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Abstract

Microalgae-based biofuels are promising sources of alternative energy, but improvements throughout the pro-
duction process are required to establish them as economically feasible. One of the most influential improve-
ments would be a significant increase in lipid yields, which could be achieved by altering the regulation of lipid 
biosynthesis and accumulation. Chlamydomonas reinhardtii accumulates oil (triacylglycerols, TAG) in response 
to nitrogen (N) deprivation. Although a few important regulatory genes have been identified that are involved in 
controlling this process, a global understanding of the larger regulatory network has not been developed. In order 
to uncover this network in this species, a combined omics (transcriptomic, proteomic and metabolomic) analy-
sis was applied to cells grown in a time course experiment after a shift from N-replete to N-depleted conditions. 
Changes in transcript and protein levels of 414 predicted transcription factors (TFs) and transcriptional regulators 
(TRs) were monitored relative to other genes. The TF and TR genes were thus classified by two separate meas-
ures: up-regulated versus down-regulated and early response versus late response relative to two phases of polar 
lipid synthesis (before and after TAG biosynthesis initiation). Lipidomic and primary metabolite profiling generated 
compound accumulation levels that were integrated with the transcript dataset and TF profiling to produce a tran-
scriptional regulatory network. Evaluation of this proposed regulatory network led to the identification of several 
regulatory hubs that control many aspects of cellular metabolism, from N assimilation and metabolism, to central 
metabolism, photosynthesis and lipid metabolism.
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Introduction

Microalgae hold great potential as feed stocks for renew-
able biofuel production and have attracted attention for their 
ability to biosynthesize large amounts of high-value hydro-
carbons while harnessing only sunlight, carbon dioxide and 
wastewater (Georgianna and Mayfield, 2012). Nevertheless, 
far more research is needed before algae become commer-
cially viable. Successful rational metabolic engineering of 
microalgae requires a comprehensive understanding of 
the regulation of metabolic pathways in the context of the 
whole cell rather than at the single pathway level (Capell 
and Christou, 2004). This includes a full understanding of 
regulatory proteins such as transcription factors (TFs) and 
transcriptional regulators (TRs), as well as microRNAs, and 
how they respond to external stimuli and then control down-
stream processes (Latchman, 1997).

Chlamydomonas reinhardtii (Chlamydomonas) is one 
of the best-studied eukaryotic microalgae, with a known 
genome sequence and extensive physiological data available. 
It has been used to investigate a wide range of complex bio-
logical processes, including photosynthesis, biomass accumu-
lation, starch metabolism, carbon concentration mechanisms 
(CCMs) and response to nutrient stress (Ball et  al., 1990; 
Rochaix, 2002; Moellering and Benning, 2010). Nitrogen 
(N) starvation is among the most stressful conditions that 
can affect cellular physiology and leads to an increase of 
neutral lipids (triacylglycerols, TAGs) within a few hours in 
Chlamydomonas (Fan et  al., 2012). Although some genes 
have been identified to be involved in this response, the under-
lying sensing and the downstream regulatory mechanisms 
have not been clearly defined.

With the completion of the Chlamydomonas genome, the 
entire set of genes encoding members of known TF and TR 
families can be identified and characterized. However, only 
a few TFs and TRs have been identified in Chlamydomonas 
as responding to nutrient stresses. One example is PSR1, a 
member of the G2-like TF family, involved in regulating the 
acclimation responses of Chlamydomonas to phosphorus (P) 
deprivation. Its transcript increases significantly when wild-
type cells are exposed to P starvation for 8 h (Wykoff et al., 
1999). Other examples include the TRs CCM1 (CIA5) and 
LCR1 (Low CO2 Stress Response 1, members of the C2H2-
type zinc-finger and MYB-related families, respectively, that 
are known to regulate CCM activity (Fukuzawa et al., 2001; 
Miura et al., 2004; Yoshioka et al., 2004). Finally, NRR1, a 
SQUAMOSA promoter binding domain protein, is the only 
TF reported to date to be associated with N starvation and 
lipid accumulation. NRR1 was identified based on its expres-
sion pattern relative to a type-1 diacylglycerol acyltransferase 
(DGTT1) during N starvation (Boyle et  al., 2012). More 
recently and during the preparation of this manuscript, 
Schmollinger et  al. (2014) identified two basic helix-loop-
helix type transcription factors that were associated with N 
assimilation under N depleted conditions.

Based on this background, we hypothesized that a cor-
relation network analysis approach (Nikiforova et al., 2005; 
Allen et  al., 2010) could be used to identify proteins that 

may act in important regulatory roles to respond to external 
stimuli, such as N deprivation, and then control downstream 
metabolic outcomes, such as lipid accumulation. Indeed, such 
an approach, if  feasible, should identify the known regulators 
of N metabolism, such as NRR1. In this investigation, we 
analysed a correlation network generated using a time course 
of Chlamydomonas grown under N deprivation, with a focus 
on the transition in metabolism that occurs when the cells 
move from the before TAG synthesis (BTS) phase to the after 
TAG synthesis initiation (ATS) phase. More importantly, our 
objective was not to construct a sparse network but to iden-
tify all (or as close to that as possible) key regulators that col-
laborate to tune lipid synthesis under N stress conditions. To 
achieve this, we compared the expression of all 414 TFs and 
TRs predicted in the Chlamydomonas genome to metabolite 
levels and protein and transcript levels for metabolic enzymes 
associated with the important biological processes that are 
active during the two major phases (BTS and ATS) of the 
response to N deprivation and that ultimately lead to neutral 
lipid accumulation. Importantly, our analysis matched the 
dynamic metabolic changes that occur during the phase tran-
sition into their own sub-networks without any prior knowl-
edge (i.e., N metabolism change).

Materials and methods

Strain, growth conditions, and extraction and analysis of 
transcripts, proteins and primary metabolites
The cell-wall deficient mutant of Chlamydomonas reinhardtii CC-400 
cw15 mt+ (called ‘cw15’ throughout) was used as the main cell line 
for this investigation. Cells were grown under standard mixotrophic 
conditions (Park et  al., 2015) under a time course where samples 
were collected at 0 (control), 0.5, 1, 2, 4, 6, 12, 24 and 48 h after 
transfer to medium lacking N to initiate N deprivation. Transcript, 
protein and primary metabolite levels were determined as previously 
described (Lee and Fiehn, 2008; Mortazavi et al., 2008; Harris, 2009; 
Alvarez et al., 2011; Wang et al., 2012; He et al., 2014; Juergens et al., 
2015; Park et al., 2015), as detailed in the Supplementary Materials 
and Methods at JXB online.

To investigate the function of Tab2 in Chlamydomonas during 
N deprivation, a comparison between the parental strain (CC-125) 
and the tab2 mutant (kindly provided from IBPC, France) was per-
formed using growth time courses either in the presence (N replete) 
or absence (N depleted) of N added to the medium [standard tris-
acetate-phosphate (TAP) medium, which included 7.5 mM NH4Cl 
and 17.5 mM acetate]. Both strains (tab2 and CC-125) were grown 
at 25°C in continuous light (70 μm photons m-2 s-1) in the presence 
of acetate in liquid cultures under shaking (150 rpm). For nitrogen 
starvation studies, exponential phase (4 × 106 cells ml-1) cultures were 
centrifuged at 1000 ×g for 5 min at room temperature, with cell pel-
lets kept and washed twice in TAP either with or without N. Pellets 
were then resuspended in medium without N and cells were grown 
under constant light with shaking. Samples for analysis were taken 
immediately after resuspension (time 0) or periodically during the 
growth time courses, and were pelleted as outlined above.

