information system-based method of pesticide

exposure estimation, we combine data on crop density and specific pesticide application amounts/

dates to create the three exposure metrics. For illustration purposes, we create each metric for a

North Carolina cohort of pregnant women, 2003–2005, and analyze the risk of congenital anomaly

development with a focus on metric comparisons. Based on the results, and the need to balance

data collection efforts/computational efficiency with accuracy, the metric which estimates total

chemical exposure using application dates based on crop-specific earliest planting and latest

harvesting information is preferred. Benefits and drawbacks of each metric are discussed and

recommendations for extending the analysis to other states are provided.
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INTRODUCTION

Parental pesticide exposure during pregnancy has long been hypothesized to contribute to

increased risks of certain congenital anomalies. The process of determining pesticide

chemical exposure estimates has been assessed using numerous heterogeneous metrics in

previous epidemiological studies of the association. In two California analyses, exposure

was defined as residential proximity to known pesticide application sites1 and as self-

reported pesticide use in and around the home.2 A number of other studies have classified

exposure to pesticides through parental occupational history during the pregnancy.3–9

Surrogate chemical exposure, defined by total crop acreage surrounding the area of interest,

has also been used in past analyses.10,11 Recently, a study investigated how pesticide

applications made in close proximity to the residence led to personal exposures within the

home in the form of carpet dust respiration.12 Although several previous studies have been

successful in identifying an association between pesticide exposure during the pregnancy

and congenital anomalies, these were over limited subpopulations and geographic domains.

Our interest is in answering research questions regarding larger-scale geographic and

population domains while balancing the need for accuracy/precision with computational

efficiency/practicality in estimating individual-level chemical exposures.

In this paper, we contrast and compare the utility of three different geographic information

system (GIS)-based metrics for estimating pesticide exposure using a geocoded data set

from a cohort of North Carolina (NC) births, 2003–2005. We define pesticide exposure

using similar methods originally developed to investigate the association between

agricultural pesticide exposure during the pregnancy and the development of hypospadias in

eastern Arkansas.13 Previous studies have implemented similar GIS methods in alternative

health outcome settings14,15 while another confirmed the feasibility of the use of GIS

methods in the agricultural chemical setting.16 Our study is designed to estimate individual-

level pesticide exposures using several GIS-based methods that represent tradeoffs between

analytical complexity and exposure estimation accuracy. One metric is relatively easy to

compute but has the increased potential to misclassify exposures. Another metric is

computationally difficult to construct but results in improved classification and explanation

of the association of interest. The final metric represents a balance between the others, being

computationally tractable and having improved classification properties. Further, a

secondary goal is to explore the potential issues associated with creating these exposure

metrics in other states.

In the present analysis, agricultural pesticide exposure is estimated based on the spatial

location of the maternal residence at delivery and relevant state-level crop information.

Using ArcGIS spatial analysis software (ESRI, Redlands, CA, USA), we determine the crop

type and amounts (acres) in areas surrounding the home. Based on this information, we

estimate maternal pesticide exposure during early pregnancy using the following three

metrics: total crop acreage in the area surrounding the residence at delivery, expected

chemical exposure based on similar existing methods,13 and expected chemical exposure

based on a modified pesticide application timing technique. Each exposure metric takes into

account the dates of the pregnancy, as exposures during the periconceptional period (1

month before conception and 3 months after) are considered to affect the risk of congenital
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malformations. Each metric estimates individual-level exposure based on aggregated level

data, which is necessary to efficiently evaluate the association of interest given the large

sample size of the data set. The performance of each metric is compared through an example

using the NC cohort while analyzing the risk of developing any birth defect.

Recommendations for creating the metrics in different states are discussed.

MATERIALS AND METHODS

Data Description

We obtained crop maps for NC from the National Agricultural Statistics Service (NASS)

Cropland Data Layer website.17 These maps are available for 2002 and 2008–2010 for the

state. A crop map for a given year and geographic domain consists of satellite imagery that

geographically describes the locations of various crops over the domain for that year. In NC,

information on over 70 different crops are collected and reported in the crop maps.

