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Abstract
Geostatistical methods are widely used in estimating long-term exposures for air pollution
epidemiological studies, despite their limited capabilities to handle spatial non-stationarity over
large geographic domains and uncertainty associated with missing monitoring data. We developed
a moving-window (MW) Bayesian Maximum Entropy (BME) method and applied this framework
to estimate fine particulate matter (PM2.5) yearly average concentrations over the contiguous U.S.
The MW approach accounts for the spatial non-stationarity, while the BME method rigorously
processes the uncertainty associated with data missingnees in the air monitoring system. In the
cross-validation analyses conducted on a set of randomly selected complete PM2.5 data in 2003
and on simulated data with different degrees of missing data, we demonstrate that the MW
approach alone leads to at least 17.8% reduction in mean square error (MSE) in estimating the
yearly PM2.5. Moreover, the MWBME method further reduces the MSE by 8.4% to 43.7% with
the proportion of incomplete data increased from 18.3% to 82.0%. The MWBME approach leads
to significant reductions in estimation error and thus is recommended for epidemiological studies
investigating the effect of long-term exposure to PM2.5 across large geographical domains with
expected spatial non-stationarity.
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Introduction
Several epidemiological studies have demonstrated that long-term exposure to fine-
particulate matter (PM2.5) is associated with increased morbidity and mortality (Boldo et al.,
2006; Pope et al., 2009). In most epidemiological studies, long-term concentrations are
estimated by conventional distance-based approaches, such as aggregating the air pollution
data from the nearest monitoring station or taking the areal average concentrations in the
county, census block, or zip code area where the study participants reside. These methods
implicitly assume a uniform concentration within the defined spatial unit surrounding the
study subject, without being able to capture the local-scale concentration gradient. Recent
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studies have attempted to account for the local-scale spatial variability of ambient
concentrations by applying geostatistical methods (Liao et al., 2006) or land use regression
(LUR) models (Hoek et al., 2008). Geostatistical techniques, in particular, have been widely
used in air pollution epidemiologic studies. For instance, a stronger association between
long-term exposure to PM 2.5 and chronic health effects relative to previous studies was
found by estimating within-city exposure using a kriging geostatistical approach over the
Los Angeles metropolitan area (Jerrett et al. 2005).

Although geostatistical methods represent a major improvement over the conventional
distance-based approaches, other methodological issues arise when these geostatistical
methods are applied to estimate the long-term PM2.5 concentration in epidemiologic studies
with a large geographic coverage. One major concern is that the spatial correlation pattern of
ambient concentrations is assumed to be stationary across the entire spatial domain (Liao et
al., 2009; Zhang et al., 2009). In other words, in these studies, spatial autocorrelation of the
concentration is assumed to be unchanged across the entire study domain, and a single
semivariogram model obtained from all the observations is used for the estimation across the
domain. In a national-scale study on ambient air pollution, however, spatial correlation
patterns are expected to vary across regions. For example, in the U.S., PM2.5 concentrations
show high spatial variability. In California higher concentrations were clustered in small
areas whereas higher concentrations were more widely spread on the east coast. In addition,
the level is generally low in the central and northwestern U.S. (Bell et al., 2007). Thus, in
order to estimate the national-scale long-term PM2.5 concentration, a framework that
accounts for the non-stationarity of spatial variability is needed.

Another issue pertaining to the estimation of the long-term PM2.5 concentration is the data
completeness criterion used to define the long-term ambient concentration at a given
monitoring station. The long-term PM2.5 concentration is generally approximated by taking
the average of daily PM2.5 concentrations observed over some time period of exposure (e.g.,
one year average), only if there are enough daily measurements (e.g., 75% of intended
samples) to represent the long-term exposure within the time period of interest (Miller et al.,
2007). All average concentrations not satisfying the data completeness criteria, although
potentially informative for understanding the spatiotemporal process of air pollution
exposures, are simply discarded from the subsequent analysis, due to the lack of appropriate
methodological framework to handle the uncertainty associated with yearly averages
calculated from an incomplete set of daily concentrations.

