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Abstract

Introduction—Apical periodontitis is an inflammatory disease of the periradicular tissues caused

by the host’s immune response to infection of the root canal system. microRNAs (miRNAs) have

been shown to play an important role in the regulation of inflammation and the immune response;

however, their role in the pathogenesis of endodontic periapical disease has not been explored.

The purpose of this study was to examine the differential expression of miRNAs in diseased

periapical tissues as compared to healthy controls.

Methods—We first compared miRNA profiles in diseased periapical tissues collected from

patients undergoing endodontic surgery to that of healthy pulps using microarray analyses. The

target genes of the differentially expressed miRNAs were identified using miRWalk and

PUBMED. Selected miRNAs linked to inflammation and the immune response were then

confirmed in a separate cohort of diseased and healthy tissues using quantitative RT-PCR. Healthy

pulps and periodontal ligaments were used as controls. Data was normalized to the level of

SNORD 44 which served as an endogenous control.

Results—Of the 381 miRNAs identified using microarray, 24 miRNAs were down-regulated in

diseased periapical tissues compared to controls (n=13) (P<0.003). The down-regulation of 7

miRNAs was confirmed from 9 selected miRNAs using qRT-PCR (n=19) (P<0.05). Target genes

of these miRNAs include key mediators in the immune and inflammatory response such as of

IL-6, MMP-9 and TGF-β.

Conclusions—These findings offer new insight into the pathogenesis of endodontic disease and

have the potential to impact the development of new methods for prevention, diagnosis, and

treatment of apical periodontitis.

Correspondence: Asma Khan, 1170 Old Dental Building, CB #7450, University of North Carolina, Chapel Hill, NC 27599, Phone:
(919) 966 2707, Fax: (919) 966 6344, asma_khan@dentistry.unc.edu.
†Private practice.

The authors deny any conflicts of interest.

NIH Public Access
Author Manuscript
J Endod. Author manuscript; available in PMC 2014 May 21.

Published in final edited form as:
J Endod. 2013 December ; 39(12): 1498–1503. doi:10.1016/j.joen.2013.08.032.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Keywords

microRNA; periapical; microarray; bioinformatics; non-coding RNA

Introduction

The discovery of microRNAs (miRNAs) is one of the major scientific breakthroughs in

recent years and has dramatically changed the view of a linear relationship between gene

and protein expression (1). miRNAs are short, non-coding, single stranded RNA molecules

that mediate RNA-interference through post-transcriptional modulation of gene expression.

They silence genes by binding to complementary sequences of their respective target

messenger RNAs either inhibiting their translation into proteins or initiating cleavage of the

messenger RNA leading to its degradation (2).

miRNAs play a fundamental role in mediating biological events and are involved in virtually

all physiologic processes (1). They have also been implicated in a multitude of pathologic

states such as inflammatory diseases, cancer, developmental abnormalities, cardiovascular

diseases and neurodegenerative disorders (3–7). miRNAs are emerging as novel biomarkers

of disease, prognostic indicators, and targets for drug therapy. Their high sequence

conservation across species and tissue specificity make them ideal biomarkers (8). Stable

miRNAs have recently been identified in many body fluids including saliva and plasma,

which allows for a non-invasive means to measure miRNA profiles (9, 10). Functional

miRNAs have been discovered in exosomes, which presents a novel strategy to deliver RNA

therapeutic agents (11). miRNA-based technology is currently being implemented in a wide

range of applications such as cancer diagnosis and prognosis, predicting risk of transplant

rejection, determining the quality of stored blood, and prenatal diagnostics (12).

The role of miRNAs in orofacial inflammation is just beginning to be explored. Altered

miRNA expression levels have been demonstrated in periodontal disease by comparing

healthy and inflamed gingival tissues (13–15). The first miRNA study in the field of

endodontics found significant differential expression of several miRNAs between healthy

and diseased pulps (16). Although some insight has been gained on the role of miRNAs in

endodontic pulpal disease, its role in endodontic periapical pathogenesis has not been

explored. The purpose of this study is to determine the differential expression of miRNAs in

diseased periapical tissues by comparing the miRNA profiles of diseased periapical tissues

and healthy control tissues.

