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Abstract

Exosomes offer distinct advantages that uniquely position them as highly effective drug carriers. 

Comprised of cellular membranes with multiple adhesive proteins on their surface, exosomes are 

known to specialize in cell–cell communications and provide an exclusive approach for the 

delivery of various therapeutic agents to target cells. In addition, exosomes can be amended 

through their parental cells to express a targeting moiety on their surface, or supplemented with 

desired biological activity. Development and validation of exosome-based drug delivery systems 

are the focus of this review. Different techniques of exosome isolation, characterization, drug 

loading, and applications in experimental disease models and clinic are discussed. Exosome-based 

drug formulations may be applied to a wide variety of disorders such as cancer, various infectious, 

cardiovascular, and neuro-degenerative disorders. Overall, exosomes combine benefits of both 

synthetic nanocarriers and cell-mediated drug delivery systems while avoiding their limitations.
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1. Introduction

In the midst of many exciting developments in drug delivery technologies, nanotechnology 

holds great promise for many new advances in targeted and controlled-release drug delivery 

platforms. Various drug nanoformulations have been developed to improve the therapeutic 

effect of drugs. Unfortunately, opsonization of drug-loaded synthetic nanoparticles in the 

bloodstream results in two distinct issues with drug nanoformulations: toxicity and rapid 

clearance by the mononuclear phagocyte system (MPS) [1]. To address these issues, coating 

the drug-loaded nanocarriers with a PEG corona has been introduced as a method for 

perpetuating stealth and decreasing clearance by the MPS. However, although PEGylation 

decreases clearance by the MPS, it also reduces interaction of the nanoformulation with 

target and barrier cells, thus decreasing the drug biodistribution in disease tissues [2–4]. In 

addition, the development of an immune response to the PEG corona significantly increases 
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the clearance of PEGylated drug nanocarriers [5–7]. For example, PEGylated liposomes 

were reported to lose their long-circulating property in the second week following systemic 

administration in mice [7]. This may become a major problem in chronic disease conditions, 

which require prolonged drug treatment. In fact, it was reported that 22%–25% healthy 

blood donors already have preexisting PEG antibodies due to previous exposure to PEG in 

cosmetics, food, etc. [8,9].

In this respect, exosomes, nanosized vesicles secreted by a variety of cells, represent an 

important tool for both diagnostic and therapeutic purposes. Exosomes have the exceptional 

ability to interact with recipient cells (Fig. 1). Comprised of cellular membranes, 

extracellular vesicles such as exosomes can attach to target cells by a range of surface 

adhesion proteins and vector ligands (tetraspanins, integrins, CD11b and CD18 receptors), 

and deliver their payload to target cells [10,11]. Several studies indicate that extracellular 

vesicles, such as exosomes, have a specific cell tropism, according to their characteristics 

and origin, which can be used to target them to disease tissues and/or organs [12]. Exosomes 

can carry cell-type-specific proteins found in the membrane of the parent cell, such as 

myelin proteins in exosomes derived from oligodendrocytes, with the unique property of 

homing selectivity [13].

Furthermore, collected from patients' tissues or blood (for example, bone marrow, 

monocytes or macrophages), allogenic exosomes may have an immune privileged status, 

which allows for decreased drug clearance compared to PEGylated nanoformulations. Thus, 

exosomes may function as an “invisibility cloak” for incorporated therapeutic agents, 

diminishing clearance by the MPS, and concurrently increasing drug transport to target 

tissues. Notably, of equal importance is using exosomes that were secreted from cells 

primed with an antigen immune response (dendritic cells or T cells) for vaccination. In fact, 

exosomes may comprise advantages of both synthetic nanocarriers and cell-mediated drug 

delivery, avoiding the rapid clearance and toxicity associated with synthetic vehicles, as well 

as the complexity in utilizing cell-mediated drug delivery systems in the clinic. Hence, an 

increasing number of investigations exploit this natural mechanism, using exosomes for the 

delivery of low molecular-weight therapeutics, nucleic acids, and proteins.

2. Biogenesis, isolation, and characterization of exosomes

Biogenesis, characterization, and functions of exosomes are exciting new fields of research 

that have triggered significant interest over the past three decades. Exosomes are 40–100 nm 

sized extracellular membrane-derived vesicles actively secreted by most cell types, in 

particular, cells of the immune system such as dendritic cells [10], macrophages [14], B cells 

[15], and T cells [16]; as well as mesenchymal stem cells [17], endothelial [18] and 

epithelial cells [19]. Exosomes and other types of microvesicles are also secreted by a 

variety of cancer cells [20].

The unique properties of exosomes can be attributed to their biogenesis; the classical view 

of exosome biogenesis holds that they are initially produced by invagination of the 

endosomal membrane to create multivesicular bodies (MVB) (Fig. 2). In contrast, exosomes' 

close relative, microvesicles, are greater in size (100–500 nm) and bud directly from the 
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plasma membrane. Consequently, exosomes and microvesicles are currently believed to 

have endosomal (red) and plasma (green) membrane origin, respectively (Fig. 2). Larger 

vesicles (500–1000 nm) are considered to be apoptotic bodies (Fig. 2). Many investigations, 

especially in the field of drug delivery, utilize both exosomes and microvesicles, defining 

them as extracellular vesicles, because a complete separation and purification of each type 

of vesicles is extremely laborious and difficult, if not impossible [21]. As research in the 

field of exosomes and extracellular vesicles continues, the nomenclature continues to be 

defined and refined. It should be noted that the absolute separation and definition of various 

extracellular vesicles (including exosomes) based on their size or biogenesis has yet to be 

established beyond doubt, and “there is currently no consensus on markers that distinguish 

the origin of these vesicles once they have left the cell [22].” In addition, exosomes 

themselves compose a fairly heterogeneous population in terms of their biochemical 

composition, the source (different cell lines or patient samples) often dictates exosome 

phenotype [23]; this has critical implications for the use of exosomes in the clinic. The 

reader would do well to keep these facts in mind when researching exosomes, as the field 

continues to grow and evolve. This review will refer to either exosomes or extracellular 

vesicles as is appropriate.