Proteome analysis for tab2 and wild type comparisons
For proteomic analysis, Chlamydomonas strains were harvested by 
centrifugation at 3 000 ×g for 5 min at 4°C. Proteins were extracted 
from 50−100 mg of cells as described previously (Wang et al., 2012) 
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and were quantified using the Qubit Protein Assay Kit (Invitrogen, 
Carlsbad, USA) according to the supplier’s protocol for the Qubit 
2.0 fluorometer (Invitrogen). From each sample, 100 µg was digested 
with trypsin and analysed by an Orbitrap Fusion Tribrid mass 
spectrometer (Thermo Scientific, Rockford, USA) coupled with 
an EASY-nLC (Thermo Scientific). The resulting proteomics data 
were processed and searched using SIEVE 2.1 (Thermo Scientific), 
and all searches were performed against the Chlamydomonas pro-
tein database from Phytozome v.  10.0 (http://phytozome.jgi.doe.
gov/pz/portal.html) and NCBI chloroplast (http://www.ncbi.nlm.
nih.gov/nuccore/BK000554) and mitochondrion (http://www.ncbi.
nlm.nih.gov/nuccore/NC_001638.1) databases (for more details see 
Supplementary Materials and Methods).

Lipidomic analysis
Lipidomic analyses for the network experiments were performed on 
an LTQ linear ion trap FT-ICR mass spectrometer (Thermo, San 
Jose, CA) equipped with an Advion Triversa Nano Mate (Advion, 
Ithaca, NY). The Nano Mate was operated in positive and negative 
mode. The resulting Kendrick mass sorted peak list with its corre-
sponding elemental composition was cross-referenced to formulae 
found within the structure databases available in the Lipid Maps 
database (Nature Lipidomic Gateway) and the OxPLDB (http://
fiehnlab.ucdavis.edu/staff/kind/Metabolomics/LipidAnalysis). 
The most abundant ions of the non-oxidized glycerol lipids from 
each Kendrick series were verified by tandem mass spectrometry. 
Oxidized glycerol lipids were putatively identified by exact mass.

Correlation analysis and hub definition
Pearson correlations were determined using the statistical software 
package R. The transcript, and metabolite abundances, collected at 
the different time points during N deprivation, with duplicates at 
least of each, were used to calculate the time-lagged correlation val-
ues for pairwise comparisons between metabolites, transcripts and 
transcripts for TFs/TRs (Walther et al., 2010; Redestig and Costa, 
2011) as detailed in the Supplementary Materials and Methods. For 
this analysis, the fold change was calculated for TFs/TRs, metabo-
lites and metabolic genes/proteins specific for each biological process 
relative to the time zero (control condition). The criteria for cor-
relation determination were correlation values of ≥0.9 or ≤−0.9 and 
P-values ≤0.05. Graphical visualization of the correlation network 
was performed using Cytoscape 3.0 (http://www.cytoscape.org/). 
The data used to build the correlation network were imported into 
the Cytoscape program as an EXCEL file containing the correlation 
values as well as a description of the different nodes: TFs/TRs (cir-
cles), metabolic genes/proteins (squares) and metabolites (triangles). 
Each pair of nodes, TF versus metabolic gene or TF versus metabo-
lite with a correlation coefficient ≥0.9 was connected by a line indi-
cating a positive (+1) or negative (-1) correlation and was retained 
in the network. All network motifs of the same type were merged to 
construct a motif-specific subnetwork [for example, all SIMs (sin-
gle input motifs) were merged to form the SIM subnetwork] and 
then the subnetwork of each biological process was visualized using 
the Cytoscape software. The hub nodes were defined as the top 5% 
highest-degree nodes of the TFs in both the subnetwork and whole 
network.

Results and discussion

Expression of TF and TR genes in Chlamydomonas in 
response to N-depletion

Using the pipeline and basic rules for identification and 
classification of transcription factors and transcriptional 
regulators adopted by PlnTFDB 3.0 (http://plntfdb.bio.

uni-potsdam.de/v3.0/), we identified in our Chlamydomonas 
transcriptional profiling data a total of 241 putative TFs that 
belong to 37 different protein families and 173 putative TRs 
that are members of 21 families based on the presence or 
absence of one or more characteristic domains (normally sig-
nature DNA-binding domains, see Supplementary Dataset 
S1). The largest TF and TR families in Chlamydomonas 
were the GCN5-related-N-acetyltransferase (GNAT) and 
TRAF (Tumor Necrosis Factor receptor-associated factor) 
domain families, respectively, with 36 and 37 members and 
which accounted for 8.6 and 8.9% of the total number of TF 
and TR genes detected. The GNAT domain family uses acyl-
CoAs to acylate their cognate substrates (Vetting et al., 2005). 
The TRAF domain family is a relatively uncommon gene 
family in animal systems, with just one member in C. elegans, 
two in Drosophila and just six in mammals. Why they are so 
expanded in the unicellular alga Chlamydomonas is unclear 
at present.

Most transcription factors did not exceed a 2-fold change 
in transcript abundance across the N-deprivation time course 
(Supplementary Fig. S1A). Of those that did change signifi-
cantly in expression (defined conservatively by us as greater 
than 2-fold change in at least one of the time points relative 
to control), more TFs and TRs were up-regulated rather than 
down-regulated after N-depletion (Supplementary Figs S2, 
S3; and see comparison of P-values and false discovery rate 
[FDR] versus fold change in Supplementary Dataset S1 for all 
genes used in this analysis). In contrast to the transcriptional 
profiling data, our proteomics data identified a much smaller 
set (11.2%) of TFs and TRs as being differentially expressed. 
This difference was due to the fact that these proteins are 
typically present at very low copy number per cell since they 
act as regulatory elements and do not need to be expressed 
at high levels themselves, as discussed in (Greenbaum et al., 
2002). These proteins can be easily masked by highly abun-
dant proteins, making them often difficult to detect in prot-
eomics investigations. That we identified 28 TFs and TRs in 
the proteomics data (Supplementary Dataset S1) is indicative 
of the power of the Orbitrap Fusion Tribrid mass spectrome-
ter. Gene ontology analysis indicated that most TFs and TRs 
in Chlamydomonas are associated with metabolic processes 
(Supplementary Fig. S1B).

Establishment of correlation networks to identify 
transcriptional regulatory candidates

To generate the topology of potential transcriptional coex-
pression networks that are likely to contain genes involved 
in metabolic regulation and control of TAG accumulation in 
Chlamydomonas during N deprivation (Fig. 1), we exhaus-
tively analysed co-responses between all TFs and TRs in the 
genome and the set of 82 primary metabolites that accumu-
lated differentially under these conditions (Supplementary 
Dataset S1), using an established approach based on time-lag 
Pearson correlation analysis (Walther et  al., 2010; Redestig 
and Costa, 2011). To ensure maximum specificity and effi-
ciency during this analysis, stringent criteria were used for cut-
off  values: R-value >0.9 and P-value <0.05 (Supplementary 
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Dataset S1). Before data were integrated in this analysis, a 
Shapiro-Wilk’s test (P>0.05) (Shapiro and Wilk, 1965) was 
applied to check the normality of the time series data. A vis-
ual inspection of the resulting histograms, normal Q-Q plots 
and box plots showed that both the transcript and metabo-
lite data were approximately normally distributed, with a 
skewness of 0.906, 1.232, 1.639, 1.779, 0.662, −0.127 and 
0.406 (SE=0.086) and a kurtosis of −0.947, 0.401, −1.482, 
−1.730, 1.374, −0.313 and 0.790 (SE=0.172) for the corre-
sponding time series (0.5, 1, 2, 4, 6, 12 and 24 h) of transcript 
data, respectively, and a skeweness of −1.46, −0.482, 1.317, 
2.005, −0.327, 0.777 and 0.157 (SE=0.369) and a kurtosis 
of −0.051, 1.128, −0.441, 1.179, −1.479, −1.748 and −0.022 
(SE=0.724) for the time series of metabolite data, respec-
tively, (Supplementary Fig. S4) (Doane and Seward, 2011). 

All of these z-values are within ±1.96, indicating that both 
transcript and metabolite data are not significantly skewed 
but are kurtotic, and that the datasets therefore do not differ 
significantly from normality. Because of that, we concluded 
that we could use Pearson correlation coefficients to con-
struct the correlation networks described in this study. The 
metabolite data used for this correlation analysis were for 32 
organic acids, 18 fatty acids, 20 amino acids and 12 sugars. 
Those metabolites that showed differential accumulation over 
the time course, out of a few hundred compounds that were 
measured (most compounds were not differentially accumu-
lated), led to the identification of 158 TF genes that were 
highly correlated with 58 metabolites.