Materials and Methods

Study participants and sample collection

This study was approved by our Institutional Review Board and written informed consent

was obtained from all study participants. The inclusion criteria were patients of age ≥12

years old and American Society of Anesthesiologists class I or II. Patients who were

immune compromised or currently taking antibiotics or other medications known to

influence the immune response were excluded from the study.
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Diseased periapical tissues were collected from teeth undergoing surgical endodontic

treatment (apicoectomy). These teeth had previous non-surgical endodontic treatment and

were associated with a non-healing periapical lesion. The majority of these cases were

associated with asymptomatic chronic lesions with the exception of two cases, in which pain

symptoms were associated with the tooth from which the sample was collected. During the

apicoectomy procedure, granulation tissue from the periapical lesion was curetted from the

bony cavity prior to root end resection. Two different types of tissues were used as controls:

normal periodontal ligament (PDL) and pulp tissues. These were collected from extracted

non-carious third molars or premolars. Healthy PDL was collected immediately following

extraction using a scaling instrument to separate the tissues from the surface of the root.

Pulp tissue was extirpated using sterilized barbed broaches immediately after extraction.

Tissues samples were placed in a sterile eppendorf tube with 0.5ml RNAsafer Stabilizer

Reagent (VWR, Bridgeport, NJ) and stored at −80°C until processing. Thirteen samples

(eight diseased periapical tissues and five healthy pulps) were used for the microarray

experiment and 19 samples (eight diseased periapical tissues, eight periodontal ligaments

and three healthy pulps) were used for qRT-PCR.

RNA isolation and miRNA microarray

Samples were thawed on ice and centrifuged at 4°C for 2 minutes at 12,000 rpm to remove

the stabilizer reagent. Total RNA was extracted using the miRNeasy Mini kit (Qiagen,

Valencia, CA) according to manufacturer’s instructions. The RNA was quantitated using the

NanoDrop (Thermo Scientific, Wilmington, DE) and RNA integrity assessed using the 2100

Bioanalyzer (Agilent, Foster City, CA). The miRNA expression profiles were interrogated

using Human miRNA Microarrays (V3) and the miRNA Complete Labeling and Hyb Kit

(both from Agilent Technologies, Santa Clara, CA). The microarrays consist of glass slides

containing 8 identical 15K oligonucleotide microarrays incorporating probes for 866 human

miRNAs represented from the Sanger miRBase 12.0. The procedure was performed as

described previously (16). Slides were scanned using the Agilent Microarray Scanner and

the Agilent Feature Extraction Software version 10.5.1.1 (both from Agilent, Foster City,

CA).

Bioinformatics miRNA analysis and target selection

Potential mRNA target genes for differentially expressed miRNAs in diseased periapical

tissues were identified using miRWalk (http://www.rna.uni-heidelberg.de/apps/zmf/

mirwalk/index_html). miRWalk is a comprehensive database that provides information on

human and murine miRNAs on their predicted and validated targets associated with genes,

pathways, diseases, organs, cell lines and transcription factors. It is based on a comparison

of computed mRNA 3′ UTRs miRNA binding sites with 8 miRNA-target prediction

programs. Candidate mRNAs were selected if they were identified as validated miRNA

targets in at least 5 out of 8 databases and were linked to immunity, inflammation and pain

by GO Biological Process (www.geneontology.org). Results from miRWalk and PUBMED

search were integrated to reach our final results.
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Quantitative RT-PCR

9 miRNAs that demonstrated significant differential expression in the microarray analysis

and are linked to inflammation and the immune response were selected for further validation

using qRT-PCR. miScript primers and miScript II RT Kit were purchased from Qiagen

(Germantown, MD, USA). Total RNA (450ng) was reverse transcribed using cDNA

synthesis kit according to manufacturer’s instructions. The PCR reactions were run using

miRNA specific primers and the miScript universal primer (Qiagen, Catalogue #:

MS00006692, MS00006699, MS00008841, MS00031500, MS00007588, MS00009744,

MS00031878, MS00010906, MS00003570, MS00007518). Reaction mixes were prepared

using 2X EvaGreen Master Mix (Biotium, Hayward, CA, USA), 2 μl of 1:10 diluted cDNA,

and 10 pmoles of each forward and reverse primer (total 20 μl). The real-time PCR was

carried out in the StepOne 7500 thermocycler (Applied Biosystems, Carlsbad CA, USA).

SNORD 44 served as an internal control and all reactions were run in triplicates. SNORD 44

was selected from a total of 3 endogenous controls due to its’ relatively constant expression

in the tissues used for this study.