Exosomes can be characterized by the size, protein and lipid content. Different techniques 

were developed for the characterization of exosomes. Among them are flow cytometry, 

western blotting, nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), 

mass spectrometry (MS) and several microscopy techniques [24]. The International Society 

for Extracellular Vesicles (ISEV) published a position paper in 2014, in which the 

characterization of exosomes is recommended by the presence of exosome-associated 

surface markers, as well as the absence of proteins not associated with exosomes [25]. 

Exosomal surface markers include TSG101, Alix, flotillin 1, tetraspanins (CD9, CD63, 

CD81), integrins, and cell adhesion molecules (CAM) [25]. Exosomes are highly enriched in 

cholesterol, sphingomyelin, and hexosylceramides at the expense of phosphatidylcholine 

and phosphatidylethanolamine [26]. The fatty acids in exosomes are mostly saturated or 

monounsaturated. Together with the high concentration of cholesterol, this may account for 

lateral segregation of these lipids into exosomes during their formation at MVB. Exosomes 

can be isolated from conditioned cell culture media or bodily fluids by differential 

centrifugation, filtration paired with centrifugation, immunoaffinity or size exclusion 

chromatography, or polymer-based precipitation, as well as microfluidic technologies 

utilizing principles from the aforementioned methods. Each method has its advantages and 

disadvantages, requires different methods of pre-processing of samples, and produces 

exosome preparations of varying purity and quality. The user may choose a method for 

exosome isolation based on the intended downstream use. It is beyond the scope of this 

review article to provide a comprehensive and detailed review on methods of sample 

preparation and exosome isolation, instead, we will briefly describe methods currently used 

to isolate exosomes and refer the reader to other reviews in the literature such as K.W. 

Witwer et al. [27].
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2.1. Differential ultracentrifugation and density gradient centrifugation

This method is considered the “gold standard” for isolating exosomes [10]. It involves 

applying a centrifugal force to a solution containing exosomes, e.g. conditioned cell culture 

media or biological fluids. First, a low speed centrifugation step (400× g) is performed in 

order to remove cells and large cell debris. The supernatant is then subjected to 10,000–

20,000× g to remove large debris and intact organ-elles. Finally, the supernatant is again 

subjected to high speed centrifugation (100,000–150,000× g) to pellet exosomes. It is worth 

noting that the type, quantity, and quality of exosomes isolated by this method is sensitive to 

the g force, rotor type, angle of rotor sedimentation, radius of centrifugal force, pelleting 

efficiency, and solution viscosity. One issue with differential ultracentrifugation is that it 

sediments exosomes as well as other vesicles, proteins, and/or protein-RNA aggregates. By 

including a sucrose density gradient, contaminants with densities different than exosomes 

may be separated from exosomes, allowing for recovery of a theoretically more pure 

fraction. Gradient centrifugation requires extensive (62–90 h) centrifugation time [28], but 

provides a more uncontaminated exosome isolate than ultracentrifugation alone. While 

differential centrifugation has the potential for high exosome yields, this method is subject 

to operator-dependent variability [29].

2.2. Immunoaffinity chromatography

Immunoaffinity chromatography is a process in which antibodies, covalently attached to 

beads, filters, or other matrices, bind to specific surface proteins or antigens on the target 

particle and non-target particles remain unbound. The unbound fraction is discarded, and the 

desired bound fraction may be collected by washing the stationary phase, typically with a 

low pH buffer. For the isolation of exosomes, antibodies to exosomal surface markers such 

as TSG101 or tetraspanins are used [10]. Because this method of exosomes isolation 

depends on antibody recognition of exosomal proteins, only a subset of all extracellular 

vesicles (those expressing the antibody-recognized protein) can be captured, resulting in a 

low yield, but the resulting exosomal isolate is much more pure than exosome isolates 

prepared by other methods which isolate exosomes based on their physical properties (size, 

density) [22].

2.3. Size exclusion chromatography

Size exclusion chromatography (SEC) is a method wherein a solution consisting of a 

heterogeneous population of differently sized components is separated based on their size. A 

column containing heteroporous beads is used in SEC; components (such as various vesicles 

and contaminants in a solution containing exosomes) with a smaller hydrodynamic radius 

are able to pass through the many small pores, akin to a maze, resulting in a longer time to 

elute. Components with a larger hydrodynamic radius (such as exosomes) are unable to 

penetrate through as many pores, and thus elute earlier from the column. In this manner, 

exosomes may be separated from other vesicles and contaminants of different sizes. The 

advantages of SEC are that it preserves the integrity and biological activity of exosomes and 

other molecules being separated; because SEC is typically performed using gravity flow, 

vesicle structure and integrity remains intact [30]. (It should be noted that the use of force to 

filter exosomes may result in the deformation and breaking-up of larger vesicles, which may 
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potentially skew results [22]). Furthermore, SEC has excellent reproducibility and 

sensitivity. However, because SEC uses gravity flow, it requires a long run time which 

limits its scalability for high-throughput applications. In addition, SEC is often used in 

combination with ultracentrifugation or other techniques in order to concentrate the final 

exosome preparation [22].

