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Abstract

The paper describes the concept of magneto-mechanical actuation of single-domain magnetic 

nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its 

possible use for remote control of nanomedicines and drug delivery systems. The applications of 

this approach for remote actuation of drug release as well as effects on biomacromolecules, 

biomembranes, subcellular structures and cells are discussed in comparison to conventional 

strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative 

models describing interaction of functionalized MNPs with single macromolecules, lipid 

membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal 

characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single 

molecule responses in biological and bio-inspired systems are discussed. Altogether, the described 

studies and phenomena offer opportunities for the development of novel therapeutics both alone 

and in combination with magnetic hyperthermia.
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1. Introduction

The field of nanomedicine and drug delivery has undergone explosive development over the 

last decade. This development was prepared by the early work on the nanoparticulate drug 

carriers such as liposomes, drug–polymer conjugates, polymeric micelles, polyion 

complexes, and degradable nanoparticles in the 1980s and early 1990s. By the new 

millennium the nanomedicine and drug delivery field has become defined as a cross-section 

of medical, pharmaceutical, and biochemical engineering research that focuses on advanced 

therapeutic modalities of the base of nanomaterials ranging from about 10 nm to about 100 

nm in diameter. The term “nanomedicine” that emerged in science fiction and art very 

rapidly became anything but fantasy as dozens of nanoscale size therapeutics received 

marketing approval and many more new ones have entered clinical evaluation [1–6].

From the standpoint of the drug delivery science the nanomedicine tasks include 1) efficient 

loading of the drugs or biomacromolecules into a nanoparticulate carrier, 2) safe delivery of 

the loaded carrier to the target organ and/or cell in the body, and 3) timely release of the 

payload. Selected nanomaterials are being themselves sought as therapeutic, diagnostic or 

theranostic modalities that in some cases need to be actuated at the site of the action. The 

first task – loading has been addressed very well, for what purpose scientists initially 

adopted nanoscale structures already discovered by polymer and material sciences and then 

followed up by invention of the whole range of new nanomaterials specifically tailored for 

the drug delivery purposes such as block ionomer complexes, PRINT (Particle Replication 

In Non-wetting Template) nanoparticles and others. The second task remains a field of 

active research and discovery, where we have lately seen some successes and setbacks. 

Major challenges remain such as passive and active targeting, safety, host organism immune 

response, avoidance or employment of the reticuloendothelial system (RES), cell transport 

and endosomal escape. In spite of these challenges, however, we can reliably deliver 

therapeutically effective doses of some major anti-cancer and other medications using 

nanoformulations and have shown that these formulations can improve the therapeutic index 

compared to non-formulated molecules. The third task has not been addressed and is the 

field where the advances are still superficial at best. Poor drug release at the target site has 

hindered liposomal and micellar drugs and arguably is a major challenge for all DNA and 

protein delivery [7,8]. The nanomedicines of the future should provide for controlled release 

of the therapeutic agents, selective induction of cancer cell apoptosis, and other tasks that 

can be remotely actuated once these nanomedicines reach the site of their action [9–13]. 

Therefore, the search for the stimuli-responsive nanocarriers and versatile means for remote 

actuation of the cargo is an unmet need in nanomedicine. There have been many attempts to 

use chemical cues to trigger the target-specific release, such as acidic pH in the tumors, low 

endosomal/lysosomal pH, reductive intracellular environments, and tumor specific-enzymes 
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(cathepsins, metalloproteases, etc.) [14–16]. However, one should admit that the fidelity and 

robustness of these strategies might not be sufficient to achieve the desired goals.

Alternative approaches employ physical fields such as ultrasonic and ionizing irradiation, 

photodynamic/photothermal treatment, or electromagnetic field that can remotely affect the 

nanocarriers and their environment in the body [17–22] (Fig. 1). Of these fields the 

electromagnetic field offers substantial benefits for nanomedicine and controlled drug 

delivery as a remote actuation tool. Much of the early efforts focused on the use of radio 

frequency (RF) magnetic field and magnetic nanoparticles (MNPs) in magnetic 

hyperthermia used to kill cancer cells of trigger release of the drugs from heat sensitive 

nanocarriers (liposomes, vesicles, dendrimers, nanogels) [23–30]. More-recently, however, 

the attention has begun shifting to the very distinct effects of a magnetic field exerted on 

MNPs, namely the magneto-mechanical phenomena, which can be observed in an 

alternating magnetic field (AMF) of much lower frequency and in the absence of heating 

[31–33]. This new direction offers in our view enormous opportunities to nanomedicine and 

the drug delivery field. However, its future success is critically dependent upon a deep and 

cross-disciplinary understanding of the biological, chemical and physical phenomena 

underlying the interactions of the MNPs with the electromagnetic field and surrounding 

polymer cell and tissue environments. In this review, we focus primarily on these 

interactions rather on the current and future strategies for the design of the nanomedicines 

incorporating MNPs. Such strategies could be very diverse and there is no doubt that the 

mature and resourceful nanomedicine community will employ their skills and ingenuity to 

exploit the existing opportunities to use these novel materials to improve human health. We 

hope that the present review will be of help to this community. To this end, we first discuss 

some general principles of the interaction of a magnetic field with biological systems. Then, 

we provide a brief overview of the use of MNPs in RF magnetic hyperthermia, followed by a 

thorough consideration of the magneto-mechanic effects that are outside and beyond the 

classic hyperthermia concepts. Finally, we describe some physical models both published in 

literature and some extensions that could be helpful in understanding the magneto-mechanic 

phenomena and effects of non-heating super-low and low frequency magnetic fields.