Statistical analysis

For microarray data analysis, any expression value that was lower than the reported error for

that particular gene (which includes negative expression values) was set to be equal to the

estimated error rate. Quantile normalization was applied to the expression data. To identify

genes that were differentially expressed in each group, we applied a permutation test to test

the null hypothesis that the mean expression of each gene was the same in both groups. An

exact hypothesis test was used since the sample size was small. We used the resulting p-

values to estimate the false discovery rate q-value when the differential expression of each

miRNA is called “significant”. For each resulting p-value, we computed the q-value, which

is defined to be the false discovery rate when all tests with a p-value less than or equal to the

given p-value are called “significant.” For qRT-PCR analysis, the relative expression of

miRNA as compared SNORD44 was computed using the 2(−ΔΔCt) method (17). Significance

was determined by applying Welch’s t-test to the relative fold changes of periapical tissues

and control tissues. Differences were considered significant when the probability value was

less than 5% (P<0.05).

Results

No significant differences were noted in gender distribution between experimental and

control groups. However, there was a significant difference in age between subjects from

which periapical tissue were collected and subjects from which healthy PDL and pulp were

collected (P < 0.05). The mean age of the periapical group was 53 yrs. (±15), while that of

the PDL controls was 28 yrs. (±16), and that of the pulp group was 18 yrs. (±3).

Microarray results

Three hundred and eighty one miRNAs were identified in periapical tissues, of which 24

miRNAs were significantly down-regulated in diseased periapical tissues compared to

healthy pulp tissues (P < .003, q < .08). Fifteen miRNAs showed a fold regulation of −2 to

−5 and six miRNAs had more than a -5fold regulation (Fig. 1). Of the 24 down-regulated
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miRNAs identified, nine miRNAs that are linked to inflammation and immunity were

selected for further analysis with qRT-PCR.

qRT-PCR results

The expression of the nine miRNAs examined did not differ between healthy pulps and

PDL. Seven of the nine miRNAs examined were downregulated in diseased periapical

tissues as compared to healthy pulp tissues (P ≤ .001) (Fig 2). These same seven miRNAs

were also down-regulated when comparing diseased periapical tissues to healthy PDL (P ≤ .

005) (Fig. 3). On comparing the relative fold change in miR-95 expression in diseased

periapical lesions as compared to normal PDL, the levels were not altered (1.2 fold) to the

extent observed for other miRNAs. Nonetheless, the expression pattern is qualitatively

similar to data comparing the diseased samples to healthy pulps as well as the microarray

data.

Bioinformatics data

The potential targets of the differentially expressed miRNAs identified include key

cytokines involved in inflammation (IL-6, IL-10), chemokines (CCL8), pathogen

recognition receptors (TLR-4), growth factors (TGF-β1, VEGF-α), and proteins of the

matrix metalloproteinase (MMP) family (MMP-9).”(Table 1).

Discussion

In this study, multiple miRNAs from the miR-181 family (miR-181a*, miR-181b and

miR-181c) were demonstrated to be significantly down-regulated in diseased periapical

tissues compared to healthy controls. Down-regulation of miRNAs, which are negative

regulators themselves, results in an increase in their respective target messenger RNAs. The

targets of miR-181a* include toll-like receptor-4 (TLR-4) (18), which plays a key role in

pathogen recognition and activation of the innate immune response, and IL-6, which

stimulates neutrophil production and supports B-cell maturation (19). miR-181b targets

CCL-8, MMP-9 and TGF-β1, which are involved in a wide range of inflammatory

pathways. For example, CCL-8 is chemotactic for and activates several immune cells

including monocytes, T cells and NK cells (20). MMP-9 is closely associated with

macrophage differentiation and TGF-β1 increases collagen biosynthesis and fibroblast

proliferation (21, 22). The targets of miR-181c include SOCS1, which is involved in the

LPS response, and IL-2, which plays an essential role in the immune response to antigenic

stimuli and is important for the proliferation of T and B lymphocytes (23). The miR-181

family is also notable for altering T-cell receptor signaling and increasing IFN-γ/IL-17

production by Th1/17 cells (24).

Increasing evidence supports the role of the miR-181 family in inflammatory pathologies.

Circulating levels of miR-181a, miR-181a-2* and miR181c in whole blood were

significantly lower in patients diagnosed with complex regional pain syndrome, a disorder in

which neurogenic inflammation plays a key role (25). Blood plasma levels of miR-181b was

found to be lower in patients with sepsis (a whole body inflammatory condition due to

infection) and in animal models of sepsis (26). Data from our previous study show that
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members of the miR-181 family are significantly down-regulated in inflamed human pulps

as compared to normal pulps (16). Conversely, miR-181c is upregulated in inflamed

gingival tissues (15). These differences in expression of miR-181c in distinct inflammatory

pathologies could possibly be due to differences in the type of infection or the host tissue or

the sampling point after initiation of inflammation. Thus, despite the similarities in

expression of this miRNA family with other inflammatory conditions, it is important to note

that a direct comparison is to be avoided due to the diversity of the complex regulatory

mechanisms across different pathologic processes and different tissues.