Pesticide chemical application data for NC are obtained from the NASS Pest Management

website for 2002–2005.18 These data include state-wide total amounts of specific chemicals

applied in each year to various crops in NC. The available information for each crop

includes the name of the applied chemical, the percentage of NC acres of the crop that were

treated with the chemical, the number of applications made in the year, the pounds of active

ingredient per application, the total pounds of active ingredient applied per treated acre, and

the total pounds of active ingredient applied per year in the state. These data are not

available for every crop included in the NASS crop maps, but both data sets (NASS

chemical applications and NASS crop maps) include information on corn, soybeans,

peanuts, cotton, apples, watermelons, and sweet corn, though not necessarily in the same

years. Pesticide application data are not available for tobacco during any years of the

analysis, and as a result tobacco is not included in the study.

To define the temporal variability of pesticide exposure, we obtained temporally specific

crop cycle and pesticide application information for each combination of crop and chemical

based on known NC pesticide application dates. These data provide information regarding

when a particular chemical is typically applied during the life cycle of a selected crop. A

majority of the timing data are found in the online NC crop profiles.19 Additional timing

information is constructed based on the targeted pest(s) for each applied chemical and the

life cycle of these pests. Currently, no centralized data set contains this timing information.

We also obtained information on typical NC planting and harvesting dates for each crop

from the NC crop profiles and also from the NASS.20

Chemical half-life data are obtained for each observed pesticide from the USDA.21 The

most reliable estimate of the half-life length of each chemical (days) is used in the analysis

to give insight into how long the active ingredient associated with each chemical persists

within the application areas.

The analyzed health data set includes birth records on 335,729 singleton live births from the

NC State Center for Health Statistics, 2003–2005 linked to data from the NC Birth Defects

Monitoring Program (NCBDMP). The data set includes maternal residence at delivery
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geocoded to a longitude/latitude location for each birth. Variables including infant birth

weight, gestational age, gender, and date of birth, as well as maternal race/ethnicity,

education, marital status, parity, age, diabetes, and smoking status are obtained from the

birth records. Data on congenital anomalies from the NCBDMP for each birth are also

provided for a range of neural tube defects, cardiovascular, gastrointestinal, genitourinary,

and musculoskeletal defect phenotypes.

Women are excluded from the analysis when missing any of the available demographic

covariates of interest (n = 6910 (2.06%)). Also, women with a residence at delivery

determined to fall outside of NC are excluded from the analysis (n = 23,829 (7.10%)).

Maternal residence at delivery was used as a surrogate for residence during early pregnancy,

because information on the latter is not available in the birth files. Infants with a gestational

age <20 weeks or >45 weeks are excluded (n = 84 (0.03%)). The final birth cohort used for

analyses includes 304,906 births.

Data Preparation

Recall that the NASS crop maps are only available in 2002 and 2008–2010 in NC while our

birth cohort data set is available from 2003–2005. We derive crop map estimates for 2003–

2005 by extrapolating from the data contained in the available years. We begin by

investigating the changes in the acre totals and geographic placement of each NC crop

between the available years. For the entire NC cohort, we create a 500 m buffer surrounding

each residence at delivery and calculate the individual crop totals within each buffer for each

year of the available crop maps. Our goal is to explore the changes in these individual crop

totals from year-to-year within the buffers.

To analyze the temporal crop changes, we calculate the percentage of women who had the

same crop totals for each year and the mean, median, minimum, and maximum average

absolute change in crop totals among all years (among those who had a change). We define

the average absolute change in crop totals among all years for woman i as

 where Yij is the crop total for year j in buffer i and n represents the

number of yearly differences we consider. This quantity is calculated for each woman in the

sample. If the crop placements and totals are truly static from year-to-year, this quantity will

be zero as Yij = Yik for all j<k. Once we obtain these measurements for each woman, we

calculate the five statistics across all years at first. We then repeat the process while

removing a single year from the analysis to test for possible outlier years and the overall

sensitivity to a single year. Analyzing these results help us to determine the most sensible

way to estimate the individual buffer crop totals for the missing crop map years.

Metric Development

We create three exposure metrics for each woman in the study based on agricultural

chemical application dates, yearly applied amounts, and residence at delivery buffer crop

totals. These three metrics include:

• Metric 1: Total amount of acres of all crops within a woman’s buffer,
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• Metric 2: Total chemical exposure (pounds of active ingredient) based on specific

dates of pregnancy and chemical/crop-specific application dates,

• Metric 3: Total chemical exposure (pounds of active ingredient) based on specific

dates of pregnancy and chemical application dates based on the planting/harvesting

dates of each crop.