2.4. Polymer precipitation

Polymer precipitation has been used to isolate viruses and other macromolecules for more 

than 50 years, typically by use of a solution containing polyethylene glycol (PEG). The most 

commonly used commercial polymer precipitation-based product for exosome isolation is 

ExoQuick-TC™ from System Biosciences. Typically, to isolate exosomes, a precipitation 

solution consisting of PEG with a molecular weight of 8,000 Da is used. This precipitation 

solution is combined with biofluid containing exosomes and is incubated overnight at 4 °C. 

The mixture is then centrifuged at low speed to form a pellet containing exosomes. The 

product is relatively easy to use and does not require specialized equipment or a lengthy run 

time. However, it has been shown that this method co-precipitates non-vesicular 

contaminants such as lipo-proteins, as well as polymer material [31]. These issues may be 

addressed by pre- and post-isolation steps. Pre-isolation typically involves the removal of 

subcellular particles such as lipoproteins through centrifugation. Post-isolation involves 

removal of the polymer, typically by using a Sephadex G-25 column [28].

2.5. Microfluidic technologies

Although microfluidic-based techniques for the isolation of exosomes are at an early-stage 

of development, they hold great promise for use in the clinic as they typically require 

smaller volumes of starting material and provide highly pure exosome preparations with 

minimal processing time [32]. Microfluidic technologies for isolating exosomes are typically 

used for diagnostic purposes due to their low yield and high sensitivity [32]. There are three 

main techniques for isolating exosomes or microvesicles using microfluidics: (A) 

immunoaffinity, (B) sieving, and (C) trapping exosomes on porous structures [32]. The 

immunoaffinity-based microfluidic approach to isolating exosomes is similar to the 

immunoaffinity chromatography technique mentioned above, and operates on similar 

principles (through the use of antibodies to exosomal surface proteins which are covalently 

bound to the chip in order to separate exosomes from contaminants) but at a much lower 

scale. Multiple groups [33–36] have developed chip-based immunoaf-finity microfluidic 

approaches to isolating exosomes and microvesicles, allowing for quantitative and high-

throughput analysis of exosome contents. Davies et al. developed a method based on sieving 

extracellular vesicles through a porous membrane with a specific size [37]. In this approach, 

extracellular vesicles are collected by sieving whole blood through a membrane, with 

filtration driven by either pressure or electrophoresis. The applied electric field assists in 

separating exosomes from contaminants: proteins are less affected by the electric field due 

to their lower negative charge as compared to phospholipidic vesicles [38]. Finally, Wang et 

al. [39] developed a method of trapping exosomes or “exosome-like” vesicles in a porous 

ciliated silicon microstructure which selectively traps particles 40–100 nm in size. Wang et 

al. were able to show the selective trapping of lipid vesicles 83 nm and 120 nm in size, but 
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failed to validate their technique with clinical samples, and no analysis of exosomal protein 

or RNA was performed.

Of note, the rapid production, isolation, purification, and standardization of exosomes in 

sufficient quantities is one of the main drawbacks for their use in clinic. Most of the 

developed techniques for the production of clinical grade (cGMP) exosomes are highly 

labor-intensive and time-consuming, although recently pioneered microfluidic technologies 

may be able to mitigate these drawbacks. Additional challenges include the reproducibility 

and consistency of the product lots. Also, exosome yields are typically low and require a 

large amount of starting material. Therefore, novel approaches are needed for the mass-

production of exosome-based drug formulations.

3. Natural functions of exosomes and their intrinsic biological activity

Exosomes play a significant and diverse role in intercellular communication that is an 

essential process for the development and function of multicellular organisms. These 

extracellular vesicles were initially thought to be a mechanism for removing unneeded 

membrane proteins from reticulocytes. Recent studies have shown that they are specialized 

in long-distance intercellular communications [40,41] facilitating transfer of proteins 

[42,43], and functional mRNAs and microRNAs for subsequent protein expression in target 

cells [44,45]. This mechanism of secretion, signaling and communication is a highly 

efficient, robust, and economic manner of exchanging information between cells. Thus, 

exosomes themselves exert unique biological activity, even without any loaded drug that 

may be used for therapeutic purposes.

3.1. Immune regulation by exosomes

Tumor cells are poorly immunogenic and this has hampered the development of effective 

cancer immunotherapy. By transporting ligands and receptors, exosomes can trigger an anti-

tumor response by presenting tumor antigens to immune cells. Initially, tumor-derived 

exosomes that carry antigens have been suggested as a source of specific stimulus for the 

immune response against tumors [46]. These exosomes were shown to induce anti-tumor 

responses more efficiently than irradiated tumor cells, apoptotic bodies, or tumor cell 

lysates. For example, mouse B lymphoma cells were reported to release exosomes that carry 

a number of heat shock proteins (HSP) that can induce significant anti-tumor immune 

responses in T cells [47].