In addition to the miR-181 family, miR-24-1*, miR-95, miR-149 and miR-455-3p were

significantly down-regulated in diseased periapical tissues. These miRNAs also have a

variety of targets that are implicated in the immune and inflammatory response. For

example, miR-149 targets VEGF-α, which acts on endothelial cells to mediate increased

vascular permeability and promote cell migration to the site of inflammation (27).

miR-455-3p targets TLR-4 as well as IL-10, a cytokine produced primarily from monocytes

that serve to enhance B cell survival, proliferation and antibody production (28).

A limited number of studies have examined miRNA expression in inflammation related to

endodontic infection. Our previous study examined the differential expression of miRNAs in

inflamed and healthy pulps using microarray techniques (16). When comparing our

microarray data to that of our previous study, we see that there is significant differential

expression of 13 of the same miRNAs in both periapical and pulp tissues. These include:

miR-29a*, miR-30b*, miR-181a-2*, miR-181d, miR-455-5p, miR199-5p and miR-664. All

seven of the significantly down-regulated miRNAs identified in diseased periapical tissues

were also shown to be down-regulated in inflamed pulp tissue compared to healthy pulp

tissue. The six of which showed significant down-regulation in both tissues include:

miR-24-1*, miR-95, miR-181a*, miR-181b, miR-181c and miR-455-3p. The extent of this

cross-over suggests some common miRNA regulatory network in pulpal and periapical

disease pathogenesis. This could be due to similar inflammatory processes occurring in both

tissues. However, the tissue specificity of miRNAs is apparent in the difference between the

types of miRNAs identified in pulp and periapical tissues using microarray. Although some

overlap exists, it is possible that the other miRNAs identified in this study could be unique

to the periapical disease process.

In the present study we first identified differentially expressed miRNAs in diseased

periapical tissues as compared to healthy pulps using microarray analysis. We then collected

a separate cohort of healthy and diseased samples to validate these findings using qRT-PCR.

For this second experiment both pulp and PDL were used as control tissues. We included

PDL as a control as the normal periapex consist of PDL and bone tissue. Bone tissue was

not used as its removal is not recommended in apicoectomy procedures. It is also relatively

acellular. Despite using a separate cohort of samples for the qRT-PCR, the results confirmed

the down-regulation of the same miRNAs identified using microarray. Also, the same

miRNAs were consistently down-regulated in diseased periapical tissues when comparing to

both pulp and PDL control tissues. This correlation strengthens our findings and supports

the inclusion of the selected control tissues.
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The limitations of this study include the absence of age matched controls. Participants in the

control groups consisted of individuals undergoing extraction of third molars or premolars

for orthodontic purposes. They were significantly younger than participants in the periapical

group who were patients undergoing apicocectomy surgery. We did not differentiate

between periapical cysts and granulomas nor did we differentiate between symptomatic and

asymptomatic teeth. Studies that implement in situ hybridization techniques could be used to

determine the cellular sources of the identified miRNAs and at the same time differentiate

between periapical cysts and granulomas. Future studies that include a larger number of

teeth with periapical lesions are needed to identify miRNAs that correlate with odontogenic

pain.

This study explores the role of miRNAs in endodontic disease and provides new insight into

the genetic regulation of endodontic periapical pathogenesis. This study offers potential

candidates for further investigation of miRNAs in endodontic disease. These findings could

facilitate the development of potential biomarkers and possible therapeutic targets for the

treatment of endodontic disease.
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Figure 1.
Differential expression of miRNAs in healthy pulp (n = 5) and diseased periapical tissues (n

= 8) evaluated by microarray. Twenty-four miRNAs were significantly down-regulated in

diseased periapical tissues (P < .003, q < .08). Data was analyzed using an exact hypothesis

test and expressed as log values.
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Figure 2.
Relative fold changes of seven miRNAs in diseased periapical and healthy pulp tissues

analyzed by qRT-PCR. Data was normalized to expression of endogenous control,

SNORD44. Relative expression computed using the 2(−ΔΔCt) method. **P ≤ .001
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Figure 3.
Relative fold changes of seven miRNAs in diseased periapical and healthy periodontal

ligament tissues analyzed by qRT-PCR. Data was normalized to expression of endogenous

control, SNORD44. Relative expression computed using the 2(−ΔΔCt) method. * P ≤ 0.05, *

*P ≤ .001
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