We use ArcGIS software to assist in creating exposure Metric 1. ArcGIS allows for the

mapping of the geocoded residences at delivery of the birth cohort in NC. We overlay these

spatially referenced data with the crop maps from the NASS, creating a map for each year of

available crop map data. Once the data sources are combined, we create a 500 m buffer

around each woman’s residence at delivery. The 500 m buffer is the most common distance

used in previous epidemiological studies12,13,16,22 that investigate the association of interest

and represents a reasonable range for the drift effects from agricultural pesticide

applications.16 Figure 1 displays the 2010 NC crop map as well as an example of a 500 m

buffer area surrounding a residence at delivery.

As shown in Figure 1, a variety of crops are potentially located within a selected buffer.

Using ArcGIS, we are able to calculate the total number of pixels of each crop located

within a buffer for the selected year. A single pixel is equivalent to 0.222394 acres for the

2002 and 2010 crop maps and to 0.774922 acres for the 2008–2009 crop maps due to

varying pixel sizes. Using these conversions, we then calculate the total number of acres of

each recorded NC crop that is grown within 500 m of the residence at delivery in a selected

year for each woman in the NC cohort. We sum these acres across all crops within a selected

buffer to create Metric 1 for a woman in the analysis such that  where ci is

the total number of unique crops found within the 500 m buffer for woman i and Bi(j) is the

total number of acres of crop j found within buffer i. This process is repeated for each

individual buffer in the analysis.

The crop-specific buffer totals used to calculate Metric 1, Bi(j), are also needed to create

exposure Metric 2. In order to construct Metric 2, we utilize the relevant pesticide

application data from NASS, which informs us which chemicals were applied to each crop

in a given year and their yearly applied totals. We need this information for each year and

crop in the analysis. Unlike the crop map data, these data are available in 2002–2005.

Next, we combine the pesticide application data with information regarding the specific

dates of application for each applied chemical. For a chosen chemical, we use the earliest

and the latest possible application dates based on information available in the NC crop

profiles or based on crop and pest phenological patterns. We then add the chemical half-life

estimate to the latest possible application date to create a probable window of application.

By combining the pesticide application quantity and timing information with the crop buffer

totals, we are able to create Metric 2 for each woman in the analysis. For a selected woman,

we determine the calendar dates for 1 month before conception through the third month of

pregnancy. This period of the pregnancy represents an inclusive window of exposure to

pesticides that may be associated with a spectrum of different congenital anomalies. Given

the list of crops within a buffer and their respective total acres, we determine the quantities

Warren et al. Page 5

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



and types of chemicals that were applied to the crops in the state during the woman’s year of

pregnancy. Next, we analyze the dates of the applications of the chemicals of interest. If

these dates within the year overlap with the pregnancy window of interest, we consider the

woman as being exposed to that specific chemical. We repeat this process for each chemical/

crop combination and then for each woman.

Another important factor in determining Metric 2 for a particular woman is the amount of

the crops grown within each buffer. A buffer containing a higher number of crop acres will

likely be treated with greater amounts of the chemicals of interest than a buffer with a

smaller number of acres. Using the total number of crop acres within a buffer, the

percentage of total NC crop acres treated with a certain chemical, along with the total

pounds of active ingredients applied per year, we calculate the expected exposure to that

chemical for each woman. Metric 2 for woman i is then defined as

 where ci is the total number of unique crops found

within the 500 m buffer for woman i, nj is the total number of chemicals applied to crop j,

Bi(j) is the total number of acres of crop j found within buffer i, p(j,k) is the proportion of

NC acres of crop j that were treated with chemical k, and λ(j,k) is the number of pounds of

active ingredient of chemical k applied per treated acre of crop j. Recall that for a woman

whose pregnancy window did not align with the application window of chemical k on crop j,

we set Bi(j)p(j,k)λ(j,k) equal to zero.

Metric 3 is calculated by repeating the Metric 2 creation process while replacing the earliest

and the latest possible application dates based on crop and pest phenology or specified NC

information with those based on the earliest planting and latest harvesting dates of each

crop. Table 1 summarizes the information used by each of the three introduced metrics.

Metric 1 acts as a surrogate measure for pesticide chemical exposure as generally we expect

a woman with increased total crop acres within 500 m of her residence at delivery to be at

risk of higher levels of chemical exposure. Metric 2 incorporates expected chemical

exposure based on pregnancy timing and chemical-specific application timing during the

year. In contrast, Metric 3 relies on crop planting and harvesting dates alone to determine

exposure and represents a computational balance between metrics 1 and 2.