Later, it was demonstrated that tumor-derived exosomes can also possess 

immunosuppressive properties [48], promote oncogenesis, metastasis [49,50], and drug 

resistance development [51–53]. Therefore, the attention was turned to the exosomes 

released by activated antigen presenting cells (APCs), such as dendritic cells (DCs), 

macrophages, T lymphocytes, and B cells. The presence of MHC class I and class II, as well 

as T cell co-stimulatory molecules, on the surface of these exosomes is an important 

mechanism of antigen presentation [54]. Furthermore, the immune response cells primed 

with antigens can package cellular components from cancer cells in exosomes that then 

promote immune responses [55–61]. In particular, exosomes secreted by DCs that were 

primed with acid-eluted tumor peptides were reported to eradicate established tumors in 
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mice [55]. According to another study, DCs-secreted exosomes incubated with human breast 

adenocarcinoma cells (SK-BR-3) were able to induce tumor-sensitized T cells to secrete 

high levels of Interferon-γ (IFN-γ) [56]. Qazi et al. [57] reported a significant anti-cancer 

activity of exosomes secreted by DCs that were exposed to chicken egg ovalbumin (OVA). 

These exosomes elicited specific transgenic T cell proliferation in vitro. Interestingly, two 

different methods of OVA loading into exosomes were compared: OVA peptide that was 

directly loaded into exosomes (Pep-Exo), or exosomes released from OVA-pulsed DCs 

(OVA-Exo). Pep-Exo formulation was more efficient in specific transgenic T cell 

proliferation in vitro. However, only exosomes released from OVA-pulsed DCs were 

efficient in vivo, highlighting the importance of formulation strategies in some cases [57]. 

Noteworthy, DCs-derived exosomes may also exert undesirable effects, such as triggering 

the anti-donor T cell response that causes allograft rejection [62].

Along with the improving immune responses, exosomes released from T cells were shown 

to destroy tumor stroma, and prevent tumor invasion and metastases. In addition, cross-talk 

between T lymphocytes and endothelial cells through extracellular vesicles was reported 

[58]. Thus, T cell-derived extracellular vesicles were shown to modulate endothelial cell 

responses to vascular endothelial growth factor (VEGF) and alter tube formation and gene 

expression in target endothelial cells. Mechanistic studies revealed that overexpression of 

thrombospondin-1 and its receptor CD47 on extracellular vesicles derived from T cells 

allowed targeted and facilitated internalization of these extracellular vesicles into endothelial 

cells. CD47 transferred to the tumor vasculature by extracellular vesicles modulated tumor 

angiogenesis and inhibited pro-angiogenic signaling in endothelial cells [58]. Noteworthy, 

the induction of immune responses may be mediated not only by the bioactive lipids and 

proteins present in exosomes, but also by exosome- and extracellular vesicle-associated 

RNAs [59]. Contained inside exosomes, microRNAs (miRNAs) play a key role in mediating 

biological functions due to their prominent role in gene regulation. Thus, Aucher et al. [60] 

reported that human macrophages can transfer miRNAs to hepato-carcinoma cells (HCCs) 

and functionally inhibit proliferation of these cancerous cells. The transport of these miRNA 

was associated with extracellular vesicles.

Regarding infectious diseases, a successful immunization against diphtheria and Leishmania 

infections was achieved by use of DC-derived exosomes that were exposed to diphtheria 

toxin [63] or Leish-mania major [64] antigens, respectively. Furthermore, exosomes found 

in human breast milk can boost the immune response and alter the T cell balance toward a 

regulatory phenotype [65,66]. This mechanism may be crucial for the development of the 

infants' immune system. Thus, exosomes are potent immune regulators, and may be utilized 

for the design of vaccine adjuvants and therapeutic intervention strategies to modulate 

immune responses.

3.2. Protective and regenerative effects of exosomes

Exosomes (as well as other types of extracellular vesicles) play a vital role in regulating a 

broad range of physiological and pathological cellular processes [67] that may be utilized for 

therapeutic purposes. Mesenchymal stem cells (MSCs) derived from bone marrow, adipose 

tissue, cord blood, and other origins have recently received much attention as potential 
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therapeutic agents with regenerative properties [68–75]. It was reported that MSCs-derived 

exosomes produced significant cardio-protective paracrine effects against myocardial 

ischemia/reperfusion injury in pig and mouse models [68,69]. These exosomes were also 

beneficial in pulmonary hypertension (HP). HP is a kind of malignant pulmonary vascular 

disease characterized by an increase in pulmonary artery pressure, which may lead to heart 

failure and even death. MSCs-derived exosomes directly suppressed early pulmonary 

inflammation and vascular remodeling [70] through the suppression of hyper-proliferative 

pathways, including signal transducer and activator of transcription 3 (STAT3)-mediated 

signaling.

Exosomes secreted from cardiosphere-derived cells (CDCs) were shown to produce a range 

of diverse cardio-protective effects, including anti-inflammatory, anti-oxidative, anti-

apoptotic, anti-fibrotic, and cardiomyogenic effects [75,76]. CDCs-released exosomes 

stimulated angiogenesis, promoted cardiomyocyte proliferation, and decreased programmed 

cell death in vitro. Furthermore, the regenerative capacity of these exosomes was 

demonstrated in a model of chronic myocardial infarction (MI) in rats [77]. These diverse 

effects were attributed to the ability of exosomes to reduce collagen deposition and exert 

anti-fibrotic efficacy via paracrine mechanisms [78]. CDCs-released exosomes improved 

cardiac function, imparted structural benefits, and increased viable mass after MI. The 

observed therapeutic effects were associated with normalized oxygen consumption, induced 

ATP production, and preserved mitochondrial integrity.