Based on the annotated Phytozome 10 database (Goodstein 
et  al., 2012), 10 sub-networks were generated containing 

2.00.0-2.0 2.01.00.5

TAZ3
NRR1
Tab2
bHLH9
bHLH3
bHLH6
GNAT20
GNAT1
RWP1
HB.2
RWP10
TRAF8
PHD7
VARL12

GNAT7
AP2 15-
MYB 13L
VARL9
GNAT11
GNAT36
GNAT32
mTERF3
PHD19

RWP12
SNF2 6-
MYB 5L
SET19
VARL3
FHA1
bZIP13
M 3YB
HMG4
C3H2
PHD6
PHD13
TAZ2
Orphans15
SNF2 4-
MADS2
HMG1
Jumonji3
bZIP2
GATA11
SET13
Sigma70 1-
MADS1
ARID1
BSD2
PHD17
SET16
Yb3
Whirly1
FHA6
HMG5

bZIP3

FHA10
CSD1
SBP8

FHA3
MBF1
SBP22
C3H14
TIG2
C3H9
bZIP14
C3H5
TUB1
MYB 1L
NF-X1
Orphans3

ProteomeTranscriptome

0

20

40

60

80

100

120

140

160

180

200 Amino acids
Calvin cycle
Chlorophyll
Lipids
Nitrogen
Photorespiration
OPPP
Photosynthesis
Starch
TCA cycle

N
um

be
r o

fT
F 

co
-r

eg
ul

at
ed

fo
r e

ac
h 

bi
ol

og
ic

al
 p

ro
ce

ss
es

TF families

TI
G

NF-X
1

Orph
an

s

MBF

DUFYB

MADS

SNF2

Ju
mon

ji

TU
B

mTERF

TRAF

AP2

SET

HM
G

CSDC3HMYB

bZ
IP

MYBL
GATASBP

HB

FH
A

TA
Z

bHLH
VARL

PHD
RW

P
GNAT

B

C

U
p-

re
gu

la
te

d

ot
he

r r
es

po
ns

e
la

te
 re

sp
on

se
ea

rly
 re

sp
on

se

D
ow

n-
re

gu
la

te
d

ot
he

r r
es

po
ns

e

late

early

BTS ATS
0h 1 2 244 6 120h 1 2 244 6 120.5

A

88

70

71

Correlation

414
regulators / 527

genes

Co
rre

lat
ion

41
4

re
gu

lat
or

s / 8
2

m
et

ab
oli

te
s

Identification:
regulatory hubs

Pr
ot

eo
m

e

Transcriptom
e

Metabolite profiling

Nitrogen deprivation (time points)
0 0.5 1 2 4 6 12 24

BTS ATS
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identify the correlation regulatory networks in Chlamydomonas reinhardtii cw15 grown under N deprivation stress and sampled using different ‘omic’ 
datasets obtained at multiple time points. (B) Distribution of TF and TR family members that displayed correlations with genes involved in different 
biological processes and that were differentially expressed in Chlamydomonas during N deprivation. Y-axis values indicate the number of genes from 
each TF and TR family (indicated on the X-axis) that were highly correlated from different biological processes, indicated by colour. Only those correlations 
that in absolute value were not smaller than 0.9 were used to generate this figure. See Supplementary Table S3 for details of the specific genes used 
to generate this graph. (C) Transcriptomic and proteomic profiling of the 70 TFs/TRs that were common to the two sets of correlation analysis, TFs/TRs 
versus metabolites and TFs/TRs versus genes. Heat maps show the expression level of transcripts and the accumulation of proteins for each identified 
TF/TR during the N deprivation time course. The transcript expression levels are presented as log base-2 fold change relative to time zero. The protein 
accumulation values are presented as a ratio relative to 1. The data are classified in two groups: ‘up-regulated’ (green) and ‘down-regulated’ (red). Each 
group was sub-classified into three sub-groups: ‘early response’, ‘late response’ and ‘unaltered’ based on pattern of expression relative to the onset of 
the accumulation of TAG. BTS (Before TAG Synthesis) corresponds to the time period 0.5–4 h for early responses and ATS (After TAG Synthesis initiation) 
corresponds to 6–24 h for later responses.

http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv217/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv217/-/DC1
http://jxb.oxfordjournals.org/lookup/suppl/doi:10.1093/jxb/erv217/-/DC1


Regulatory hubs in Chlamydomonas reinhardtii | 4555

genes involved in lipid metabolism (152 genes), the Calvin-
Benson-Bassham cycle (23 genes), N metabolism (67 genes), 
photosynthesis (85 genes), photorespiration (12 genes), the 
oxidative pentose phosphate pathway (OPPP, 13 genes), 
the citrate and glyoxylate cycles (15 genes), sucrose/starch 
metabolism (64 genes), amino acid metabolism (41 genes) 
and chlorophyll synthesis (55 genes) (see Supplementary 
Dataset S1). These were included in the correlation network 
analysis. Based on this analysis, 141 TF and TR genes belong-
ing to 30 gene families showed strong correlations with lipid 
metabolism and photosynthesis, suggesting that these latter 
two processes are highly susceptible to regulation and meta-
bolic readjustments during N deprivation (Fig. 1B). When we 
compared the two correlation networks (TFs versus metabo-
lites and TFs versus metabolism genes), we found that 70 TFs 
were in common, being highly correlated with the metabolites 
as well as their corresponding genes (Fig. 1C). The expression 
profiles of most of these common TFs could be divided into 
two major groups: 46 TF genes were up-regulated whereas 
16 TFs were down-regulated across the N deprivation time 
course. In addition, lipidomic analysis for the same set of 
cultures demonstrated that TAG accumulation was initiated 
between 4 and 6 h after N deprivation (Supplementary Fig. 
S5). Accordingly, the ‘down-regulated’ and ‘up-regulated’ 
groups could be further sub-classified as BTS and ATS, as 
defined above, using the 2-fold change (or P-value) as a cut 
off  value (Fig. 1C).

Association of transcription factors to specific 
biological processes during N deprivation

In order to identify TFs and TRs that are likely to be involved 
in the regulation of specific metabolic processes, we analysed 
three main components of the regulatory network: transcript 
levels for TF genes, transcript levels for metabolic enzymes, 
and metabolite levels. As a result, we were able to identify 
many interesting correlations that suggest how specific TF 
genes are involved in regulating important metabolic pro-
cesses in Chlamydomonas that are associated with the tran-
sition to lipid accumulation or to the direct response to N 
deprivation. Each general area of metabolism will be dis-
cussed in turn.

Nitrogen metabolism
As mentioned in the Introduction, NRR1 (Cre16.g673250) is 
an N responsive regulatory protein. It is a member of the SBP 
family and increases (Boyle et al., 2012) in expression along 
with an ammonium transporter, AMT1D, during N starva-
tion. In agreement with those findings, our N metabolism 
correlation sub-network (Fig. 2A) showed that NRR1 was not 
only closely co-expressed with ammonium transporter genes 
AMT5, AMT1-2 and AMI1, but also with several N uptake 
genes, e.g. NIR1, thus supporting the hypothesis that NRR1 
is a ‘master’ transcriptional regulator required for reprogram-
ming gene expression of N metabolism during N deprivation, 
as suggested by (Schmollinger et al., 2014). Interestingly, we 
also noticed that this regulator was highly correlated with 
NAR1-2, a formate nitrite transporter gene demonstrated 

to encode a nitrite and bicarbonate transporter in Xenopus 
oocytes that responds to CCM1, which is the central regu-
latory gene for carbon assimilation (Mariscal et  al., 2006). 
Further studies are needed to demonstrate the role of NRR1 
in integrating C and N metabolism during N deprivation.

A second TF associated with N metabolism in our anal-
ysis was TAZ3 (Cre03.g212977), which displayed the high-
est change in expression (>5-fold change) (Fig.  1C and 
Supplementary Dataset S1) and the earliest response to N 
deficiency compared to all other potential regulatory genes. 
TAZ3 had a similar expression profile to NRR1 (although 
increasing in expression prior to NRR1) and these two genes 
appear to be co-regulated within the first 30 min after the shift 
to N-deprived conditions, suggesting that an upstream regu-
latory protein controls these genes. Alternatively, it is possible 
that TAZ3 plays a role in regulating NRR1. Future experiments 
to determine the epistatic relationship of these genes will 
answer this question.