Metric 3 is of interest to see what is gained by considering the more in-depth pesticide

timing data utilized in Metric 2, which can be difficult to collect. We want to determine if

the extra effort required for Metric 2 affects the results or if the uncertainty associated with

these timing data causes the results to be similar to Metric 3. Metric 3 represents an attempt

at balancing personal exposure assignment accuracy with the computational feasibility

needed when applying a method requiring a large amount of data collection to large

geographic and temporal domains.

Statistical Modeling

We explore metric performance by using logistic regression to investigate the association

between each exposure metric and risk of any birth defect. Although it is unlikely that

pesticide exposure would be causally associated with an increase in all birth defect
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phenotypes, in this analysis we consider all birth defects simultaneously for illustration of

the methodology used for exposure assessment. For each metric, we analyze the crude

unadjusted relationship along with the adjusted relationship after controlling for other

covariates of interest. These covariates include maternal age, race, education, smoking

status, and diabetes status. Variable selection techniques are implemented in order to choose

the appropriate covariates in each of the models. Forward, backward, and stepwise methods

each resulted in the same choice of covariates for each of the respective models. Linear

exposure as well as categories of exposure are considered in separate models. The categories

include the following quantiles of exposure: no exposure (serves as the reference

group),<0.10, (0.10,0.50), (0.50,0.90), and≥0.90. Akaike’s information criterion (AIC) is

used to compare models using the various metrics. AIC is a commonly implemented

statistical tool used for model selection purposes when there are competing models of

interest in an analysis. The AIC analysis helps to determine which metric better explains the

association between exposure and birth defect development. Results are presented for the

adjusted models due to an improved fit while the unadjusted results are displayed in the

Supplementary Materials. The analyses are carried out using SAS/STAT software (SAS

Institute, Cary, NC, USA).

RESULTS

Table 2 displays the basic summary information for the births included in the study. The

birth defect and non-birth defect groups differed statistically in terms of birth weight,

gestational age, maternal age, race, education, parity, smoking, diabetes, and marital status.

The summary information regarding the distribution of the average absolute crop change

variable is shown in Tables 3 and 4 for the entire NC cohort. Results suggest that for the

considered NC crops, a large proportion of women had the same crop amounts within their

buffer for each year. Cotton and peanuts, for example, consistently had over 57% and 90%,

respectively, of the sample with the same crop totals across the years. Apples, sweet corn,

and watermelons only had data in 2008–2010 (Table 4) but were very consistent through

time with each crop having over 95% of the sample with the same crop totals across the

years. Removing one year at a time reveals that the crop maps for 2008–2010 are more

similar than for 2002, though the maps do not appear substantially different for any of the

years. This can be seen in Table 3 once we remove 2002 from the analysis, as the amount of

change between the years is slightly closer to zero for the major crops and the percentage of

the sample with the same crop totals from year-to-year is increased. Based on the sometimes

large difference between the sample means and medians, it is clear that there are a few

outlier observations among this cohort of women where the amount of change is relatively

large. The median is not affected by these outliers and is a more appropriate estimate of the

center of the distribution in this setting. These outliers typically represent residences where

the crop was present during each year of the available crop maps. As a result, these women

will be correctly classified as exposed in the analysis, though their estimated exposure

amounts may be potentially misclassified. Based on Tables 3 and 4, no crops with multiple

years of data are removed from the analysis. Table 1 in the Supplementary Materials

suggests that for the major crops of interest, the number of harvested acres is relatively
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constant across the years of interest, providing more evidence that the crop maps for the

missing years may be similar to the available years of data.

The extrapolation results suggest that a weighted average of the buffer crop maps for the

missing information in years 2003–2005 is appropriate due to the small variability seen in

the buffer crop totals across the years. The crop information for the woman with buffer i in

these missing years becomes , a weighted average of

her buffer for the available years. Crops which are accounted for during one crop map year

alone (blueberries, squash, cabbage, bell peppers, and tomatoes) are removed from the

analysis as we cannot verify that their placement and totals are relatively static over the

analysis years. This represents crops that are not heavily planted across the state and

therefore does not affect a large number of women in the analysis in terms of chemical

exposure.