Exosomes derived from endothelial cells were suggested to be a promising strategy to 

combat atherosclerosis [79]. Atherosclerosis, the underlying cause of myocardial infarction 

and stroke, occurs predominantly in predisposed spots in the large arteries. Systemic 

administration of exosomes released from human umbilical vein endothelial cells 

(HUVECs) reduced atherosclerotic lesions in mice fed a high-fat diet. It is known that shear 

stress and its central transcriptional regulator KLF2 elicit properties to the endothelium by 

regulating the expression of atheroprotective genes. Exosomes secreted by shear-stress-

stimulated HUVECs were enriched in multiple miRNAs, most prominently miR-143 and 

miR-145. HUVECs-derived exosomes transported these miRNAs to smooth muscle cells 

(SMCs) which resulted in controlled target gene expression and reduction of atherosclerotic 

lesion formation in the mouse aorta [79].

MSCs-derived exosomes were shown to have neuroprotective effects in stroke. The release, 

as well as the content, of the MSC-generated exosomes can be modified by environmental 

conditions. Thus, stroke induces changes in the miRNA profile of these exosomes [80,81], 

especially in miRNAs that actively participate in the recovery process after stroke [82]. 

MSCs-derived exosomes transferred their therapeutic factors to recipient cells, altered gene 

expression, and thereby promoted neurite growth in rat primary neurons [72]. Furthermore, a 

hepatic regeneration was shown by use of MSC-derived exosomes in drug-induced liver 

injury models [83]. The higher survival rate was associated with up-regulation of the 

priming-phase genes during liver regeneration, which subsequently led to higher expression 

of proliferation proteins (PCNA and cyclin D1) in the exosome-treated group. Therapeutic 

effects of exosomes derived from human adipose tissue-derived MSCs were also reported 

for the treatment of Alzheimer disease (AD) [71]. It was demonstrated that these exosomes 
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carry enzymatically active neprilysin (NEP), the most important enzyme that degrades β-

amyloid (Aβ) peptide plugs in the brain. MSCs-derived exosomes decreased both 

intracellular and extracellular Aβ levels in a neuroblastoma cell line N2A in vitro.

Finally, multivesicular bodies have been also identified in plants, and leaderless secreted 

proteins can be released in vesicles, as described recently [84,85]. Ju et al. showed 

protective effects of exosome-like nano-particles isolated from crushed grapes [86]. In 

particular, the oral administration of exosome-like nanoparticles from grapes to mice led to 

the significant proliferation of the intestinal epithelium. These exosomes are being tested for 

their effects on oral mucositis and related pain after radio- and chemotherapeutic treatment 

of head and neck cancers in an ongoing clinical trial (NCT01668849).

4. Using exosomal carriers for therapeutics

4.1. Drug loading into exosomes

Several distinct approaches can be utilized for the loading of exosomal carriers with 

therapeutic cargo (Fig. 3): (A) loading naïve exosomes isolated from parental cells ex vitro; 

(B) loading parental cells with a drug, which is then released in exosomes; and finally, (C) 

transfecting/infecting parental cells with DNA encoding therapeutically active compounds 

which are then released in exosomes. Each approach has its advantages and limitations, and 

may be dictated by the type of therapeutic cargo, site of the disease, and conditions suitable 

for a specific type of exosome-encapsulated cargo.

Regarding ex vitro loading of naïve exosomes (Fig. 3, path A), different methods for drug 

incorporation were suggested. In most cases, lipophilic small molecules were passively 

loaded into exosomes during co-incubation with exosomes or exosome-like vesicles [87–

93]. Thus, low molecular antioxidant, curcumin [89,90], anticancer agents, Doxorubicin 

(Dox) [92,93] and Paclitaxel (PTX) [94], and a model drug Rhoda-mine 123 [94] were 

loaded into exosomes or exosome-like vesicles by incubation at room temperature (RT). The 

drug loading was determined by HPLC and varied from 7.2% for PTX to 11.7% for Dox. It 

is worth noting that exosomes are a very distinct type of nanocarrier that, by their nature, 

already carries numerous proteins and nucleic acids. This may explain the relatively low 

loading capacity achieved with these carriers.

Extracellular vesicles, including exosomes, naturally deliver mRNA, miRNA, various 

noncoding RNA, mitochondrial DNA, and genomic DNA [11,95]. Therefore, they were 

suggested as carriers for nucleic acids transfer. Similar to the incorporation of genetic 

material into living cells, electroporation of purified exosomes was proposed for loading of 

exogenous RNA [13,96–99]. Alvarez-Erviti et al. pioneered this method, electroporating 

siRNA into DC-derived exosomes [13]. The same method was used to load exosomes with 

miRNA to epidermal growth factor receptor (EGFR)-expressing breast cancer cells [100]. 

About 3000 miRNA molecules were loaded per exosome. It should be taken into 

consideration that electroporation of extracellular vesicles with siRNA may be accompanied 

by extensive siRNA aggregate formation, which may cause overestimation of the amount of 

siRNA actually loaded into exosomes [101]. The authors of this report suggested that 

electroporation is far less efficient than previously reported, and highlighted the necessity 
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for alternative methods to prepare siRNA-loaded exosomes. Exosomes are known to carry a 

negative surface charge, hence precluding electrostatic siRNA complexation. Pre-

complexation of siRNA via cationic liposomes followed by the fusion with isolated 

exosomes has been suggested for their loading with siRNA by Wahlgren et al. [102]. 

Furthermore, elevated temperature (37 °C) may be used for improved siRNA loading into 

exosomes or other types of extracellular vesicles [103].