In Chlamydomonas, the RWP-RK family is involved in the 
regulation of genes in response to N status (Camargo et al., 
2007; Lin and Goodenough, 2007). NIT2, an RWP-RK pro-
tein, is a positively acting regulator of the nitrate assimila-
tion pathway and its transcript levels increased 6-fold after 
48 h of N deprivation (Miller et  al., 2010). In our study, 
two RWP family members, RWP1 (Cre10.g453500) and 
RWP10 (Cre03.g149350), responded early to N starva-
tion (by 2 h) (Supplementary Dataset S1). Their transcripts 
increased across the time course up to >3-fold and were cor-
related with the expression of glutamine synthetase (GS) and 
NADH-dependent glutamate synthase (NADH-GS). As seen 
in Fig. 2, RWP10 was also highly correlated with a molyb-
dopterin biosynthesis enzyme (MoaE1, Cre10.g451400). 
In plants, molybdenum cofactors are important for nitrate 
assimilation and purine catabolism. A  mutation in molyb-
denum cofactor biosynthesis leads to the combined loss of 
nitrate reductase activity and assimilation of inorganic N 
(Mendel and Hänsch, 2002). This indicates that RWP10 
may regulate molybdopterin activity for the assimilation 
of nitrate early in response to N deprivation. On the other 
hand, RWP1 was positively correlated with two periplasmic 
L-amino acid oxidases, LAO1 and LAO2 (Fig.  2B). These 
enzymes catalyse the deamination of all L-amino acids and 
participate in the assimilation of extracellular amino acids. 
While no external amino acids were added in our experiment, 
RWP1 may be induced as a general response to N depletion 
in case such compounds may be available in the environment. 
In addition, members of the bHLH and GNAT TF families 
(bHLH3, bHLH6 and GNAT20) were coexpressed with the 
N-metabolism genes during the first 4 h (Fig.  2A). Taken 
together, these data indicate that at least five TF/TR families 
(SBP, TAZ, bHLH, GNAT and RWP-RK) may be involved 
in regulating genes required for assimilation and transport 
of any inorganic N source (ammonium, nitrite and nitrate) 
available during the early phase, as well as the incorporation 
of ammonium into carbon skeletons via the glutamine syn-
thetase/glutamate synthase (GS/GOGAT) cycle.

Once TAG had begun to accumulate within the cells, FHA10, 
CSD1 and SBP8 transcript levels were down-regulated and 
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negatively correlated with xanthine/uracil permeases (XUV1 
and XUV6), genes involved in the purine degradation path-
way (Fig. 2). Chlamydomonas cells use purines as a source 
of organic N during TAG accumulation (Schmollinger et al., 
2014). These combined results suggest that FHA10, CSD1 
and SBP8 may be suppressors of purine catabolism under N 
replete conditions. In contrast, GNAT11, GNAT36, VARL9 
and TRAF8 are positively correlated with two copper-con-
taining amine oxidases (CuAO1 and CuAO2) that oxidize 
putrescine for the production of NH3 (Fig. 2). These results 
suggest that six TF families (FHA, CSD, SBP, GNAT, VARL 

and TRAF) are involved during the ATS phase in an attempt 
to compensate for lack of external free N by regulating purine 
catabolism.

Photosynthesis
Several TF genes were found to be correlated with photo-
synthesis-related genes, such as light harvesting and electron 
transfer components, as well as Calvin-Benson-Bassham 
cycle enzymes. NRR1 and TAZ3 were the only TFs correlated 
with PSBS and LHCSR1 (Supplementary Fig. S6A). PSBS 
plays a critical role in non-photochemical quenching (NPQ) 
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Fig. 2. Visualization of the nitrogen metabolism regulatory network in Chlamydomonas during N deprivation that included 67 metabolism-related genes 
and the 70 TFs/TRs that were differentially expressed. Inset (A): The subnetwork that included TF/TR genes that showed the highest correlations during 
the early phase (1–4 h) with genes involved in the assimilation and transport of inorganic N. Inset (B): The subnetwork that included TF/TR genes that 
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and is induced by N deprivation (Miller et al., 2010). LHCSR, 
which is member of the LHC (light harvesting complex) 
superfamily, plays an important role in response to high light 
and protection against photo damage (Peers et al., 2009). The 
abundance of LHCSR protein increases as NPQ increases 
during N-deprivation (Schmollinger et  al., 2014). Thus, 
NRR1 and TAZ3 appear to be involved during the BTS 
phase of N deprivation to optimize photosynthetic function 
and minimize photo-oxidative damage.

VARL12 (Cre14.617200), another early responding TF gene, 
was negatively correlated with expression levels of several 
photosynthetic genes. Its level of expression doubled by 4 h, 
reaching its highest change (~3.6-fold) at 24 h (Supplementary 
Dataset S1). The VARL family has not been characterized 
functionally but it contains a DNA binding SAND domain. 
Another member of this gene family, VARL7 (also called RSL1), 
is up-regulated when Chlamydomonas cells are grown hetero-
trophically in the dark, suggesting that it may be a regula-
tor of photosynthetic gene expression (Nedelcu and Michod, 
2006). An additional TF gene, PHD7 (Cre10.g446600), was 
correlated with cytochrome b6f subunits, such as PetO, PetM 
and PetN, but RWP1, RWP10, GNAT1 (Cre06.g278108) and 
GNAT7 (Cre05.g236900), were mostly co-expressed with core 
subunits of photosystem I (PSI), photosystem II (PSII) and 
ATPase (Supplementary Fig. S6). Thus, the regulation of 
photosynthesis that was observed by others during the early 
phase of N deprivation (Schmollinger et al., 2014) appears to 
be multifactorial with members of several TF families, such 
as SBP, TAZ, PHD, RWP-RK, GNAT and VARL, involved 
in the adjustment of light energy utilization under the high 
stress conditions of N depletion.

A different set of TF genes appeared to play later roles in 
remodelling photosynthesis. FHA10, CSD1 and SBP8 were 
positively correlated with several photosynthesis genes dur-
ing the ATS phase (Supplementary Fig. S6). CSD1, a cyto-
solic RNA-binding protein, preferentially binds to LHCM6 
mRNA (Mussgnug et al., 2005; Wobbe et al., 2009) and plays 
an important role in controlling the expression of the light-
harvesting antenna of PSII at the post-transcriptional level. 
FHA10, on the other hand, contains a forkhead transcription 
factor domain, a class of proteins that play a role in the DNA-
damage response as well as mediating interactions with pro-
teins phosphorylated by serine/threonine kinases (Durocher 
and Jackson, 2002). FHA10 and CSD1 may be activators of 
photosynthesis under N replete conditions. A member of the 
MYB family, MYBL13 (Cre01.g034350), also responded late 
to N limitation. Its transcript levels increased progressively 
to a 2.6-fold change by 12 h (Supplementary Dataset S1) and 
it was positively co-expressed with several photosynthetic 
genes. MYBL13 harbours a SANT domain, which is mainly 
found in proteins involved in chromatin remodelling (Boyer 
et al., 2002) and interacts with histone N-terminal domains 
(Boyer et  al., 2004). In addition, an AP2/EREBP family 
member, AP2-15 (Cre16.g667900), was positively correlated 
with MYBL13. This is not surprising since the MYB and 
AP2/EREBP families are involved in the regulation of pho-
tosynthesis and related metabolism under stress conditions 
(Vannini et al., 2004; Karaba et al., 2007; Saibo et al., 2009).