2. Basis for the effects of magnetic field on biological processes

The thermal, electrochemical and electrophoretic effects of an electric/electromagnetic field 

have been well known and long used in therapy [34–36]. More recently the opportunities for 

the use of the magnetic field have attracted considerable attention. The AMF with a 

frequency f below 0.1 MHz is considered safe and can penetrate tissues (>1 m), which 

allows effective exposure of all potential targets in the human body [37].

Of course the direct effect of a magnetic field with conventionally used inductions (B = 0.1–

1 T) on the chemical bonds is insignificant. Such field is considered “weak” from the 

thermodynamic point of view as the energy UM ≈ μBB that such field can transmit to one 

electron (ion, radical, atom) is negligible compared to the energy of activation of 

biochemical reactions Ua ≈ 0.1–1 eV. In fact the UM value is several orders of magnitude 

less than the thermal energy UT ≈ kBTR ≈ 0.026 eV at room temperature TR (here μB = 

9.274 · 10−24 A · m2 – the Bohr magneton; kB = 1.38 · 10−23 J/K – the Boltzmann constant). 
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For example, for an electron, the paramagnetic center or radical UM ≈10−3UT at B = 0.5 TИ 

TR = 300 ĸ. The effects of the vortex electric field at the AMF frequency f ≪ 0.1 MHz and 

amplitude B < 1 T on the ions and electrons are also negligible. The Coulomb and Lorentz 

forces in this case are orders of magnitude lower than the threshold values of activation of 

the most sensitive biochemical systems such as ion channels and receptors of cell 

membranes (1 to 10 pN as measured by single molecule force spectroscopy) [38].

Therefore, the balance between the needed input and required energy of activation would 

make impossible any effects of magnetic fields with frequency < 0.1 MHz and amplitude < 1 

T on the chemical and biochemical systems in the state of thermodynamic equilibrium. 

However, the biochemical reactions and processes in cells and living organisms are not in 

thermodynamic equilibrium. As a result, the AMF and accompanying vortex electric field 

can affect the biochemical processes through several theoretically justified and 

experimentally validated mechanisms [39–43].

One extensively studied and well-established mechanism is based on spintronics. It involves 

the effect of the weak magnetic fields on the evolving, short-living thermodynamically 

unstable states of the spin subsystem that can take place in radical chemical reactions, 

photoluminescence and electron transfer in non-homogeneous magnetic environment [44–

49] (Fig. 2a). For several decades researches have focused on the possibility of significantly 

altering the kinetics and yield of the spin-dependent chemical processes in the liquid and 

solid phases using weak magnetic fields [44–48]. The effects of such fields on the solid-state 

quasi-chemical reactions, micro and macro-scale characteristics of the nonmagnetic crystals 

and polymers and their relaxation processes have been also well documented [50–53]. In 

these cases due to the lack of thermodynamic equilibrium in the evolving spin and atomic 

subsystems the weak magnetic field acts as a “catalyst” of sorts. It does not contribute to the 

total energy of the system but can change the spin state of the short living radical or ion–

radical pair and as a result of inter-combinational transitions reduce spin-prohibition to the 

reaction processes that would not be possible in the absence of the field. Thereby the 

magnetically induced spin conversion leads to changes in the reaction rate constants, the 

yields and ratios of the reaction products. However, several strict kinetic conditions need to 

be met for spin conversion to proceed and it appears that meeting those conditions in 

biochemical environments, especially in vivo, is challenging [49].

Introducing either synthetic MNPs or natural magnetosomes in biological systems is known 

to amplify the effect of the magnetic field on these systems. This approach creates flexible, 

controllable and well-defined methods for the remote control of biochemical processes both 

in vitro and in vivo. Nearly all MNPs with a diameter ≪ 100 nm are single-domain meaning 

in first approximation that all magnetic moments of the atoms in the crystal lattice of the 

particle are aligned along the same axis of easy magnetization. From the physics standpoint, 

the presence of such MNPs in an otherwise magnetically disordered environment (aqueous 

solution, cell or tissue) induces a very localized effect of the external magnetic field. 

Specifically, upon exposure of the magnetite (Fe3O4) nanoparticle with d = 15 nm, to a 

magnetic field of B = 0.5 T this nanoparticle acquires the energy UM ≈ JSρVMB ≈ 100 kBT 
(JS ≈80 A m2/kg – saturation magnetization of the magnetite MNP, ρ - MNP density, VM – 

MNP volume). This energy is ~105 higher than that of the single electron or radical, which 

Golovin et al. Page 4

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



clearly defines the potential effects of MNPs in the biological context. Two mechanisms of 

utilization of this energy – magnetic hyperthermia (Fig. 2b) and magneto-mechanical 

actuation (Fig. 2c) are considered more closely in this paper.