To explore the consequences of removing these single-year crops from the analysis, we

carry out a sensitivity analysis using the single available crop map year of 2010. We assume

that the crop map for 2010 is consistent with that of the years 2002–2005 and calculate

Metric 1 and Metric 3 exposures for the cohort using these crops alone. We then fit similar

statistical models as described in “Statistical Modeling” and analyze the results. The

sensitivity analysis results suggest that the relatively small number of planted acres of the

excluded single-year crops leads to only a small number of women being exposed to the

applied chemicals (<1.3% of the cohort). No statistically significant effects are identified

using either of the metrics. The Supplementary Materials displays the estimated exposures

for the birth defect and non-birth defect groups (Table 2). The differences between the

groups are not statistically significant for either of the metrics.

Table 5 displays the statistical summaries of chemical exposure (acres and pounds of active

ingredient) for each exposure metric stratified by births that resulted in any congenital

anomaly and births that were free of any defects. On average, Metric 3 gives larger estimates

of the chemical exposure experienced by the women when compared with Metric 2 for both

the groups. This is due to the use of the less precise windows of exposure, which typically

results in more women being identified as exposed during their pregnancy. Each of the

presented estimates is statistically significantly different between the birth defect and non-

birth defect groups.

For each statistical analysis, we investigate the association between the selected exposure

metrics and all birth defects in order to examine the performance of each metric. Figure 2

shows the adjusted odds ratio estimates and 95% confidence intervals for each category of

exposure versus the unexposed reference group for each metric. The unadjusted categorical

exposure results are nearly identical to the adjusted results and can be seen in Figure 1 of the

Supplementary Materials. Table 6 displays the adjusted results for each metric for the linear

exposure logistic regression models while the unadjusted results are displayed in Table 3 of

the Supplementary Materials. Recall that the Metric 1 exposure is measured in acres while

metrics 2 and 3 are measured in pounds of active ingredient. As a result, their results are not

directly comparable.
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As a result of each adjusted model being fit with the same group of women and the exposure

metrics alone changing, we are able to compare the resulting model fits through use of AIC.

AIC is an indicator of the goodness of fit of a proposed model.23 We focus on the adjusted

categorical exposure results of Figure 2 for the model comparisons as this model is shown to

provide a better fit of the data than the linear exposure model in terms of AIC. The AIC

values are 60,260.310 (Metric 1), 60,241.640 (Metric 2), and 60,238.496 (Metric 3). It is

clear that metrics 2 and 3 are preferred statistically over Metric 1 as differences of >10

indicate that the model with lower AIC provides a better fit. No difference is seen, however,

between metrics 2 and 3.

DISCUSSION

The presented results suggest that the introduced metrics can be used to assess associations

between large-scale agricultural pesticide exposures and adverse pregnancy health

outcomes. In this study, we applied the metric creation methods to a NC cohort of pregnant

women and analyzed the risk of developing any congenital anomaly for illustration purposes

only. The results for this association in our example may not be fully developed due to the

exclusion of a few NC crops (including tobacco) where the necessary data were not fully

available. However, the creation, performance, and comparisons of the introduced metrics

are valid and remain the major focus of the study.

Figure 2 shows that all three metrics give similar information regarding the association,

though it is clear that the odds ratio estimates from Metric 1 are closer to a null relationship

than metrics 2 and 3. Overall, the results from the metric analysis did not change drastically

between the unadjusted and adjusted models for either the linear or categorical forms of

exposure. Metrics 2 and 3 provide very similar odds ratio estimates and potentially suggest a

statistically significant effect at categories three (missed by Metric 1) and four. The timing

of the chemical applications mainly impacts the total number of women who are identified

as exposed and does not drastically affect the results. Based on these findings along with the

AIC analysis, we recommend Metric 3 due to its computational benefits.

There are a few issues that are of concern when determining if any of the proposed metric

creation methods can be extended to studies in other states. First, the lack of yearly crop

map data in a state can be a limiting factor when determining the crop-specific acre amounts

within the buffer areas. This affects the construction of all of the introduced metrics. When

extending the process to a new state that does not have full yearly coverage of crop maps, it

is important to carry out sensitivity analyses, similar to those in “Data Preparation”, to

ensure that some weighted average of the available crop maps represents a reasonable

estimate for the missing years. Crop rotation patterns could also potentially confuse this

process, especially if the rotated crop(s) covers extensive acreage within the state. This was

not the case in NC as the most prevalent crops appeared to be reasonably static from year-to-

year. These factors may not be as limiting for future studies, however, as the crop map data

are currently available nationwide from 2008 to the present.