Several Calvin-Benson-Bassham cycle genes were signifi-
cantly down-regulated during N deprivation, and specific TF 
genes were found to be potential regulators of those enzymes. 
VARL12, PHD7 and RWP10 were positively correlated with 
phosphoglycerate kinase (PGK1), which in turn was negatively 
correlated with an additional member of the PHD-finger 
family, PHD19 (Cre08.g358543, Supplementary Fig. S6B). 
PHD proteins are involved in controlling chromatin structure 
(Bienz, 2006), suggesting a possible mechanism for regulat-
ing the abundance of Calvin-Benson-Bassham cycle enzymes. 
Chlamydomonas bZIP13 (Cre01.g051150) shares 30% iden-
tity with Long Hypocotyl 5 (HY5) from higher plants, a 
bZIP-type protein known to be involved in the regulation of 
expression of chlorophyll a/b-binding protein, as well as the 
transcription of other photosynthesis-related genes, such as 
ribulose bisphosphate carboxylase small subunit during abi-
otic stress (Lee et  al., 2007). In Chlamydomonas, however, 
bZIP13 was negatively correlated with several photosynthe-
sis genes (Supplementary Fig. S6), including ribulose-1,5-bi-
sphosphate carboxylase/oxygenase small subunit 2 (RBCS2) 
(Supplementary Fig. S6B). Together these observations sug-
gest that four TF families, VARL, PHD, RWP-RK and bZIP, 
may participate in the down-regulation of genes involved in 
light absorption and carbon fixation and are involved in con-
trolling the C/N ratio during the ATS phase of N deprivation.

Chlorophyll metabolism
In Chlamydomonas, the decline in photosynthetic yield dur-
ing N deprivation is followed by a rapid decline of chloro-
phyll concentration (Schmollinger et  al., 2014). It has been 
suggested that chlorophyll degradation increases following 
N deprivation to remobilize N from associated proteins and 
to reduce the light stress (Geider et  al., 1998). Chlorophyll 
synthesis genes for both the porphyrin ring and phytol chain 
were rapidly down-regulated, with transcript abundance 
falling by one half  of initial values by 2 h, while transcript 
abundances for chlorophyll catabolic genes, such as chloro-
phyllase (Chlase), were significantly elevated after 1 h. RWP1, 
PHD7, HB2, bHLH9, GNAT1 and GNAT7 were negatively 
correlated with key genes in the methylerythritol-phosphate 
pathway (HDR and CMK) and in chlorophyll formation 
(ACL1, MgPP and PPO1) (Czarnecki and Grimm, 2012), 
but they were positively correlated with Chlase and zeaxan-
thin epoxidase (ZEO), enzymes required for carotenoid syn-
thesis (Supplementary Fig. S6C). Carotenoids are involved 
in light absorption and energy dissipation, reducing radical 
oxygen species production. Within the first 4 h of N depri-
vation, the expression of some carotenoid synthesis genes 
was strongly up-regulated while the expression of most such 
genes stayed at the same level or decreased. After 4 h, most 
of the transcripts related to carotenoid synthesis decreased, 
while those encoding the degradation enzymes carotenoid 
cleavage dioxygenases 1 and 2 were elevated. Together, these 
observations suggest that the TF genes listed above probably 
contribute to regulating the protection of Chlamydomonas 
cells against photo-oxidative stress induced by N depriva-
tion via the up-regulation of chlorophyll degradation and 
carotenoid synthesis. These observations are in agreement 
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with an increase of free zeaxanthin levels during the first 4 h 
of N deprivation (Baroli et al., 2003; Juergens et al., 2015), 
which likely contributes to protection of Chlamydomonas 
cells against photo-oxidative stress induced by N deprivation 
(Li et al., 2012b). Interestingly, transcript levels of carotenoid 
isomerase (CRI1) were correlated with bHLH3 and with 
GNAT32 (Supplementary Fig. S6C). In higher plants, CRI1 
is required for the formation of prolamellar bodies (PLBs), 
which accelerate photomorphogenesis. PLBs may reflect the 
stable presence of the protochlorophyllide oxidoreductase-
protochlorophyllide complex in plants that have lost the 
capacity to synthesize chlorophyll in the dark (Sperling et al., 
1998). This suggests that GNAT32 and bHLH3 constitute a 
regulatory complex in Chlamydomonas that controls photo-
morphogenesis by regulating CRI1 expression levels during 
N deprivation.

Photorespiration
Photorespiration serves as a carbon recovery system (Maurino 
and Peterhansel, 2010) and is an important mechanism to 
keep the PSII repair system functional under stressful con-
ditions (Takahashi et al., 2007). Most genes associated with 
photorespiration were rapidly up-regulated by 1 h of N dep-
rivation. At 4 h, the expression of serine hydroxymethyltrans-
ferases 2 and 3 (SHMT2 and SHMT3), enzymes catalysing 
the reversible reaction of L-serine to glycine, was even more 
enhanced, while most other photorespiration genes stayed at 
the same level or decreased compared to the 1 h time point 
and thus were still elevated compared to N replete condi-
tions. Among the TFs responding early to N deprivation, two 
bHLH family members (bHLH3 and bHLH9, Supplementary 
Fig. S6D) were positively correlated with phosphoglycolate 
phosphatase (PGP3) and cytosolic hydroxypyruvate reduc-
tase (HPR2), respectively. Also, Tab2 and TAZ3 were positively 
correlated with glycerate kinase (GYK1), an enzyme involved 
in the last step of 3-PGA formation from glycerate. On the 
other hand, among the TFs responding late to N depriva-
tion AP2-15 was positively correlated with serine accumu-
lation (Supplementary Fig. S6E), and PHD19 and GNAT32 
were positively correlated with SHMT 2 and 3 transcripts 
(Supplementary Fig. S6D). These results suggest that even 
though regulation of photorespiration may be complex in 
Chlamydomonas, several distinct TFs appear to be involved 
and thereby contribute to protection of PSII during the ATS 
phase.

Oxidative pentose phosphate pathway (OPPP)
The OPPP plays a critical role in providing reducing equiva-
lents (NADPH) to cells that lack the capacity to generate suf-
ficient reducing power via a fully functional PSI. The OPPP 
is a major source of reductant for fatty-acid synthesis and 
assimilation of inorganic N.  It is also required to maintain 
the proper cellular redox state under oxidative stress condi-
tions (Kruger and von Schaewen, 2003). Several transcription 
factors, including bHLH9, VARL12, GNAT7 and mTERF3 
(Cre09.g408050), were positively correlated with 6-phospho-
gluconate dehydrogenase (6PGD) and glucose-6-phosphate 
dehydrogenase (G6PD) (Supplementary Fig. S6E). These two 

enzymes are the steps in the OPPP where the reducing equiva-
lents are formed. Reduced N availability would decrease pho-
tosynthetic activity and affect the NADPH/ATP ratio. Thus, 
the levels for enzymes involved in the OPPP appear to be reg-
ulated under N deprivation to maintain the proper redox state 
under this stressful condition. However, this could dramati-
cally affect photosynthetic performance and yield during N 
deprivation. Elucidation of the exact role of specific enzymes 
in the OPPP under these conditions will require more focused 
and targeted efforts than were possible in this study.

Carbohydrate metabolism
Tab2 (Cre17.g702500) is an RNA-binding protein belonging 
to the DUF (domain of unknown function) group of proteins 
that is localized in the chloroplast stroma where it is associ-
ated with a high molecular mass protein complex contain-
ing PsaB mRNA. Dauvillée et al. (2003) proposed that Tab2 
plays a key role in the initial steps of PsaB translation and 
PSI assembly. Tab2 mRNA levels increased ~2.5-fold after 
30 min and its protein level was also significantly increased 
after 2 h of N deprivation (Fig. 1C). Surprisingly, this poten-
tial regulatory protein showed low correlation with genes 
involved in photosynthesis, whereas it was highly correlated 
with a number of transcripts encoding glycolytic enzymes, 
such as phosphoglucomutases (PGM1 and PGM2), glucose-
6-phosphate isomerase (PGI) and pyruvate kinase (PYK2), 
as well as with the metabolites G6P and fructose-6-phosphate 
(F6P) (Supplementary Fig. S7A). These results suggest that 
Tab2 executes during the BTS phase of N deprivation a novel 
or a combinatorial function related to the regulation of genes 
directly involved in carbohydrate metabolism. Work that 
identifies how Tab2 does this will be presented in a separate 
manuscript.