3. RF magnetic hyperthermia

Magnetic hyperthermia is the most extensively studied technique to utilize the energy that 

MNPs acquire in an AMF in therapeutic applications. The merits of hyperthermia as a 

means to trigger cancer cell death have been well established. The National Cancer Institute 

recognizes three categories of hyperthermia treatment for cancer: localized, regional and 

whole body hyperthermia [54]. Localized hyperthermia involves exposure of the tumor to 

high temperatures (>43 °C) to enact cell destruction and tumor regression [55]. Exposure to 

T = 43–46 °C induces apoptosis and ablation of cancer cells. A temperature increase above 

46 °C induces necrosis, which can cause general system intoxication [24–26,56,57].

MNP mediated hyperthermia involves the administration of nanoparticle-based colloidal 

dispersions followed by application of an external AMF exposure. Heat generation of 

magnetic hyperthermia is caused by the interaction of the applied AMF and the magnetic 

moments of the MNPs [27]. Nanoparticles below 100 nm can be thought of as a single 

magnetic dipole whose response to an alternating magnetic field occur primarily through 

two mechanisms referred to as Neel and Brown relaxations (Supplementary material 1). 

Neel relaxation is caused by the movement of the magnetic moments relative to the crystal 

lattice structure of the single-domain MNP. In contrast, Brown relaxation involves the 

movement of the MNP relative to the surrounding medium [24]. The dissipation of the 

magnetic energy as a result of these processes results in the heat release, which can be 

quantified as the amount of the generated heat – Specific Absorption Rate (SAR). The 

parameters of and duration of exposure to the AMF, the MNP composition, size and shape, 

the MNP local concentration and aggregation state, all affect SAR. Therefore, both the 

applied field and the MNPs must fit certain criteria to cause hyperthermia.

3.1. Properties of the MNPs for magnetic hyperthermia

When designing a nanoparticle system for use in magnetic hyperthermia there are several 

criteria that should be considered. The most obvious criterion for biomedical applications is 

lack of intrinsic cytotoxicity. The lack of toxicity and ease of clearance have made magnetite 

and maghemite (γ-Fe2O3) the focus of most MNP studies. However, the techniques required 

to produce maghemite are very complex making magnetite a more suitable choice of 

material [55].

The magnetic properties of MNPs are very strongly correlated to their size, morphology and 

structure making the method of synthesis incredibly important. The synthesis technique 

should allow for good control over particle size, size distribution and shape [54]. In addition, 

the technique should yield highly reproducible results. There are several techniques used to 

synthesize MNPs including co-precipitation, thermal decomposition, microemulsion and 

sol–gel with co-precipitation and thermal decomposition being the most common [54]. The 

general approach to MNP synthesis requires the nucleation stage to occur before and 

independently of the growth stage to yield particles that are or close to monodisperse. The 
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most common method of chemical synthesis, called the co-precipitation technique, is the 

simplest method because it can be completed in water, under ambient temperatures and takes 

less than an hour [54]. The main advantage is that the process is highly scalable and MNPs 

can be produced in large quantities of relatively narrow size distribution. However, there is a 

limit to the control over the size distribution and, in addition, there is little control over the 

particle shape [58]. Very close to monodisperse MNPs can be synthesized through thermal 

decomposition of iron precursor compounds in high-boiling organic solvents in the presence 

of surfactants [54]. The obvious disadvantages of this synthesis approach are the high 

temperatures needed and the amount of time it takes for the reaction to finish. However, the 

extreme control over size along with the scalability of this technique make it ideal for 

biomedical applications [59].

The magnetic characteristics of MNPs depend on their submicron core size [60]. Generally, 

maximal SAR is observed when the relaxation time determined by the MNP composition 

and size is equal to the inverse frequency of the AMF. Studies have shown that the SAR of 

magnetite nanoparticles decreases as the nanoparticle diameter increases above 50 nm [61]. 

Thus, in order to achieve more efficient magnetic hyperthermia, many studies focused on 

particles below this 50 nm threshold. The heating capacity of maghemite particles in a RF 

AC field is also very strongly correlated with nanoparticle size, with the more efficient 

heating occurring with particles of 14–16 nm in diameter [61]. Such dependence on size is 

evidence that the predominant mechanism of heat generation is Neel relaxation because it 

characteristic time is exponentially dependent upon the volume of the MNPs. In contrast, the 

characteristic time of the Brown relaxation is less dependent upon particle size and the 

power dissipation via Brown relaxation becomes predominant with particles of larger 

diameter. This size dependence makes the MNP uniformity very important because broad 

size distributions make the proportion of heat generating particles smaller.