The overall goal of this study is, therefore, to estimate the national-scale long-term PM2.5
concentration that addresses all of the aforementioned issues. We achieve this goal by
estimating PM2.5 yearly average concentrations over the contiguous U.S. using a moving-
window (MW) implementation of a geostatistical estimation framework based on the
Bayesian Maximum Entropy (BME) method. The MW approach provides an efficient
framework to account for the non-stationarity of spatial processes (Haas, 1990), while the
BME method (Christakos, 2000; Yu et al., 2009) processes the uncertainty of the PM2.5
yearly average concentration due to the incompleteness of PM2.5 daily concentrations. In
order to evaluate model performance, a cross-validation analysis was conducted to compare
the domain wide stationary kriging (SK) method with the proposed moving-window kriging
(MWK) and moving-window BME (MWBME) methods.

Materials and Methods
PM2.5 Monitoring Data

PM2.5 daily concentrations measured from 2002 to 2003 were obtained from the Air Quality
System (AQS) maintained by the U.S. Environmental Protection Agency (EPA) (US EPA,
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2009). The daily concentrations exceeding the federal maximum sample value (500μg/m3)
were regarded as outliers and removed from the data (US EPA, 2008). If multiple monitors
were operated at the same monitoring site on the same day, the resulting co-located daily
concentrations were averaged. In total, 297,297 daily concentrations were observed at 1177
monitoring sites during the period. The mean (±SD) of the daily concentrations is
12.44±8.29 μg/m3. The daily concentrations were then used to construct the PM2.5 yearly
average concentration in 2003.

The Bayesian Maximum Entropy Method
The BME method introduced by Christakos (Christakos, 1990; Christakos, 2000) provides a
mathematically rigorous framework that integrates a variety of available knowledge bases
with data having varying levels of epistemic uncertainty. These data are categorized in hard
data corresponding to exact measurements, and soft data having an uncertainty characterized
by a probability density function (PDF) of any type. A full description of the BME method
can be found elsewhere (Christakos et al., 2001; Serre and Christakos, 1999). In brief the
BME method can be viewed as a two-stage knowledge processing procedure: At the prior
stage, maximum entropy theory is used to process the general knowledge base at hand and
produce a prior PDF describing the spatial process. Then at the posterior stage, an
operational Bayesian conditionalization rule is used to update this prior PDF with respect to
the site specific hard and soft data available, which produces a BME posterior PDF
describing the value of the spatial process at any estimation point of interest.

Let Z(s) be a spatial random field (SRF) representing the PM2.5 yearly average
concentration at some spatial location s. We will denote as Zk the random variable
representing the SRF at estimation point sk (i.e., Zk=Z(sk)), and similarly Zh and Zs are
vectors of random variables representing the SRF at the hard data points {sh} and the soft
data points {ss}, respectively. By convention, lower case variables (e.g. zh, zs, or zk) will
denote realizations or deterministic values taken by their corresponding upper case random
variables (e.g. Zh, Zs or Zk) In the case that the general knowledge base G about the SRF
Z(s) consists in its mean trend mz(s)=E[Z(s)] and covariance function cZ(s,s’), then the BME
fundamental equation reduces to

where A is a normalization constant, the prior PDF fG obtained from entropy maximization
on G={mZ(.),cZ(.)} is multivariate normal with mean and covariance given by mZ(.) and
cZ(.), respectively, the vector of deterministic values zh corresponds to the hard data, and fS
is a PDF characterizing the epistemic uncertainty of the soft data. The BME posterior PDF is
denoted with a subscript K=G⋃S representing the union of the general knowledge
G={mZ(.),cZ(.)} and site specific knowledge S={zh, fS(.)}. The expected value of the BME
posterior PDF provides an estimate of the PM2.5 yearly average concentration at the
estimation point, and the corresponding BME posterior standard deviation provides a useful
characterization of the associated estimation uncertainty. In the limiting case where only
hard data are included in the estimation process, the BME estimator is simply the kriging
estimator. This makes BME a consistent extension of the widely used kriging estimator
when one needs to integrate non-Gaussian soft data, as is the case in this work.