Creating Metric 2 in other states could potentially be problematic due to the lack of

centralized data on chemical application dates. Application dates vary by chemical/crop
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pairing and also by state. Obtaining this information for a number of different crops,

chemicals, and states can therefore be very time and labor intensive. Also, because the data

do not come from a central storage location, there is extra variability introduced by

combining data from multiple sources. In general, insecticide application dates are likely

more variable than herbicide or fungicide application dates as they depend more heavily on

pest pressure, which can fluctuate based on climatic conditions. Therefore, Metric 3 may be

more appropriate for herbicides and fungicides. Also, pesticide applications made on smaller

acreage crops can be more variable from season-to-season and, therefore, harder to estimate

using the aggregated yearly state-level data. Obtaining accurate timing information will be

the major hurdle in extending this method to health studies in other states.

Metric 3 does not require the collection of this timing data as it relies on the planting and

harvesting dates of the relevant crops, which will also vary by state. Given quality crop map

data, Metric 1 can be calculated efficiently for multiple states and can give some insight into

the exposure/outcome relationship. Metric 2 will require more rigorous computational effort,

which may not be necessary to accurately characterize the true relationship between

chemical exposure and adverse birth outcomes. Metric 3 represents a balance between

metrics 1 and 2 in terms of accuracy and computational efficiency.

The grouping of all birth defects and aggregate-level exposure information, by necessity,

may lead to measurement error and likely the underestimation of effect size. Another

potential source of measurement error in this study is the use of maternal residence at

delivery rather than early pregnancy, which is the relevant period of exposure for birth

defects. Although changing addresses during this period is possible, a number of studies

have suggested that a majority of women tend to remain at their current address during the

entire pregnancy or move only a relatively short distance.24,25 Such misclassification would

tend to bias the odds ratios toward the null in most situations. It seems feasible that each of

the proposed metrics can be calculated for women living in multiple locations across the US

where quality crop map and chemical application data are available. We recommend the use

of Metric 3 due to its similarity to Metric 2, which is more complicated to construct. Future

studies should focus on specific birth defect phenotype and chemical combinations of

interest using similar metric creation methods for a more complete set of crop map and

pesticide application data in the geographic area of interest. Alternate health outcomes such

as neuropathies, chronic diseases, and various cancers could also be considered.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank Andrew Olshan, Professor of Epidemiology and Department Chair at UNC Chapel Hill, Kristy J. Michie,
Supervising Public Health Epidemiologist at the Monterey County Health Department, and Leon S. Warren Jr.,
Agricultural Research Associate in the North Carolina State University Department of Crop Science for providing
helpful input regarding the metric creation process and general pesticide/crop timing information. This research was
supported in part by grants from the National Institute of Environmental Health Sciences (T32ES007018,
P30ES010126).

Warren et al. Page 10

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



References

1. Bell EM, Hertz-Picciotto I, Beaumont JJ. A case-control study of pesticides and fetal death due to
congenital anomalies. Epidemiology. 2001; 12:148–156. [PubMed: 11246574]

2. Shaw GM, Wasserman CR, O’Malley CD, Nelson V, Jackson RJ. Maternal pesticide exposure from
multiple sources and selected congenital anomalies. Epidemiology. 1999; 10:60–66. [PubMed:
9888281]

3. Blatter BM, Roeleveld N, Zielhuis GA, Gabreels FJM, Verbeek ALM. Maternal occupational
exposure during pregnancy and the risk of spina bifida. Occup Environ Med. 1996; 53:80–86.
[PubMed: 8777455]

4. Garry VF, Schreinemachers D, Harkins ME, Griffith J. Pesticide appliers, biocides, and birth defects
in rural Minnesota. Environ Health Perspect. 1996; 104:394–399. [PubMed: 8732949]

5. Garry VF, Harkins ME, Erickson LL, Long-Simpson LK, Holland SE, Burroughs BL. Birth defects,
season of conception, and sex of children born to pesticide applicators living in the Red River
Valley of Minnesota, USA. Environ Health Perspect. 2002; 110:441–449. [PubMed: 12060842]

6. Kristensen P, Irgens LM, Andersen A, Bye AS, Sundheim L. Birth defects among offspring of
Norwegian farmers, 1967–1991. Epidemiology. 1997; 8:537–544. [PubMed: 9270956]