MNPs synthesis technique and coating have been shown to have a very important effect on 

SAR but these effects and their underlying mechanisms have not been thoroughly 

elucidated. A large body of in vitro work has been done using MNPs of varying 

compositions and synthesis techniques. MNPs with magnetite cores make up the majority of 

the work. For example, Guardia et al. synthesized nanocubes coated in polyethylene glycol 

(PEG) using thermal decomposition to achieve approximately 50% cell death in cancer cells 

by increasing the cellular temperature to 43 °C for up to an hour post-treatment [62]. In a 

similar fashion Samanta et al. utilized the co-precipitation technique to synthesize magnetite 

core nanoparticles coated in bovine serum albumin [63]. These nanoparticles with an 

average diameter of 28 nm were used to provide efficient heating and hyperthermia in HeLa 

cells while producing little cytotoxicity in the absence of an AC magnetic field [63]. 

Maghemite is also a popular choice for a core material when designing MNPs though as 

stated earlier, the synthesis methods involved with maghemite are slightly more complex. Le 

Renard et al. have developed an in situ forming polymer gel system with entrapped silica 

microparticles and MNPs. They synthesized the maghemite nanoparticles using the sol–gel 

technique and studied the heating efficiency of the system after exposure to a RF magnetic 

field [64]. Many of the in vitro MNP systems suffer from in-sufficient cellular uptake that 

leads to a less pronounced cytotoxicity. To combat this, Sonvico et al. developed folate-

targeted maghemite nanoparticles. They developed dextran and PEG coated nanoparticles 
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via the co-precipitation technique followed by folate conjugation using standard N-

hydroxysuccinimide chemistry. They were able to achieve very high cellular uptake 

particularly in folic acid overexpressing cell lines [65]. Unconventional uses of magnetic 

hyperthermia have also been explored. For example, Huang et al. successfully used ferrite 

nanoparticles to remotely control the temperature sensitive TRPV1 ion channel [66]. A more 

detailed review on the methods of preparation of the MNPs and the recent advances of their 

uses in the magnetic hyperthermia can be found elsewhere [54,67].

3.2. Field requirements for magnetic hyperthermia

Magnetic hyperthermia requires MNPs that can release heat when exposed to an AMF of 

sufficient frequency and strength. The temperature of the surrounding tissue must increase 

above 42 °C for at least 30 min to induce subsequent cell death [67]. Energy is absorbed by 

the MNPs and dissipated as heat by one of mechanisms mentioned previously. These 

mechanisms occur due to interaction between the magnetic component of the applied 

electromagnetic field and the magnetic moments of the MNPs. Therefore, the design of the 

field space is very important for achieving efficient hyperthermia.

The magnetic field strength and frequency are two parameters that vary wildly across much 

of the current MNP work. Generally the product of the field frequency and intensity of the 

magnetic field (in the absence of MNPs) should not exceed the threshold of 4.85 · 108 A · 

m−1 s−1, which is considered safe and avoids significant eddy current heating in healthy 

tissue [68]. According to well-known equations governing power loss density and specific 

loss power, there is a linear dependence on frequency and a square relationship with 

amplitude of the applied field [56]. Since the heat generation by MNPs during the exposure 

to an AMF as a first approximation is proportional to frequency f the custom approach to 

magnetic hyperthermia utilizes fields with a frequency of 100 < f < 800 kHz. An AMF with 

a frequency above 1 MHz generates non-specific heating of the surrounding tissues due to 

eddy currents and dielectric losses. In addition, at very high frequencies the thermal losses 

become frequency independent and are instead dependent upon the square of the field 

strength [56]. Below 100 kHz frequency at commonly used field strengths B = 10–20 mT, it 

appears that MNPs generate insufficient heating effects and thus, these frequencies cannot 

be used for magnetic hyperthermia. The AMF below these frequencies can be called non-

heating magnetic fields.

3.3. The concept of local heating in magnetic hyperthermia

A conventional approach to the hyperthermia aims to generate large amounts of heat to raise 

the temperature within entire tumor volumes. However, this approach requires relatively 

high local concentrations of MNPs within a tumor. Given the well-known difficulties of 

delivery of nanoparticles to tumors after systemic administration, and relatively limited 

penetration of nanoparticles within the tumor mass it may be difficult or nearly impossible to 

achieve sufficient tumor concentrations of MNPs after their systemic administration. This 

may limit the use of conventional magnetic hyperthermia to direct injections of MNPs into 

localized solid tumors where it has shown limited success [69].
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It has been pointed out, however, that in order to kill cancer cells one needs to localize the 

heating within this cancer cell, which underlies the so-called concept of intracellular 

hyperthermia [70–74]. MNP mediated temperature increase was proposed to increase 

permeability of lipid vesicle membranes to induce drug release from these vesicles by the 

RF AMF [75]. Moreover, the localized temperature increase mediated by manganese ferrite 

(MnFe2O4) MNPs (6 nm in diameter) was suggested to activate a temperature-sensitive ion 

channel and neurons and induce a whole organism response without observable toxic 

response to the cells [66]. In support of this mechanism the localized (not bulk) temperature 

increase was measured using a fluorescence reporter molecule attached to the surface of the 

MNP (although it should be pointed out that the field frequency used in this study was 40 

MHz and B ≈ 0.84 to 1.25 mT) [66]. However, another study involved measurements of 

fluorescence of quantum dots immobilized on MNPs at a much lower frequency range (f < 1 

MHz and ≈ 0.6 mT) to avoid dielectric heating of the water [76]. In this study no changes in 

the surface temperature were found as per the theoretical predictions.