Exosomes are also known to be nature's way of delivering different proteins [104]. We 

suggested harnessing this mechanism for the delivery of a potent antioxidant, catalase, in 

exosomes [105]. Catalase is a large protein (MW 240 kDa) that represents a challenge for 

incorporation into exosomes. Therefore, different loading procedures (incubation at RT, 

freeze/thaw cycles, sonication, extrusion, and permeabilization with saponin) were 

examined. The extensive reformation and reshaping of exosomes upon sonication and 

extrusion procedures enabled catalase diffusion across the relatively tight and highly 

structured lipid bilayers, and resulted in the high loading efficiency of exosomal carriers 

(20%–26% loading capacity). Furthermore, treatment with saponin, an efficient 

permeabilization agent, also increased catalase loading into exosomes [106]. Notably, aside 

from proteins, these methods for loading into exosomes can be applied to other therapeutic 

and imaging agents, in particular, gold nanoparticles [105]. Regarding the quantity, 

standardization and uniformity of exosomal drug formulations, this approach seems to be the 

most appropriate, as it allows obtaining large lots of exosomes combined from several 

isolations, and then loading them with the therapeutic cargo.

As a second approach, parental cells can be loaded with exogenous compounds, which then 

are released into the conditioned media inside exosomes (Fig. 3, path B). Thus, MSCs-

secreted exosomes were loaded with PTX by incubating the parental cells with the drug 

[107]. It was reported that the murine SR4987 cells that were used as MSCs model produced 

a significant amount of PTX-loaded exosomes as demonstrated by HPLC [107]. 

Unfortunately, the authors were not able to determine the amount of PTX associated with 

MSCs-secreted exosomes; therefore the antitumor activity of this exosome-based 

formulation referred to the concentration of proteins of the conditioned media bound to 

PTX. A similar result was reported for HepG2 cells that were incubated with different 

anticancer agents: PTX, Etoposide, Carboplatin, Irinotecan, Epirubicin, and Mitoxantrone 

[108]. Exosomes released from drug-treated HepG2 cells demonstrated strong anti-

proliferative activity on the human pancreatic cell line CFPAC-1 and induced 

immunogenicity and HSPs-specific NK cell responses [108]. In another study, the 

breakdown of parental cells (monocytes/macrophages) loaded with anticancer agents, Dox, 

Gentamicin, 5-Fluorouracil, or Carboplatin with subsequent isolation of exosome-like 

nanoparticles was also suggested [91]. An interesting method to pack hydrophobic 

photosensitizers into membrane vesicles was developed by professor Ji-Ho Park and his 

team in South Korea [109]. The researchers treated parental cells with synthetic membrane 

fusogenic liposomes loaded with hydrophobic therapeutics. The drug-loaded liposomes were 

efficiently incorporated into the membrane of membrane vesicles in the parental cells and 

were consequently secreted from the cells.
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We developed a new approach of loading parental cells (monocytes/macrophages) with 

catalase followed by isolation of drug-loaded exosomes from conditioned media (Fig. 3, 

path B) [105,110]. To preserve the therapeutic protein against degradation in host cells and 

increase loading capacity, catalase was incorporated into a polymer-based nanocontainer 

before the loading. Importantly, the formulation design of this polymer-based nanocontainer 

was different from the commonly held approach, where a drug nanoformulation is prepared 

for systemic administration. Protective nanoparticles are typically size-restricted to avoid 

entrapment in MPS, focusing on small size nanoparticles with a PEG corona (to perpetuate a 

stealth effect). In contrast, the optimal nanoformulation for loading into parental cells had a 

relatively large size (c.a. 200 nm) that resulted in improved accumulation in parental cells, 

and drug reshuffling into exosomes. The cross-linking of polymer-based nanoparticles with 

an excess of a non-biodegradable linker ensured low cytotoxicity of the nanoformulation 

and efficient catalase protection in the parental cells [105,111].

Finally, isolation of drug-loaded exosomes secreted from genetically-modified parental cells 

has been suggested as a third way of manufacturing exosome-based formulations (Fig. 3, 

path C) [21,87, 110,112]. In this elegant approach, chicken egg ovalbumin, OVA, was 

loaded into membrane vesicles when parental cells were transfected with OVAC1C2 fusion 

complementary DNA (cDNA) consisting of the cargo-encoding gene, OVA, and the gene 

encoding a protein known to localize to membrane vesicles, C1C2 [112]. We developed a 

new drug delivery system for different therapeutic proteins, where macrophages were 

transfected with plasmid DNA (pDNA) encoding therapeutic proteins, catalase [113], or 

glial cell-line derived neurotropic factor (GDNF) [110] to treat neurodegenerative disorders. 

Another interesting approach for the incorporation of adeno-associated virus (AAV) capsids 

into extracellular vesicles to diminish their immunogenicity and improve gene delivery was 

suggested by Maguire et al. [114]. It was reported that during production, a fraction of 

released AAV vectors were associated with exosomes, termed vexosomes (vector-

exosomes), which outperformed conventionally purified AAV vectors in transduction 

efficiency in vitro.

4.2. Therapeutic effects of drug-loaded exosomes

Since exosomal carriers can provide advantages of both cell-based drug delivery and 

nanotechnology, interest in using exosomes for therapeutic approaches has exploded in 

recent years. Similar to viruses, these remarkable carriers are capable of traveling from one 

cell to another, easily passing their contents across the cell membrane due to their unique 

characteristics, and delivering their cargo in a biologically active form. Noteworthy, 

exosomes possess an intrinsic ability to cross biological barriers, including the most difficult 

to penetrate: the blood brain barrier (BBB).