The accumulation of fructose and glucose was observed 
at and after 6 h of N deprivation (Supplementary Fig. S6). 
PHD19 was positively correlated with the accumulation of 
fructose, invertase (INV1) and alpha-amylase (AMA3), 
whereas bZIP13 was correlated with fructose, G1P, INV2 
and phosphofructokinase (PFK2), but was negatively cor-
related with three isoforms of glucose-1-phosphate adenyl-
transferase (GLGS1, GLGS2 and GLGS3), which catalyse 
an initial step in starch production (Supplementary Fig. 
S6A). These results indicate that PHD19 and bZIP13 may be 
involved in regulating the switch from the gluconeogenic state 
to a glycolytic state (Park et al., 2015) that occurs prior to ini-
tiation of lipid accumulation in Chlamydomonas in response 
to N deprivation.

Citrate and glyoxylate cycles
The citrate cycle is initially down-regulated in Chlamydomonas 
within the first few hours after N depletion but is then upreg-
ulated by 24 h (Blaby et al., 2013; Park et al., 2015). Several 
TF genes identified in this investigation, including RWP1, 
HB2 and VARL12, showed a strong negative correlation with 
the citrate cycle genes, isocitrate lyase (ICL1) and malate syn-
thase (MAS1) (Supplementary Fig. S6F). Acetate was added 
to the medium to provide a carbon source for the cells. This 
externally supplied acetate is assimilated to form acetyl-CoA, 
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which then feeds into the glyoxylate and citrate cycles and 
is further used for gluconeogenesis and rapid starch storage 
before TAG accumulation initiates (Fan et  al., 2012). The 
action of regulatory proteins controlling this process fits well 
with the model developed (see below) for the transition to 
lipid accumulation following N deprivation.

Amino acid metabolism
Relative abundance data for the 20 standard amino acids 
and 41 transcripts encoding known enzymes involved in their 
biosynthesis were compared to the 70 TF genes identified as 
responding to N deprivation (Supplementary Fig. S6E). The 
resulting correlation network pointed to several TF genes 
that appeared to have strong connections to important com-
ponents of amino acid metabolism. Some of these amino acid 
pathways are intimately connected to other central metabolic 
processes, such as photorespiration, N metabolism, and the 
citrate and glyoxylate cycles and were discussed above. Two 
other examples stood out as particularly interesting.

The first involves the interesting situation of L-arginine 
(L-Arg) biosynthesis in N-deprived Chlamydomonas cells. 
One TF of interest with regards to L-Arg metabolism was 
bHLH6, which displayed a positive correlation with PII (pii), 
N-acetyl-gamma-glutamyl-phosphate reductase (NAGPR), 
N-acetyl-L-glutamate kinase (NAGK) and arginosuccinate 
synthase (AsuS), all components of arginine metabolism, but 
a negative correlation with the metabolites L-Arg and L-Orn. 
MYBL13 was also positively correlated with two isozymes of 
carbamoyl-phosphate synthase (Lc CPS and Sc CPS), while 
at the same time being negatively correlated with glutamine 
levels. These enzymes catalyse the ATP-dependent synthesis 
of carbamoyl phosphate from glutamine as the entry point 
into arginine biosynthesis. These results suggest that bHLH6 
and MYBL13 are involved in regulating arginine levels under 
N deprivation.

An additional TF that may play an important role in regu-
lating amino acid metabolism in response to N deprivation 
was bZIP14 (Cre16.g653300), which displayed a close posi-
tive correlation with genes involved in L-histidine (L-His) 
biosynthesis, such as histidinol dehydrogenase (HDH) and 
imidazole glycerol-phosphate dehydratase (H5B), as well as 
with the accumulation of histidine. In fungi, the regulation 
of L-His biosynthesis is tightly coordinated with purine bio-
synthesis by a bZIP transcription factor, GCN4p (Springer 
et al., 1996). Treatment of Arabidopsis with imidazole glyc-
erol-phosphate dehydratase inhibitor (IRL1803) led to up-
regulation of imidazole glycerol-phosphate synthase 8 and 
purine biosynthesis (Guyer et al., 1995). These results suggest 
that bZIP14 may down-regulate L-His biosynthesis, allowing 
for preferential reassimilation of N into purines during the 
later stages of N deprivation, at the expense of L-His levels 
(Schmollinger et al., 2014).

Lipid metabolism
Little is known about transcriptional regulation of lipid bio-
synthesis in Chlamydomonas. Previous studies seeking to 
identify the role of putative transcription factors or other 
regulatory proteins in regulation of lipid metabolism assessed 

only expression profiles of target genes at a single time point. 
Moreover, most of the previous reports describe cells evalu-
ated once TAG levels are high, after two days of N depriva-
tion or later (Miller et al., 2010; Lv et al., 2013). As indicated 
in more recent work, the repatterning of metabolism that fol-
lows the switch to N depleted conditions and leads eventually 
to TAG accumulation begins almost immediately after the 
growth medium is changed (Park et al., 2015), indicating that 
the cells recognize and start to respond to the change in envi-
ronment within minutes, not hours or days. Our correlation 
analysis approach provided an opportunity to identify TFs 
that may be involved in regulating lipid repatterning follow-
ing the switch to N depleted medium based on their transcript 
or protein levels relative to the expression profiles of other 
genes during the time course of N deprivation, beginning 
from the onset of nutrient removal from the media through 
initiation of lipid accumulation.

As discussed above, several TF genes were identified as 
being early responders to N deprivation, and several of these 
are likely to play important roles in regulating lipid accumula-
tion and repatterning. The TF NRR1, was originally identi-
fied based on a supposed correlation with DGTT1 (Cre16.
g673250) expression, and the nrr1 mutant displayed a reduc-
tion in the accumulation of TAG following N deprivation 
(Boyle et al., 2012). However, we found that NRR1 did not 
display a high correlation with DGTT1 in our study (R value 
was <0.6), which included a more detailed time course of N 
deprivation. Instead, NRR1 was positively correlated with the 
PLB2 gene, encoding a putative phospholipase B-like protein 
(Fig.  3A). Our RNA-seq analysis indicated an increase in 
PLB2 transcript levels (>2.5-fold after 1 h) (Supplementary 
Dataset S1) that matched the pattern displayed by NRR1. 
Many other putative lipase-encoding genes showed increases 
in their mRNA abundances early on, and were also highly 
correlated with early responding TFs. Only five lipases (PAT1, 
ELT1, ELT4, ELT10 and ELT 24) decreased in abundance 
at the early time points (Supplementary Dataset S1). Among 
the most highly induced during the early phase were LIPG2, 
LIPG4, LIPG5, LIPG6 (putative triacylglycerol lipases), 
PAT3 (patatin), ELT6, ELT9, ELT12 and ELT21 (esterase/
lipase family), and PLC1 (coding for phospholipase C). The 
levels of transcripts for all of these lipases increased in abun-
dance by only 30 min of N deprivation and were positively 
correlated with two members of the bHLH family (bHLH6 
and bHLH9), two members of the GNAT family (GNAT7 
and GNAT20), two members of the RWP family (RWP1 and 
RWP10), bZIP3, HB2, TRAF8 and VARL12 (Fig.  3A). In 
addition, these TFs were positively correlated with oxidized 
membrane lipids (oxidized phosphatidylinositol, oxidized 
MGDG), acylated sterol glucoside and 1-alkyl,2-acylglycer-
ophosphocholines and negatively correlated with the accumu-
lation of hydroxyl-fatty acids. This correlation pattern goes 
hand in hand with the accumulation levels of these metabolites 
during the first 6 h following N deprivation (Supplementary 
Fig. S5) during the BTS phase, and suggests that these early 
transcription factors are involved in the large regulatory net-
work that controls remodelling of lipid membranes under 
N deprivation. N deprivation-induced lipase genes might be 
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involved in shuffling fatty acids from the membrane lipids to 
TAG. For example, an enzyme capable of cleaving FAs from 
MGDG has been identified in Chlamydomonas (Li et  al., 
2012a) providing a possible mechanism for recycling of this 
glycolipid. Based on our data, we would suggest that similar 
enzymes also exist for the liberation of FAs from DGDG and 
SQDG. Thus, FAs derived from the breakdown of SQDG 
could be used in TAG synthesis. However, to compensate for 
the loss of the chloroplast glycolipids, Chlamydomonas and 
many other microalga appear to up-regulate PG synthesis 
(Martin et al., 2014).