The feasibility of a temperature increase within a volume of a single cell or on the surface of 

a nanoparticle has been discussed with certain skepticism. Thus, a theoretical study by Rabin 

has concluded that conditions of hyperthermia could only be met within a cluster of several 

cells that are densely and fully loaded with MNPs [77]. Similar considerations and 

conclusions based on the theoretical analysis of the thermal diffusion using the Fourier 

differential heat equation were presented in a number of other studies [33,78–82]. Such 

analysis is presented in Supplementary material 2. It generally suggests that a local 

temperature increase at the surface of the MNP lies in the range of 10−7–10−6 ĸ. Moreover, 

the estimates suggest that a local increase of the temperature in the center of a dense cluster 

of hundreds of MNPs should not exceed 10−4 ĸ.

Based on these conclusions of improbable increase of intracellular temperature several 

authors hypothesized that the cell death and other phenomena mediated by MNPs in an 

AMF may involve non-thermic but still localized mechanisms of power release to the 

membranes and other biological structures in the vicinity of MNPs [83–85]. Such effects are 

considered below.

4. Observation of magneto-mechanical actuation in biological systems

Current literature provides few examples suggesting the possibility of magneto-mechanical 

actuation of biological systems using functionalized MNPs activated by an AMF (Fig. 3). 

For ease of consideration, we have subdivided these examples into two major groups. In the 

first group the authors initially aimed to study magnetic hyperthermia using an AMF with 

relatively high frequencies from 100 to 700 kHz. However, their work could not fully 

explain the observed effects just by the AMF-induced heating of the MNPs, and therefore 

they had to imply some non-thermic mechanisms. In the second, currently much smaller 

group, the authors deliberately used a low or super low frequency AMF to either decrease or 

exclude the heating (since, as to a first approximation, the heating is directly proportional to 

the frequency, f). In most cases the second group studies used an AMF with f < 100 Hz and 

in rare cases up to 6 kHz.
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4.1. “Non-thermic” phenomena in magnetic hyperthermia

In a growing number of studies the authors initially focus on magnetic hyperthermia, but 

along with interpretations based on assumptions of intracellular heating also suggest that the 

observed phenomena could be explained by non-thermic mechanisms. For example, the 

studies involving dendritic cells loaded with small magnetite MNPs (13 nm magnetite core; 

104–105 MNP/cell) suggested that exposure of the cells to an AMF (B = 16 mT, f = 260 

kHz) results in the death of 95–98% of cells [83,86–88]. At the same time the exposure led 

to only a marginal increase in the temperature from 26 to 29–30 °C, which could not explain 

the cytotoxic effect. Neither the MNPs alone nor the AMF alone produced a cytotoxic effect. 

Initially, the authors suggested that the observed effect was due to the localized 

“intracellular” heating. However, a more recent review of their own and other published data 

concluded that 5 out of 12 studies involving magnetic hyperthermia did not detect an 

increase of the temperature that would be sufficient to kill the cells [88]. Thus, it was 

suggested that despite a common use of the term “magnetic hyperthermia” in different cells, 

under a different AMF several distinct mechanisms of cell death via apoptosis or necrosis 

could take part, including those that are not thermic or not entirely thermic.

Moreover, the paper by the group of C. Rinaldi directly suggested that MNPs and an AMF 

can kill cancer cells in the absence of heating [89]. In the experiment described in this study 

a triple negative breast cancer (TNBC) MDA-MB-468 cell culture was maintained at 37 

± 0.2 °C during the entire period of exposure to the AMF (B = 47 mT, f = 233 kHz). To 

target the epidermal growth factor receptor (EGFR) displayed at the surface of these cells 

the MNPs were conjugated to epidermal growth factor (EGF). The targeted MNPs, upon 

exposure to the field, produced a significant (up to 99.9%) reduction in cell viability 

compared to the untargeted particles. The authors noted that the increased cell death was 

observed without the need for the perceptible temperature rise, under the conditions when 

cell apoptosis could not be expected. Therefore, they suggested that there could be either a 

local heating mechanism resulting in denaturation of the EGFR at the MNP surface or some 

mechanical affect on the EGFR by the bound MNPs. In a more recent work, the same group 

suggested that EGF-modified MNPs in an AMF can disrupt lysosomes and induce cell 

apoptosis in the absence of bulk heating [85]. As a mechanistic explanation they propose 

energy dissipation either through heat dissipation and/or “mechanical rotation” of the MNPs 

in the AMF to create shear and pulling stresses in lysosomal cell membranes, which increase 

their permeability.

Similar results were reported in a few other studies [90,91]. In particular, the apoptosis of 

the mouse skin fibrosarcoma cell line was observed upon increase of the temperature from 

28 °C to 33 °C during exposure of the cells to the AMF (B = 33.5 mT, f = 265 kHz, time of 

exposure te = 10 min) [90]. In another study HeLa cells were incubated at 37 °C with silica-

coated ferromagnetic nanoparticles of manganese oxide perovskite La0.56(SrCa)0.22MnO3 

[91]. The 30 min exposure of these cells to an AMF (B = 15 mT, f = 100 kHz) resulted in 

cell death via apoptosis while the bulk temperature increase was negligible and the 

temperature was always below 37.6 °C.