The PM2.5 yearly average concentration data
We defined the PM2.5 yearly average concentration at any date t in 2003 as the average of
the PM2.5 daily concentrations over the 365 days preceding date t. However, an exact PM2.5
yearly average concentration is rarely obtained, since at most of the monitoring sites the
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PM2.5 daily concentrations were collected on a three-day cycle during the study period. In
most epidemiological studies the PM2.5 yearly average concentrations satisfying some
acceptable data completeness criterion are treated as the exact yearly average concentration.
In this study, we used the completeness criterion that there must be more than 75% of
intended measurements in each quarters of the year prior to t. If the completeness criterion
was satisfied, the hard datum for the PM2.5 yearly average concentration at monitoring site i
and date t is simply defined as the mean of the daily concentrations observed over one year
preceding date t.

If the completeness criterion was not met, then the PM2.5 yearly average concentration was
treated as a soft data if there were at least one measurement in each quarter. In the BME
method, the epistemic uncertainty associated with incomplete PM2.5 daily concentrations is
characterized by a PDF. In this work, we assume that an adequate approximation for the
PDF at monitoring station i and date t is a normal distribution with the mean μs,i and the
standard deviation σs,i truncated below zero, since concentrations cannot be negative. The
mean μs,i is simply set to the sample mean of the ni daily concentrations measured at station
i over one year preceding date t. The epistemic uncertainty associated with this soft datum
arises from the difference between the true mean of all 365 daily concentrations, and the
sample mean μs,i calculated from an incomplete sample of size ni selected from a finite
population of size 365. Therefore, a reasonable value for the standard deviation σs,i is

where the first term of this equation is the standard deviation of the sample mean and the
second term is a finite population correction factor to account for the finite population size.

The Moving-window Approach
The MW approach described by Haas (1990) accounts for the non-stationarity of a spatial
process over a large geographic domain by localizing the estimation procedure to small
estimation neighborhoods where the spatial process can be assumed stationary within the
neighborhood. Our implementation of the MW approach consists in calculating a
semivariogram at each estimation point of interest using only the data points within the
spatial neighborhood around that estimation point. Then the geostatistical analysis for that
estimation point is conducted using the location-specific semivariogram and the data within
the neighborhood.

The size of the window has to be small enough to assure stationarity of the spatial process
within the window, but also large enough so that it contains enough data points to model a
reliable semivariogram. In this study, we used a window containing 50 monitoring sites,
based on the minimum sample size expected to produce a stable sample semivariogram
estimate (Olea, 2006). The sample semivariogram was then used to fit a negative definite
semivariogram model using an automated weighted least square procedure. In this study, the
following three parametric semivariogram models were tested: (1) exponential, (2)
Gaussian, and (3) spherical model.

Cross-validation analysis and Estimation Maps
In order to evaluate model performance of the SK, MWK and MWBME methods, a leave-
one-out cross-validation analysis was conducted. We randomly selected 30 dates in 2003.
We removed one at a time each observed yearly average concentration that met the
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completeness criterion for these 30 dates (n=24544), and re-estimated that value based on its
neighboring hard and soft data. The differences between observed and re-estimated values
are the n cross validation errors, from which cross validation statistics can be calculated. The
SK method assumes nationwide stationarity and therefore uses, for a given estimation date t,
a single semivariogram throughout the U.S. On the contrary, in MWK and MWBME the
semivariogram is calculated at each estimation point using only the data within the
corresponding estimation window. In SK and MWK, only the hard data points were
considered for the estimation, whereas in MWBME both hard and soft data were used for
the estimation.