Tab2 and TAZ3 were positively correlated with the levels 
of betaine (trimethylhomoserine, Supplementary Fig. S6), 
as well as with S-adenosylmethionine synthetase (SAS1) 
and betaine lipid synthase (BTA1) mRNAs, respectively 
(Fig.  3A). These two enzymes are involved in diacylglyc-
eryltrimethylhomoserine (DGTS) biosynthesis and were 

up-regulated during the first hour of N deprivation, followed 
by a progressive decrease in expression across the rest of the 
time course (Supplementary Dataset S1). DGTS is a major 
class of membrane lipids in Chlamydomonas. The pattern of 
rapid increase and then a steady decrease in DGTS content is 
consistent with the remodelling of the lipid profile that occurs 
in Chlamydomonas during the BTS phase as the cells prepare 
to accumulate TAG to high levels.

Other TF genes responded later to N deprivation, and thus 
play roles in later phases of cellular remodelling during the 
ATS phase. The expression of AP2-15 (Cre16.g667900, a 
member of the AP2/EREBP family) remained relatively con-
stant during the first 2 h and then noticeably increased through 
24 h, reaching a 2.5-fold change (Fig.  1C) overall. AP2-15 
is one of the 17 AP2 TFs in Chlamydomonas with a high 
similarity (E-value of 1 × 10–42) to rice, maize and Arabidopsis 
AP2-domain containing proteins (Supplementary Fig. S8A). 
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Fig. 3. Visualization of the lipid metabolism regulatory networks in Chlamydomonas during N deprivation that included 152 lipid metabolism-related 
genes and the 70 TFs/TRs that were differentially expressed. (A) The subnetwork that included TF/TR genes that showed the highest correlations during 
the BTS phase (0.5–4 h) with many lipases and a subset of genes involved in membrane lipid biosynthesis. (B) The subnetwork that included TF/TR 
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Due to its similarity to maize WRINKLED 1 (WRI1), it 
could be called CreWRI1-like. AP2-15’s expression pattern 
was highly correlated with an increase in total fatty acid levels 
in response to N-limitation. This result mirrors the function 
of WRI1 and similar proteins in vegetative tissues of several 
plants (Baud et al., 2007; Bourgis et al., 2011). Furthermore, 
members of the AP2/EREBP family may be involved in 
integration of signals derived from organelles in retrograde 
feedback loops and in stress acclimation (Dietz et al., 2010). 
This TF was positively correlated with increasing amounts of 
TAG (Supplementary Fig. S6) and DGTT1, which exhibited 
increasing transcript levels after 2 h and reached a maximum 
after 24 h of N deprivation (Supplementary Dataset S1). It 
is interesting to consider that a similar role in integration of 
stress signals may be found for AP2-15 in Chlamydomonas 
as was found for its higher plant counterparts. In contrast to 
what was observed relative to TAG biosynthesis, AP2-15 was 
negatively correlated with a component of plastidic mem-
branes, the sulfolipid sulfoquinovosyldiacylglycerol (SQDG), 
and the corresponding biosynthetic enzyme, sulfoquinovo-
syldiacylglycerol synthase (SQD3) (Fig.  3B). SQDG levels 
decreased beginning after 6 h of N deprivation (during the 
ATS phase, Supplementary Fig. S6). Thus, AP2-15 may play 
a role in reprogramming the cell’s lipid composition by con-
trolling the TAG/photosynthetic membrane lipid ratio dur-
ing the ATS phase of N deprivation. Similarly, transcripts for 
one member of the FHA TF family, FHA6 (Cre16.g671900), 
were up-regulated over the 24 h time course, and its protein 
levels were significantly elevated by 2 h following N depri-
vation (Supplementary Dataset S1). FHA6, like AP2-15, was 
negatively correlated with the decreasing levels of SQDG and 
SQD2, suggesting that it too might be a suppressor of SQDG 
biosynthesis during N deprivation (Supplementary Fig. S8B).

In contrast to AP2-15, the TFs FHA10 and SPB8 were 
negatively correlated with the accumulation of TAG, DGTT1 
and Plastid Galactoglycerolipid Degradation1 (PGD1), see 
Fig. 3B. PGD1, an MGDG-specific lipase, acts predominantly 
on more saturated forms of MDGD, specifically removing 
16:0 and 18:1Δ9 from newly synthesized MGDG. This enzyme 
may be involved in re-shuffling saturated FAs from MGDG to 
TAG in a non-Kennedy pathway route to TAG synthesis (Li 
et al., 2012a). The mRNA levels of PGD1 increased progres-
sively after 2 h of N deprivation (Supplementary Dataset S1). 
Interestingly, these TFs (FHA10 and SPB8) were also nega-
tively correlated with ELT1 (Cre01.g000300), which codes for 
an alpha/beta hydrolase family protein that has high similar-
ity to the Thaps3_264297 protein (E-value of 1.3 × 10–46). 
THAPS protein homologues to CGI-58 in Arabidopsis have 
been proposed to be involved in lipid breakdown, leading to 
increased TAG yield without affecting growth in the diatom 
Thalassiosira pseudonana (James et  al., 2010; Trentacoste 
et al., 2013). As indicated above, we observed that these TFs 
were positively correlated with many photosynthetic genes. 
One possible explanation for this finding is that FHA10 and 
SBP8 function as suppressors of TAG biosynthesis genes 
and activators of photosynthesis genes. Taken together, these 
findings suggest diverse and independent functions for dis-
tinct TAG lipases during the two phases, which is consistent 

with the variable expression levels of lipases seen in the tran-
scriptomic analysis (Supplementary Dataset S1), and demon-
strates the importance of performing the proper time-course 
analyses in guiding targeted manipulations.

Interestingly, MYBL13 was negatively correlated with 
phosphatidylglycerophosphate (PG) and two genes encod-
ing phosphatidylglycerophosphate synthases (PGPS1 and 
PGPS2, Fig. 3B) and dropped in expression immediately after 
the cells were transferred to N deficient medium (by 0.5 h). 
It remained down-regulated for the entire 24 h time course 
(Supplementary Dataset S1). However, PG levels remained 
stable during the 24 h and strongly decreased only at 48 h 
(Supplementary Fig. S6). Because the cells are still dividing 
during the first 24 h and require PG for the synthesis of mem-
brane lipids, the up-regulation of MYBL13 suggests that it 
might be involved in regulating the redirection of FAs from 
PG to TAG biosynthesis.

The transcript levels of bZIP2 (Cre07.g321550) fluc-
tuated slightly, but otherwise remained fairly constant 
(Supplementary Dataset S1). However, the proteomic data 
clearly showed that the protein levels increased significantly 
from 12 h to 24 h (Fig. 1C). Thus, bZIP2 was positively corre-
lated with increasing TAG levels and DGTT1 (Supplementary 
Fig. S6B), suggesting that bZIP2 may play a role in regulating 
TAG accumulation, perhaps by affecting DGTT1 expression. 
Indeed, in higher plants, the bZIP TF family regulates several 
processes including light response, stress signalling, seed mat-
uration, flower development, cell elongation, C/N balance, 
hormone and sugar signalling, and seed storage protein gene 
regulation (Corrêa et al., 2008). However, Chlamydomonas 
bZIP TFs have not been characterized functionally, and 
the only sequences found in the non-redundant database of 
NCBI (http://www.ncbi.nlm.nih.gov/) with significant homol-
ogy to these proteins correspond to hypothetical proteins 
from Volvox carteri f. nagariensis (E-value of 5 × 10–16). There 
is no evidence for an orthologue in land plants for bZIP2. 
Further functional characterization of this candidate regula-
tory gene is necessary to elucidate its regulatory roles in N 
stress response and TAG accumulation.