It needs to be pointed out that most studies that reported the thermic effect being small (less 

than few °C) or insufficient to explain the field induced cell death, used fields with relatively 
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low (for magnetic hyperthermia) frequency (f = 100 to 250 kHz) and magnetic induction (B 
= 10 to 35 mT) along with relatively short exposure times (<1000 s). It is not surprising 

therefore, that these conditions reduced the heating contributions in the registered 

phenomena and could expose the non-thermic effects of the AMF.

The non-thermic hypotheses discussed in the above-described publications indeed have a 

physical rationale. MNPs subjected to a field, in addition to heating (which is due to 

magnetic relaxation–re-orientation of the MNP magnetic moments μ in the field) also 

undergo a mechanical effect (Fig. 2c). In a uniform AMF with induction B there is a rotation 

moment L = μ × B; in a non-uniform AMF the rotation moment is supplemented by force F 
= (μ · ∇)B.

The study by Saville et al. has pointed out that suspensions of small (e.g. 20 nm in diameter) 

superparamagnetic MNPs if not stabilized by long polymer brushes can form linear chain-

like aggregates in the presence of an applied external AMF [92]. The measurements were 

conducted using an AMF with f = 150 kHz and B = 60 mT. The formation of these chains 

may have a dramatic impact on the biological systems, by altering the capacity of the 

particles to transfer magnetic energy to the surrounding cells for example by disrupting 

intracellular organelles.

One possible non-thermic mechanism proposed by Carrey et al. is the generation of 

ultrasound by MNPs in the inhomogeneous AMF [84]. This work proposed a theory for the 

generation of ultrasound by MNPs that undergo reverse-translational motion in viscous 

media in the AMF. It is well known that ultrasound both in cavitation and pre-cavitation 

mode can induce chemical and biological effects [93–102]. Notably, these effects do not 

require physical attachment of the MNPs directly to the affected molecules. However, 

ultrasonic activation of biological systems by MNPs has some principal limitations. 

According to the estimates reported by Domenech et al. the generation of the ultrasound of 

sufficient power requires the concurrent high frequency of the AMF (f ~ 1 MHz), high 

solution viscosity η (~1 Pa·s, that is ~103 times higher than that in water) and high gradient 

of the field (100–1000 T/m) [85]. Such combination of conditions is difficult to realize in 

living cells and especially in the human body. Moreover, the high gradient of the AMF 

should induce rapid migration and redistribution of the MNPs within the volume of the 

living objects, which should complicate the control over the exposure to the field and have 

its own unfavorable side effects. Based on this, we may draw two conclusions: 1) in most 

studies described above the conditions for the ultrasound effects of MNPs in the non-

uniform AMF were probably not met; and 2) the use of the ultrasonic activation of MNPs in 

such AMF in living systems is not practical.

4.2. Drug release remotely actuated by an AMF

A number of studies used magnetic heating to achieve controlled release of therapeutic 

agents from thermo-responsive drug carriers. Some of these studies observed effects that 

could not be explained by a purely thermic mechanism of activation.

Several studies used superparamagnetic MNPs embedded into or attached to lipid 

membranes of the so-called magnetoliposomes to disrupt these membranes by the 
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application of an AMF and thereby release a drug (or a probe that mimics a drug) 

encapsulated in the liposomes. Thus, Amstad et al. studied the release of calcein, a common 

fluorescent marker from the aqueous cavity of magneto-liposomes in which small MNPs of 

approximately 5 nm in diameter were hydrophobically coated with palmityl-nitroDOPA and 

incorporated in the lipid membrane [75]. The release was triggered by 5 min long AMF 

pulses (f = 230 kHz). Notably, the probe was released at a much lower temperature than the 

temperature at which the membrane phase transition would have occurred. A very similar 

study by Chen et al. used oleic acid coated 5 nm maghemite (Fe2O3) MNPs incorporated in 

membranes of 100 nm unilamelar liposomes [103]. This study demonstrated 

carboxyfluoresce-in release from the magnetoliposomes after their continuous exposure 

(2400 s) to an AMF (B ~ 2.6 mT; f = 281 kHz). In this case, the authors noted the bulk 

temperature increase of the sample due to the conductive heat transfer from the coil. 

However, this increase alone was not sufficient to alter the liposomal membrane 

permeability. Qiu and An examined release of calcein from 100 nm liposomes containing 

sodium bis(2-ethylhexyl)sulfosuccinate (AOT) coated magnetite MNPs [104]. Exposure of 

these liposomes for several minutes to an AMF of the sound frequency (no more data was 

provided in this paper about frequency, magnetic induction and gradient of the field) led to 

an accelerated release of calcein. Notably, the release of calcein at the same temperature 

upon bulk heating was several times slower than that produced by AMF activation. 