7. Regidor E, Ronda E, Garcia AM, Dominguez V. Paternal exposure to agricultural pesticides and
cause specific fetal death. Occup Environ Med. 2004; 61:334–339. [PubMed: 15031391]

8. Rocheleau CM, Romitti PA, Sanderson WT, Sun L, Lawson CC, Waters MA, et al. Maternal
occupational pesticide exposure and risk of hypospadias in the National Birth Defects Prevention
Study. Birth Defects Res A Clin Mol Teratol. 2011; 91:927–936. [PubMed: 21954192]

9. Weidner IS, Moller H, Jensen TK, Skakkebaek NE. Cryptorchidism and hypospadias in sons of
gardeners and farmers. Environ Health Perspect. 1998; 106:793–796. [PubMed: 9831539]

10. Nelson CJ, Holson JF, Green HG, Gaylor D. Retrospective study of the relationship between
agricultural use of 2,4,5-T and cleft palate occurrence in Arkansas. Teratology. 1979; 19:377–383.
[PubMed: 473090]

11. Schreinemachers DM. Birth malformations and other adverse perinatal outcomes in four U.S.
wheat-producing states. Environ Health Perspect. 2003; 111:1259–1264. [PubMed: 12842783]

12. Gunier RB, Ward MH, Airola M, Bell EM, Colt J, Nishioka M, et al. Determinants of agricultural
pesticide concentrations in carpet dust. Environ Health Perspect. 2011; 119:970–976. [PubMed:
21330232]

13. Meyer KJ, Reif JS, Rao Veeramachaneni DN, Luben TJ, Mosley BS, Nuckols JR. Agricultural
pesticide use and hypospadias in eastern Arkansas. Environ Health Perspect. 2006; 114:1589–
1595. [PubMed: 17035148]

14. Brody JG, Vorhees DJ, Melly SJ, Swedis SR, Drivas PJ, Rudel RA. Using GIS and historical
records to reconstruct residential exposure to large-scale pesticide application. J Expo Anal
Environ Epidemiol. 2002; 12:64–80. [PubMed: 11859434]

15. Royster MO, Hilborn ED, Barr D, Carty CL, Rhoney S, Walsh D. A pilot study of global
positioning system/geographical information system measurement of residential proximity to
agricultural fields and urinary organophosphate meta-bolite concentrations in toddlers. J Expo
Anal Environ Epidemiol. 2002; 12:433–440. [PubMed: 12415492]

16. Ward MH, Nuckols JR, Weigel SJ, Maxwell SK, Cantor KP, Miller RS. Identifying populations
potentially exposed to agricultural pesticides using remote sensing and a geographic information
system. Environ Health Perspect. 2000; 108:5–12. [PubMed: 10622770]

17. CropScape—Cropland Data Layer [Internet]. 2012. [cited 2 October 2012]. Available from
nassgeodata.gmu.edu/CropScape/

18. NASS Pest Management [Internet]. 2012. [cited 2 October 2012]. Available from http://
www.pestmanagement.info/nass/index.html

19. North Carolina Pest Management Information Program (NCPMIP)—Crop Profiles [Internet].
2012. [cited 2 October 2012]. Available from http://ipm.ncsu.edu/ncpmip/cropprofiles.htm

20. North Carolina Crops—Usual Planting & Harvesting Dates [Internet]. 2012. [cited 2 October
2012]. Available from http://www.ncagr.gov/stats/crops/Dates.pdf

Warren et al. Page 11

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.pestmanagement.info/nass/index.html
http://www.pestmanagement.info/nass/index.html
http://ipm.ncsu.edu/ncpmip/cropprofiles.htm
http://www.ncagr.gov/stats/crops/Dates.pdf


21. United States Department of Agriculture (USDA). Agricultural Research Service—Pesticide
Properties Database [Internet]. 2012. [cited 2 October 2012]. Available from http://
www.ars.usda.gov/Services/docs.htm?docid=14199

22. Xiang H, Nuckols JR, Stallones L. A geographic information assessment of birth weight and crop
production patterns around mother’s residence. Environ Res. 2000; 82:160–167. [PubMed:
10662530]

23. Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. In:
Petrov, BN.; Czaki, F., editors. 2nd International Symposium on Information Theory. Akademiai
Kiado; Budapest, Hungary: 1973. p. 267-281.