The TR, SET13 (Cre17.g742700), was also positively cor-
related with increasing TAG levels, DGTT1 mRNA levels, 
and the transcript levels of the Major Lipid Droplet Protein 
(MLDP1) (see Supplementary Fig. S8B). MLDP is a major 
protein associated with lipid droplet formation and its repres-
sion affects lipid droplet size but not TAG levels (Moellering 
and Benning, 2010). SET13 showed high similarity to SET 
DOMAIN GROUP 2 (SDG2; E-value of 1 × 10–56), a tran-
scriptional regulator that plays a distinctive role in the regula-
tion of chromatin structure and genome integrity during root 
growth and development in Arabidopsis (Yao et al., 2013). It 
is thus possible that SET13 in Chlamydomonas contributes 
to TAG regulation by affecting expression of MLDP.

Identification of transcriptional regulatory hubs that 
control lipid accumulation

Complex networks have underlying architectures guided by 
universal principles. For instance, many networks, from the 
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World Wide Web to the cell’s metabolic system to airport 
connections, are dominated by a small number of nodes 
that are highly connected to other nodes. These important 
nodes, called hubs, greatly affect the network’s overall behav-
iour. These hubs make the network robust against accidental 
failures but vulnerable to coordinated attacks. As outlined 
below, the results of this investigation demonstrate the pres-
ence of such hubs in the metabolic and regulatory networks 
that control lipid accumulation in algal systems such as 
Chlamydomonas.

As observed above, analysis of the transcriptional regula-
tory networks found that some TFs are involved in multiple 
sub-networks, suggesting a hierarchical structure whereby 
specific TFs might play major synergistic roles in the greater 
regulatory network, and may therefore function as hubs. To 
identify specific TFs that might function as hubs, we analysed 
the degree of distribution of nodes in the 10 sub-networks 
present in a combined network (Supplementary Fig. S1C). 
Most nodes had low degrees and only a few nodes had high 
degrees of distribution, reflecting a scale-free network struc-
ture and indicating the presence of few highly influential TFs 
(regulatory hubs) that regulate expression of several genes 
and a large number of TFs that regulate a few genes and 
confer a robustness to the network (Babu, 2008). Analysis of 
time-course expression changes of TFs at the level of network 
structure and their interconnectivity in different biological 
processes allowed for the identification of two major types 
of hubs, specific hubs and permanent hubs, which represent 
a highly robust and flexible core within the regulatory net-
work that controls the transitions associated with alga growth 
during the shift from nutrient-replete to -depleted conditions. 
While the permanent hubs are those TFs that affect expres-
sion of several genes independent of the perturbation con-
dition, the condition-specific hubs regulate genes during 
specific cellular conditions. BTS- and ATS-specific hubs were 
identified as TFs that regulate the expression of several tar-
get genes in different biological processes (single input motif) 
during the BTS or ATS phases. These network motifs, for the 
BTS- and ATS-specific hubs, have temporal patterns that are 
unique compared to the permanent hubs. The list of regula-
tory hubs is shown in Supplementary Table S1. The top five, 
with the highest degrees of centrality, are shown in Table 1. 
Thus, these specific hubs represent critical components of 
two very different regulatory modules, one that sets the stage 
for initiation of lipid synthesis (BTS module) and a second 
(ATS module) that carries out the regulatory program that 
was established earlier and insures that the cell is able to cope 
long term with the change in metabolic patterning and pro-
gramming that was triggered by the switch to N deprived 
medium, several hours earlier.

To verify that the putative regulatory hubs are involved 
in directing the cellular response to accumulate TAG dur-
ing N deprivation, we analysed a mutant Chlamydomonas 
line, where Tab2, a highly connected node and an early, 
BTS-specific hub (Supplementary Table S1), was reduced in 
expression (Dauvillée et al., 2003), and accumulated 50% of 
the TAG that wild-type cells produce under N stress condi-
tions (Supplementary Fig. S9). As shown in Supplementary Ta
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Figs S10 and S11, quantitative real-time PCR demonstrated 
that the transcript levels of PGM1, PGM2, PKY2, DGTT1 
and PDAT1, involved in carbohydrate and lipid metabolism, 
were differentially affected in the tab2 mutant compared to the 
wild type during N deprivation conditions. Proteomic analy-
sis demonstrated that the protein levels of the BTS-specific 
hub, GNAT1 (increased 1.66-fold), and the ATS-specific hubs, 
FHA10 (increased 2.81-fold), CSD1 (decreased 0.56-fold) and 
AP2-15 (decreased 0.8-fold), were significantly altered in the 
tab2 mutant compared to the wild type after 48 h of N depri-
vation (Fig. 3C). However, several permanent regulatory hubs 
did not show significant changes in protein levels between the 
wild type and mutant during N deprivation. These results 
suggest that the tab2 mutation affects specifically the regula-
tors of the condition-specific hubs, which results in collapse 

of the network into small sets of isolated fragments that no 
longer interact with each other (Albert et al., 2000), reflected 
physiologically by a dramatic decrease of TAG production. 
Because Tab2 has been reported to be a key component in the 
initial steps of PsaB translation and photosystem I assembly, 
one of the plausible explanations for this network behaviour 
is that the tab2 mutation disrupts the photosynthesis sub-net-
work that affects specifically the expression of the condition-
specific hubs such as FHA10, CSD1 and AP2-15, which then 
could be involved in the regulation of different sub-networks. 
This is an issue that needs to be addressed in future research. 
Nevertheless, the highly connected proteins (hubs) listed in 
Table 1 are crucial for maintaining the robustness and proper 
function of the regulatory network that allows for TAG accu-
mulation during N deprivation.
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A regulatory model for N deprivation response and 
TAG accumulation in Chlamydomonas

Based on the analysis presented herein, about 70 TF and 
TR genes were found to be differentially expressed and were 
able to be incorporated into correlation networks, which shed 
new light on regulation of metabolism and cellular growth 
in response to N deprivation as well as the TAG accumula-
tion that follows. The combined results increase our under-
standing of the chronological regulatory changes that occur 
before and after TAG accumulation initiates and allow us to 
propose a schematic model for the transcriptional regulatory 
cascade during N deprivation in Chlamydomonas (Fig.  4). 
According to this model, very early response TRs sense and 
respond to N deprivation by activating BTS-specific hubs 
that down-regulate chlorophyll biosynthesis and by increas-
ing expression of genes involved in N assimilation, acetate 
assimilation, the Calvin-Benson-Bassham cycle, starch and 
sugar alcohol accumulation, OPPP metabolism and remod-
elling of lipid membranes. These early responding TF and 
TR genes include those involved in chromatin remodelling, 
nucleosome displacement, and alteration of RNA stability, 
reinforcing the hypothesis that the early responding regula-
tory genes are establishing a short-term acclimatization to 
what could be a quickly reversed stress (Fig. 4A). When the 
N stress is prolonged, dramatic metabolic changes and/or the 
BTS phase TRs induce a limited number of novel transcrip-
tion family members, which appear to execute more specific 
functions related to the induction of genes directly involved 
in TAG metabolism and formation of lipid droplets, this 
includes AP2-15, FHA10 and MYBL13 (Fig. 4B).

All of these results suggest that TAG metabolism is under 
tight transcriptional control during N deprivation. Moreover, 
many of the early responding TF genes appeared time and 
again in our analysis as correlating well with various meta-
bolic processes, supporting their roles as regulatory hubs. 
Two groups of hubs, specific hubs and permanent hubs, were 
identified and build a highly robust and flexible core within 
the regulatory network that controls the transitions associ-
ated with algal growth and lipid synthesis after the shift from 
nutrient-replete to -depleted conditions. Such knowledge will 
enable synthetic biology approaches to alter the response to 
the N depletion stress and lead to rewiring of the regulatory 
networks so that lipid accumulation could be turned on in the 
absence of N deprivation, allowing for the development of 
algal production strains with highly enhanced lipid accumu-
lation profiles. Beyond providing insights into the regulatory 
systems-level organization of Chlamydomonas metabolism 
during N deprivation, this dataset and approach sets the 
stage for an emerging series of studies that will decipher the 
dynamic regulatory networks in other microalgae.
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