Therefore, the authors speculated that the permeability could increase due to both, moderate 

heating of the liposomes by the AMF and field-induced motions of the MNPs in the 

liposomal membranes that induced phase transition in these membranes and increased their 

permeability.

A very interesting study by Peiris et al. described the composite structures with chains of 

average 3 MNPs of 27 nm in diameter attached to 30 nm liposomes loaded with doxorubicin 

[105]. Exposure of these structures to the low frequency AMF (B = 0.5–2.5 mT, f = 10 kHz) 

led to drug release from the liposomes. No temperature increase was observed in this 

experiment, which was not surprising given low magnetic induction and field frequency. The 

authors explained the field-induced release of the drug by the mechanical disruption of the 

liposomal membrane caused by the motion of the MNP chains. Notably, this study 

demonstrated the AMF-induced death of the cancer cells pre-treated by these drug-

containing structures as well as considerable antitumor effect in breast tumor-bearing rats 

treated intravenously with these structures 24 h before application of the magnetic field. In a 

more recent study by the same group this strategy was successfully used to demonstrate 

proof of concept for an improved method of glioblastoma treatment [106].

In a series of papers by Nappini et al. the release of fluorescent probes (carboxyfluorescein 

or Alexa 488-C5) from the magnetic liposomes was accelerated by exposure of these 

liposomes to the sound frequency AMF (B up to ~300 mT; f from 0.2 to 6 kHz, gradient up 

to 10 T/m) [107–109]. The authors prepared either large unilamellar liposomes (LUVs) 

~160 to 200 nm in diameter or giant unilamellar vesicles (GUVs) ~5 to 50 μm in diameter, 

both incorporating cobalt ferrite (CoFe2O4) MNPs. The MNPs were ~10 to 16 nm in 

diameter and, depending on the surface coating, were incorporated either in the inner 

aqueous pool of the liposomes (negatively or positively charged MNPs) or in the lipid 

membrane (MNPs coated with a hydrophobic oleic acid shell) [107–109]. The concentration 
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of MNPs varied from 0.2 to 30 particles per liposomes. The exposure of these magnetic 

liposomes to the low frequency AMF resulted in the release of the probe, which increased as 

the frequency of the field, exposure time, or diameter and concentration of the MNPs 

increased. The authors explained their results by the formation of local pores or defects in 

the membrane, or some other structural changes of the bilayer that contributed to the 

permeability increase. Notably, in order to reduce the heating contribution of the MNPs in 

the AMF they have deliberately selected field frequencies several orders of magnitude lower 

than those needed for the magnetic hyperthermia. Yet the field amplitude was several times 

higher than in most hyperthermia studies, and thereby the heating component could not have 

been excluded. The experiment was carried in thermostatic cells at 25 ± 0.1 °C. However, 

the temperature may have increased not only due to the AMF but also the heating of the 

magnetic inducer as the setup did not appear to include its cooling. Overall, the observed 

effects were explained by a combination of hyperthermic effects and nanoparticle 

oscillations in the vesicles pool.

In addition to the liposomes a number of other nanomaterials with embedded MNPs have 

been proposed for controlled release. For example, Banchelli et al. immobilized thiolated 

oligonucleotides (10- and 18-mer) on cobalt ferrite MNPs with a gold shell (diameter 20 nm, 

diameter of CoFe2O4 core ~12 nm), and then cross-linked the resulting DNA-functionalized 

MNPs by hybridization with half-complementary DNA sequences [110]. The hybridization 

resulted in the self-assembly of the MNP–DNA clusters. Upon treatment of the clusters with 

the low frequency AMF (f = 6 kHz) over several minutes a considerable portion of the 

double strand DNA (up to ~40%) dissociated and released a single-strand DNA. 

Interestingly some small amount of double strand DNA was also released suggesting 

cleavage of the double strands from the gold surface during the treatment. The melting 

temperature of the double strands, which ranges from 50.8 to 53.5 °C and, based on our own 

estimates of the SAR by MNPs for this system, was most likely not achieved during the 

experiment (although data on temperature was presented). However, the authors concluded 

that the main reason of the observed effect is the DNA melting due to the local increase of 

the temperature.

A recent study prepared micellar structures by blending an amphiphilic block copolymer, 

poly(N-isopropylacrylamide-co-acrylamide)-block-poly(ε-caprolactone) and magnetite 

MNPs, hydrophobically coated with oleylamine (11 nm in diameter). The resulting ~70 nm 

in diameter aggregates were loaded with doxorubicin. The “magnetic” heating of these 

aggregates to 45 °C using an AMF (f = 330 kHz) resulted in 3 times faster release of the 

drug than the bulk heating to the same temperature in a water bath [111].