Exosomes have been exploited as drug delivery vehicles for low molecular-weight drugs in 

several investigations [89–94,107,109]. In one of the first reports, exosomes loaded with an 

anti-inflammatory small molecule compound, curcumin, were shown to protect mice from 

lipopolysaccharides-induced brain inflammation [89,90]. The incorporation of curcumin in 

exosomes improved its solubility, increased circulation time, preserved drug therapeutic 

activity, and improved brain delivery. In another study, exosomes or exosome-like vesicles 
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loaded with different chemotherapeutics, Dox or PTX, were shown to traffic to tumor tissues 

and reduce tumor growth in mice without the adverse effects observed with the equipotent 

free drug [91–93]. Notably, the therapeutic effects of Dox-loaded exosomemimetic 

nanovesicles were greater than the commercially available Dox-loaded liposomes, Doxil; the 

liposomal formulation was inefficient in reducing tumor growth in this model [91]. Pascucci 

et al. observed that PTX-treated MSCs mediated strong anti-tumorigenic effects because of 

their capacity to take up the drug and later release it in extracellular vesicles [107]. In this 

study, PTX-treated extracellular vesicles induced a dose-dependent inhibition of human 

pancreatic adenocarcinoma (CFPAC-1) cell proliferation, and 50% inhibition of tumor 

growth in vivo. Next, membrane vesicles loaded with hydrophobic photosensitizers 

exhibited superior phototherapeutic effects compared to the polymer-based synthetic 

nanoparticles [109]. Thus, membrane vesicles fused more effectively with the plasma 

membrane of cancer cells than polymer-based synthetic nanoparticles, and enabled co-

delivery of hydrophobic and hydrophilic compounds into the cellular membrane and cytosol, 

respectively, largely bypassing the endosome/lysosome pathway. This strategy allowed 

hydrophobic photosensitizers to significantly penetrate both spheroids and in vivo tumors, 

thereby enhancing the therapeutic efficacy. Finally, exosomes derived from brain 

endothelial cell line, bEND.3, were loaded with anticancer drugs and used for systemic 

delivery across the BBB to treat gliomas [94]. This study tested the hypothesis that bEND.3-

derived exosomes can be utilized for the treatment of brain cancer in a xenotransplanted 

zebrafish model of brain cancer. Exosome-delivered Dox and PTX significantly decreased 

the fluorescent intensity of xenotransplanted cancer cells and tumor growth marker.

Another therapeutic avenue involves the use of exosomes to deliver exogenous siRNA 

[13,96–99,102,115–117]. Wahlgren et al. reported the efficient silencing of the target MAPK 

gene in monocytes and lymphocytes using peripheral blood exosomes with incorporated 

exogenous siRNAs [102]. In another investigation, Shtam et al. introduced two different 

exogenous siRNAs against RAD51 and RAD52 into exosomes derived from HeLa cells 

[115]. The exosome-delivered siRNA against RAD51 was functional and caused massive 

reproductive cell death of recipient cancer cells. The effect of exosome-siRNA gene 

silencing has also been validated in [116,117]. As an example, extracellular vesicles were 

used to transport siRNA targeted to miR-150, an oncomir, due to its promotional effect on 

VEGF [117]. It was demonstrated that the neutralization of miR-150 down-regulated VEGF 

levels in mice and attenuated angiogenesis.

The genetic modification of donor cells may be also used for targeting exosomes to the 

disease site. As an example, targeting of exosomes to the brain was achieved by engineering 

the parental DCs to express lysosomal-associated membrane protein 2 (Lamp2b), fused to 

the neuron-specific peptide derived from rabies virus glycoprotein (RVG) [13]. Systemically 

administered RVG-targeted exosomes delivered glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) siRNA specifically to neurons, microglia, oligodendrocytes in the brain, resulting 

in specific gene knockdown. The therapeutic potential of exosome-mediated siRNA delivery 

was demonstrated by the strong mRNA (60%) and protein (62%) knockdown of BACE1, a 

therapeutic target in Alzheimer's disease, in wild-type mice [13].
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Exosomes released from macrophages genetically-modified to express antioxidant, catalase, 

and glial cells-derived neurotrophic factor (GDNF) were suggested for the treatment of 

Parkinson's disease (PD) [110,113]. Mechanistic studies revealed that exosomes secreted 

from genetically-modified parental cells contained the encoded therapeutic protein, as well 

as its genetic material (DNA and mRNA), and NF-κb, a transcription factor involved in the 

encoded gene expression [113]. Drug-loaded exosomes were able to efficiently transfer their 

contents to contiguous neurons resulting in de novo protein synthesis in target cells. The 

transfected brain tissues showed month-long expression of the encoded protein and 

prolonged attenuation of neuroinflammation (over 40 days) in mice with neuroinflammation 

[113]. Overall, these reports indicate that exosomes may function as exceptional gene 

delivery vectors that are safe, efficient, organ/cell-specific, and nonimmunogenic. 

Nevertheless, significant efforts are required to develop these therapies for clinical use.