Model performance was evaluated using the following cross-validation statistics: mean
square estimation error (MSE), mean estimation error (ME), mean standardized estimation
error (MS), root mean square standardized error (RMSS), and mean of the root of estimation
error variance (MR). The estimation error is the difference between estimated and observed
values, and the standardized estimation error is equal to the estimation error divided by the
square root of the estimation error variance. The MSE, ME, and MS should ideally be as
close to zero as possible. The RMSS measures the standard deviation of standardized errors
and should ideally be equal to one. The MR should ideally be as small as possible. In
addition, the Pearson correlation coefficient and Spearman’s rank correlation were
calculated to evaluate the linear correlation and rank order of the estimated and observed
yearly concentrations. Furthermore, in order to visually compare the estimation result, maps
of the estimated PM2.5 yearly average concentration were produced over California based on
the three aforementioned methods.

Simulation
In this study only a small fraction (~18.3%) of PM2.5 yearly average concentrations did not
meet the completeness criterion over the study period which leads to a small ratio of soft to
hard data points. In order to explore the performance of the aforementioned estimation
methods under the situation where there are more frequent missing data, four simulated
PM2.5 daily concentration data sets were constructed by randomly removing 5%, 10%, 15%,
and 20 % of daily concentrations from the original data set. Using these realistic simulated
data sets, the hard and soft data for PM2.5 yearly concentrations were re-constructed, which
resulted in a substantially larger fraction of soft to hard data points. Finally, these simulated
yearly average concentrations were used to re-run the cross-validation analysis to evaluate
model performance.

All analyses were conducted using Matlab R2010a (MathWorks Inc., Natick, MA, USA)
and BMElib version 2.0b (Christakos et al., 2001; Serre and Christakos, 1999).

Result and Discussion
The PM2.5 yearly average concentrations on December 31, 2003, which uses all the PM2.5
daily measurements observed during 2003, are shown in Figure 1 (a). The yearly average
concentrations that met the completeness criterion are shown with circles. They were treated
as exact measurements (hard data) in the estimation process. By contrast, those shown with
triangles did not meet the completeness criterion and were discarded by the conventional SK
and MWK methods as unreliable yearly average concentrations. In the MWBME analysis,
however, those were treated as soft data and used in the estimation process. Figure 1 (b)
shows time series of the PM2.5 daily and corresponding yearly average concentrations in
2003 at the monitoring site 06-079-2002. The solid line shows the PM2.5 yearly average
concentrations that met the completeness criterion, whereas the dotted lines show the yearly
average concentration which did not meet the criterion and the corresponding 95% upper
and lower confidence bounds. At this monitoring site, the PM2.5 yearly average
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concentrations were treated as soft data from January to October because of the missing data
in September and October 2002.

There are obvious geographical patterns in the spatial distribution of PM2.5 yearly average
concentration across the contiguous U.S in 2003. Figure 1 (a) reveals that PM2.5 yearly
average concentrations were generally high in the Midwestern U.S and low in the Central
U.S. In addition, the concentration changed drastically over California, where high
concentrations were confined in Los Angeles and the Central Valley region. This result
indicates that the variability of the concentration is expected to be higher in California than
in the Midwestern and Central U.S. and consequently that assuming stationarity across the
entire contiguous U.S. is inappropriate. The spatial distribution of the semivariogram
parameters calculated in the MW methods can be used to evaluate the geographical change
in spatial variability (See Supplemental Material, p. 2). Analysis of these plots in this work
indicated that there are clear variation in these parameters (See Supplemental Material,
Figure 1), indicating that the total sill is relatively high in California, whereas the value is
low in the Midwestern and Central U.S., which is expected from Figure 1 (a). The
semivariogram range is short in the Midwestern U.S. and California, whereas the range is
generally long in the Central U.S. These results confirm the non-stationarity of the spatial
variability of concentrations, and imply that the MW approach is an appropriate choice
when estimating the PM2.5 yearly average concentration over the contiguous U.S.