24. Nuckols, JR.; Langlois, P.; Lynberg, ML.; Luben, T. Linking geographic water utility data with
study participant residences from the National Birth Defects Prevention Study. American Water
Works Association Research Foundation; Denver, CO, USA: 2004.

25. Chen L, Bell EM, Caton AR, Druschel CM, Lin S. Residential mobility during pregnancy and the
potential for ambient air pollution exposure misclassification. Environ Res. 2010; 110:162–168.
[PubMed: 19963212]

Warren et al. Page 12

J Expo Sci Environ Epidemiol. Author manuscript; available in PMC 2015 September 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.ars.usda.gov/Services/docs.htm?docid=14199
http://www.ars.usda.gov/Services/docs.htm?docid=14199


Figure 1.
2010 NC crop map plot and example buffer region for a selected residence at delivery.

Major NC crops key: Red (Cotton), Yellow (Corn), and Green (Soybeans).
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Figure 2.
Adjusted odds ratio estimates and 95% confidence intervals for various levels of categorical

exposure (Ref: No exposure, 1:<10%, 2: (10%, 50%), 3: (50%, 90%), 4:≥90%). The odds of

developing any birth defect is being modeled, and results for each exposure metric are

displayed. Results should only be used to compare the performance of each metric due to the

exclusion of a few NC crops of interest.
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Table 1

Summary of the information used to create each considered pesticide exposure metric.

Metric 1 Metric 2 Metric 3

Buffer crop acreage X X X

Applied chemical quantities X X

Crop planting/harvesting dates X X

Specified chemical application dates X

Crop/pest phenology information X

Note: Metric 2 only uses planting/harvesting crop dates when more detailed application date information is unavailable.
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Table 2

Summary information for the births included in the study by congenital anomaly status.

Characteristic Birth defects (n = 6358) No birth defects (n = 298,548) P-value

Mean birth weight in grams 3,106.69 (798.23) 3,334.40 (557.75) <0.0001

Mean gestational age in weeks 38.09 (3.42) 39.09 (2.33) <0.0001

Maternal age (%) 0.0322

 <20 12.25 11.34 0.0231

 20–24 25.51 26.41 0.1088

 25–29 26.22 26.98 0.1751

 ≥30 36.02 35.27 0.2189

Maternal race/ethnicity (%) 0.0320

 Black/non-Hispanic 22.98 21.87 0.0339

 Hispanic 13.37 13.91 0.2175

 Other 3.48 3.98 0.0418

 White/non-Hispanic 60.18 60.24 0.9134

Maternal education (%) <0.0001

 <High school 24.10 22.19 0.0003

 High school 30.04 28.74 0.0229

 >High school 45.86 49.08 <0.0001

Previous live births (%) 0.0019

 None 41.55 41.22 0.5900

 One 31.83 33.71 0.0017

 >One 26.61 25.07 0.0051

Smoked during pregnancy (%) 13.59 12.42 0.0050

Diabetes (%) 4.45 2.75 <0.0001

Married (%) 61.64 63.98 0.0001

SDs are presented in parentheses for continuous variables. P-values were obtained through two-sample t-tests for continuous variables and chi-
square tests for categorical variables. Individual category comparisons are considered when the overall chi-square test (bold P-value) is significant
at the 0.05 level.
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Table 5

Metric summaries for the included births by congenital anomaly status.

Birth defects No birth defects

Mean (SD) Range Mean (SD) Range

Metric 1 (acres) 11.80 (23.29) (0, 170.25) 10.28 (21.40) (0, 209.95)

Metric 2 (lbs. a.i.) 14.46 (44.33) (0, 684.34) 12.71 (61.50) (0, 6194.67)

Metric 3 (lbs. a.i.) 16.22 (46.86) (0, 684.80) 14.41 (64.16) (0, 6204.21)

Metric 1 is given in acres while metrics 2 and 3 are shown in pounds of active ingredient (lbs. a.i.).
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Table 6

Results from each exposure metric using a linear exposure logistic regression model to analyze the odds of

developing any birth defect.

Odds ratio (95% CI)

Metric 1 1.061 (1.037, 1.086)

Metric 2 1.016 (0.999, 1.033)

Metric 3 1.016 (0.999, 1.034)

Adjusted results are displayed. Results are based on the standardized exposure for each metric. Results should only be used to compare the
performance of each metric due to the exclusion of a few NC crops of interest.
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