5. Using exosomal drug formulations in the clinic

In clinical settings, several approaches may be applied to introduce exosomal-based drug 

delivery systems. First, leukocytes harvested from peripheral blood by apheresis may be 

propagated and cultured, differentiated to specific cell types if necessary, and then exosomal 

carriers can be loaded with a therapeutic agent and re-administered back into the patient 

(Fig. 4). One of the major challenges in developing this approach is whether the production 

of exosomes could be scalable or reproducible [118]. Indeed, the exosome yield per cell will 

impact the final production cost as well as clinical applications. In this respect, the choice of 

parental cells is critical. For example, MSCs are known to produce large amounts of 

exosomes, suggesting that these cells may be efficient for exosome production in a clinically 

applicable scale [119]. Next, extended culturing of donor cells may considerably increase 

exosomal production. For example, culturing DCs for extended time period [29], or at low 

pH [120] increased the release of exosomes 5–10 fold. In another study, the breakdown of 

parental cells (monocytes/macrophages) loaded with anticancer agents, and isolation of 

exosome-like nanoparticles allowed a 100-fold higher production yield of the drug carriers 

[91]. Finally, specifically designed bioreactors that resemble bioreactors for tissue 

engineering [121] can be utilized for exosome production scale-up. Notably, exosomes can 

be concentrated, lyophilized, and reconstituted in aqueous solutions, as was reported in 

[105].

As an alternative approach, MSCs may be harvested from bone marrow, propagated in 

culture to obtain specific cell types, or even sub-types, and then exosomes may be loaded 

with a therapeutic agent. Although this approach would require a more invasive procedure, a 

significant amount of, as well as storage of, well-characterized exosomal carriers would be 

possible [122]. Furthermore, large scale production of therapeutically efficacious exosomes 

can be achieved through the immortalization of donor cells; for example, MSCs can be 

transfected by lentivirus carrying a MYC gene as was reported in [123]. MYC is a regulator 

gene that codes for a transcription factor that plays a role in cell cycle progression. The 

transfection allows for obtaining of immortalized cells, but does not alter the fundamental 

characteristics of these MSCs [123]. In this case, a library of various types of exosomal 

carriers for different drug formulations could be developed in the future, and stored in stock 

for emergency situations. Finally, exosomes may be isolated from other sources (bovine 
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milk, crushed grapes, etc.), purified, loaded with a drug and used for oral or intranasal 

administration.

In fact, exosomes have already been approved for use in several clinical trials, and our 

experience with exosome-based therapies in humans is rapidly expanding [124]. In 

particular, exosomes were puri-fied from monocyte cultures from 15 patients with advanced 

metastatic melanoma. The good manufacturing procedures (GMP) process allowed 

harvesting of about 5 × 1014 exosomal MHC class II carriers. Then, the exosomes were 

loaded with melanoma antigen ex vitro and administered in an autologous fashion in an 

attempt to promote anti-melanoma immunity via therapeutic vaccination. It was reported 

that patients well-tolerated repeated administration of autologous exosomes for up to 21 

months [125]. In a similar trial, non-small-cell-carcinoma lung cancer patients were injected 

with autologous exosomes weekly for 4 weeks, and similar low level immune responses 

were observed [126]. Finally, ascites-derived exosomes in combination with the 

granulocyte-macrophage colony-stimulating factor (GM-CSF) were utilized in the 

immunotherapy of colorectal cancer (CRC). A total of 40 patients with advanced CRC were 

enrolled in this clinical trial and received from 100 to 500 μg of exosomal formulations 

[127]. The exosome-based therapies were reported to be safe, feasible, and efficient in 

induction of antigen-specific T lymphocyte response, however, several technical obstacles 

remain, which must be overcome.

Finally, exosomes derived from grapes will be evaluated for cancer treatment in the clinical 

trial initiated at the James Graham Brown Cancer Center (NCT01294072). In this study, 

plant-derived exosomes are loaded with a low molecular-weight anti-inflammatory agent, 

curcumin, and administered orally into patients with colorectal cancer. The use of plant-

derived nanocarriers may solve one of the main problems in the field of exosome-based drug 

delivery: the isolation and purification of exosomes in sufficient quantities for therapeutic 

applications.

6. Conclusion

Drug-loaded exosomes may well serve as a next generation drug delivery mechanism that 

combines nanoparticle size with non-cytotoxic effects, a high drug carrying capacity, and a 

low immunogenic profile. Future investigations will focus on the production of large 

amounts of well-characterized exosomal carriers with high loading capacity. Indeed, 

exosomes should be able to carry a substantial amount of therapeutic cargo to qualify as 

drug delivery vehicles. Further tailoring exosomes can provide biologically-active carriers 

that may be modified in accordance to the disease and produce cytotoxic (for cancer 

treatment), or neuroprotective (for the treatment of neurodegenerative disorders) effects, 

enhancing the therapeutic outcomes. The fulfillment of these objectives will set a stage for 

the key steps of the subsequent industrial development of these novel therapeutic 

interventions including scaling up and quality control of production, rigorous 

pharmacokinetic and toxicological studies and, eventually, clinical testing.

Indeed, some technological, functional and safety features of exosomal-based drug 

formulations are yet to be addressed. Deficiencies in our knowledge of the molecular 
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mechanisms of exosomes biogenesis, and a lack of methods to interfere with the packaging 

of cargo or with vesicle release still hampers identification of their physiological relevance 

in vivo. Certainly, the complexity of these therapeutic interventions is challenging, yet they 

promise an unparalleled efficacy in the treatment of many life-threatening conditions, 

including those lacking effective pharmacotherapy.
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Fig. 1. 
A profound accumulation of exosomes (A, red) compared to polymer-based nanoparticles 

(B, red) in target PC12 neuronal cells stained for actin microfilaments (green) and nuclei 

(blue). (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 2. 
Schematic representation of different types of extracellular vesicles.
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Fig. 3. 
Different approached for drug loading into exosomes.

Batrakova and Kim Page 25

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
The flow of the production and delivery of exosomal drug formulations to the patient.
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