Table 1 shows the cross-validation statistics obtained by SK, MWK, and MWBME based on
the exponential semivariogram model. MWK reduced the MSE by 17.8% relative to the SK.
This indicates that using the MW approach to account for the non-stationarity of spatial
variability leads to a 17.8% improvement in estimation performance over a method that
assumes a country wide semivariogram. The MWBME further reduced the MSE by 8.4%
relative to MWK, which indicates that there was a cumulative improvement in estimation
performance when using the MW approach and accounting for the soft data. The ME and
MS statistics were slightly higher for MWK than for SK and MWBME, but generally all
values were close to 0, indicating that all estimation methods are reasonably unbiased and
therefore bias played little role in model performance. The RMSS were generally slightly
greater than one, indicating that each method reports an estimation error standard deviation
that is bias low. Similarly to the MSE, the MR for MWBME is the smallest. Indeed,
MWBME reduced the MR by 10% relative to that of SK. The Pearson’s correlation and
Spearman’s rank correlation obtained with MWBME were also the highest among all
methods. Hence overall, MWBME performs the best among all three methods. The cross-
validation statistics based on the other semivariogram models are listed in Supplemental
Material (See Supplemental Material, Table 1 and 2). In terms of MSE, the exponential
semivariogram model outperformed the other two semivariogram models.

In order to furthermore understand which method produced better estimation error, we show
in Figure 2 the spatial distribution of the absolute value of the standardized estimation errors
on December 31, 2003 in the contiguous U.S. and in California. These standardized errors
should be normally distributed across the U.S. However, the maps obtained with SK
(Figures 2a and 2b) show clear spatial clustering, with for example high standardized errors
seen in California. On the other hand MWBME results in standardized errors with reduced
spatial clustering (Figures 2c and 2d). Thus, by accounting for the geographical changes in
spatial variability, the MW approach results in a better assessment of the uncertainty
associated with the estimation of PM2.5 yearly average concentrations.

Figure 3 shows maps of the estimated PM2.5 yearly average concentration in California on
December 31st, 2003 obtained by (a) SK, (b) MWK, and (c) MWBME. The circles show
hard data points, whereas triangles indicate soft data points used in MWBME. The estimated
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concentration map created by SK uses a nationwide semivariogram model with a range of
13,117Km. On the other hand MWK and MWBME use ranges that vary between 177Km to
1344Km across California (See Supplemental Material, Figure 1), which better captures the
high spatial variability of PM2.5 in California. As a result SK produces map displaying a
smooth spatial distribution of concentration across California, while the MW approach
produce maps with more spatial variability. These maps illustrate how the MW approach
allows to capture strong spatial gradients of the concentration in areas of the country that are
characterized by high local-scale spatial variability. Finally, the MWBME map describes
further spatial details by accounting for the additional information provided by the soft data
shown as triangles. In addition, Supplemental Material, Figure 3 shows the distribution of
the estimation error variance over the U.S.

MSEs obtained with the MWK and MWBME methods using the true and simulated datasets
are shown in Table2. The fraction of soft data points increased from 18.3% (True Data) to
82.0%, when 20% of the daily measurements were removed (Simulation Data 4). The MSE
obtained with MWK, which relied only on hard data, increased as the fraction of the soft
data increased, while that obtained with MWBME, which processes both hard and soft data,
remained almost the same. Thus, the relative improvement in MSE obtained by MWBME
over MWK increases as the fraction of the soft data increased. Even though the relative
improvement was relatively small (8.4%) for the true data, the improvement increased up to
43.7% as the number of missing daily concentrations increased. The completeness of
intended samples at a given station varies because of intermittent malfunctioning or because
the station is only in operation for part of the year. We find that between 1999 and 2007 the
average completeness of intended samples varies from 68.0% to 88.7% (See Supplemental
Material, Table 3). This range of completeness matches that of our simulated datasets (Table
2). Thus, using the MWBME method is expected to improve the mapping accuracy for
PM2.5 in the US from 1999 to 2007, as well as for other air pollutants or other countries with
comparable or lower completeness of intended samples.

In this study we used a moving window calculated so that it encompasses 50 monitoring
stations, which is the smallest number of stations needed to obtain a stable sample
semivariogram. As a result the radius of the moving window ranged from 163km where the
density of the monitoring stations was highest, to 1118km where the density was lowest (see
Supplemental Material, p. 8).

Several other approaches have been used recently to estimate the long-term concentration
over large geographic domains including the land use regression (LUR) approach (Hystad et
al., 2011) and Geographic Information System (GIS)-based spatial smoothing (Hart et al.,
2009, Yanosky et al., 2009). These approaches use land use covariates, such as land cover,
road type, traffic count, and meteorological data to capture the effect of the pollutant sources
and to detect small-scale variation in concentration. Although obtaining such land use
covariate over large geographic domain is challenging, their inclusion in the modeling
approach might solve much of the non stationarity of the problem. This is a limitation of this
study which should be explored in future works. However, like the conventional kriging
approach, these land use methods rely only on the average concentrations satisfying a
completeness criterion. Therefore, the estimation quality of these approaches is expected to
deteriorate as the completeness of the intended samples decreases.

To the best of our knowledge, this work is amongst the first U.S. nationwide studies of
PM2.5 yearly average concentrations that present an estimation method that both (a)
accounts for the non-stationarity of the spatial variability of PM2.5, and (b) incorporate
PM2.5 yearly average concentrations not meeting the completeness criterion. Our cross-
validation analysis indicates that the MWBME method presented here performed better than
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more conventional approaches, and also minimized the exposure misclassification for our
cross validation dataset. As can be seen from Table 1, MWBME better preserved exposure
rank order. MWBME also unraveled exposure gradients that are not as discernable using
other methods. This is illustrated in Figure 3 (see also the movies of Supplementary
Material) where the MWBME map reveals gradients in long-term PM2.5 concentrations that
are not visible in the map produced by the conventional SK method. In conclusion,
epidemiological studies investigating the health effect of PM2.5 yearly average
concentrations over a large spatial domain should account for the non-stationarity of the
environmental processes, and should use a methodological framework that can incorporate
yearly concentrations that fail a completeness criterion, rather than entirely discarding these
data. In this work we demonstrate that the MWBME method, based on a moving-window
implementation of the BME framework, addresses these issues.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure1.
(a) PM2.5 yearly average concentration (μg/m3) on December 31, 2003 and (b) time series
of PM2.5 daily and yearly average concentrations at monitoring site 06-079-2002.
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Figure2.
Absolute value of the standardized estimation error in the contiguous US (right) and in
California (left) on December 31st, 2003 obtained by the SK ((a) and (b)), and the MWBME
((c) and (d)) estimation methods.
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Figure3.
Maps of the estimated PM2.5 yearly average concentrations (μg/m3) in California on
December 31st, 2003 obtained with (a) SK, (b) MWK, and (c) MWBME.
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Table 1

Cross-validation statistics obtained with the SK, MWK, and MWBME estimation methods based on an
exponential semivariogram model (Size of validation set: n = 24544)

Method SK MWK MWBME

MSE ((μg/m3)2) 2.691 2.212 2.028

ME (μg/m3) 0.0990 0.129 0.108

MS 0.0513 0.0531 0.0429

RMSS 1.094 1.074 1.068

MR (μg/m3) 1.485 1.354 1.327

Pearson’s Corr. 0.864 0.890 0.900

Spearman’s Rank Corr. 0.872 0.890 0.899
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Table 2

MSE obtained with the MWK and MWBME methods using the true and simulated datasets

MWK MWBME Compa Soft Datab Improvementc

True Data 2.21 2.03 84.5 18.3 8.4

Simulated Data 1 (5%) 2.34 2.04 80.6 25.9 12.8

Simulated Data 2 (10%) 2.64 2.09 76.6 39.9 20.9

Simulated Data 3 (15%) 3.13 2.16 72.5 62.0 31.2

Simulated Data 4 (20%) 3.97 2.24 68.6 82.0 43.7

a
Average of a completeness of intended samples (%)

b
Fraction of the soft data (%)

c
Relative improvement (%) in MSE obtained by MWBME over MWK
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