Thomas et al. described an interesting nanomaterial using mesoporous silica nanoparticles 

(MSNs) with zinc-doped iron oxide nanocrystals impregnated within a mesoporous silica 

framework [112]. The MSNs with a mean hydrodynamic diameter ranging from ~200 nm to 

~300 nm were obtained by polymerization of silica precursor, tetraethylorthosilicate, on the 

cetyltrimethylammonium bromide (CTAB)-stabilized nanocrystals (15 nm). The MSNs were 

loaded with a concentrated probe (rhodamine B) or drug (doxorubicin) solutions and then 

sealed with cucurbit[6]uril to contain the solutes within the MSNs silica pores. The solutes 

were released from the MSNs by either bulk heating or local internal heating generated by 
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the nanocrystals upon exposure to an AMF (f = 500 kHz, amplitude 37.4 kA/m). After 

breast cancer cells (MDA-MB-231) were treated with doxorubicin-loaded particles and 

exposed to the AMF cell death occurred. To exclude the effect of the bulk heating on the 

drug release some experiments were carried out at 0 °C, which did not impede the field-

induced release of nearly 90% of the entrapped solute. The authors interpreted their 

observations in terms of local internal heating, but it is interesting that the greater release 

was observed when the AMF was supplied in pulses rather that continuously, which, as 

discussed below, could not be entirely explained by local heating.

In some cases the MNPs are not incorporated within the thermosensitive nanoparticles but 

rather blended with them forming a composite material with remotely controlled drug 

release characteristics. For example, Langer and co-workers described a drug delivery device 

based on nanocomposite membrane containing thermoresponsive nanogels and 

superparamagnetic MNPs that can provide reversible, on–off drug release upon application 

(and removal) of an AMF [113,114]. The membrane consisted of ethyl cellulose membrane 

support, the superparamagnetic magnetite nanoparticles (10–20 nm), and thermosensitive 

poly(N-isopropylacrylamide) (PNIPAM)-based nanogels. The nanogels were relatively large 

and in aqueous dispersion underwent size change from about 700 nm to about 350 nm upon 

temperature increase from 37 °C to 50 °C. The magnetic heating of the membrane was 

induced by its exposure to an AMF (B up to ~20 mT; f = 220–260 kHz), which resulted in 

the collapse of the membrane impregnated nanogels and the increase of the membrane 

permeability with respect to both low molecular mass compounds and macromolecules.

In another study Štěpánek and colleagues co-incorporated thermosensitive liposomes of 

approximately 100 nm in diameter, preloaded with a fluorescent dye, and 15 nm iron oxide 

MNPs within microgel beads using the inkjet technique [115]. The size of the microgel 

beads ranged between 40 and 80 μm and therefore every bead contained multiple liposomes 

and MNPs. Upon exposure of these beads to an RF AMF (B = 20 mT; f = 400 kHz) the 

MNPs within the beads generated heat and the liposomes released the dye on demand. 

Interestingly, this experiment shows the limitations of the magnetic hyperthermia approach 

for the drug release purposes. No release was observed after the application of the AMF 

starting from the base temperature of 25° or even 37 °C when the concentration of the beads 

in the solution was 1%. Since the release for the liposomes could only start at approximately 

40–45 °C, these temperatures could not be reached by AMF heating for the diluted system 

due to rapid heat dissipation to the environment. In order to reliably exceed the phase 

transition temperature of the lipid bilayer, a concentration of at least 25% has to be used. 

Obviously, such concentration may not be achievable in many delivery situations in the 

body, which demonstrates the limitations of the “pure” magnetic hyperthermia.

4.3. Magneto-mechanical stimulation of cells by an AMF

In order to reduce the heating contribution of the MNPs in the AMF to negligible levels and 

increase the mechanical component, some groups have deliberately selected field 

frequencies that are several orders of magnitude lower than those needed for the magnetic 

hyperthermia. Under conditions of a low-frequency AMF at B ≪ 1 T and f < 100 Hz both 

local and bulk heating of cells and tissues can be neglected at any possible concentration of 
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the MNPs. In this case, however, the field can actuate mechanical motion of the MNPs, 

which in turn can affect the cells, subcellular structures and biomacromolecules to which 

such MNPs are attached. In brief, the results of the studies of such magneto-mechanical 

phenomena are summarized in this and following sections.

In particular A. J. El Haj and J. Dobson have engineered a special magnetic bioreactor in 

which AMF with an amplitude of up to 120 mT, gradient 11 T/m and frequencies from 0 to 

1 Hz can be generated by the mechanically moved set of permanent magnets [116,117]. All 

experiments by these investigators described below were carried out using this bioreactor.

In one study Fe3O4 or CrO2 micro- and nanoparticles ranging from 250 nm to 2.7 μm in 

diameter, were modified with either anti-His antibodies or complexes of nickel and 

nitrolotriacetic acid (Ni–NTA) (similar to those used in the purification of His-tagged 

proteins) to “target” the 6 histidine (6-His) loop regions of the recombinant protein ion 

channels TREC-1 [118]. TREC-1, a member of the ‘background leak’ family of tandem pore 

potassium channels (2PKC) highly expressed in various cells, is a true mechano-sensitive 

channel that also shows sensitivity to a diverse range of other stimuli including temperature, 

cellular lipids, free fatty acids, intracellular pH, G-protein-linked receptors and second 

messenger systems. The study demonstrated that manipulation with particles bound to 

TREK-1 resulted in activation of the channel activity in 6.His.loop.TREK-1 transfected 

COS-7 cells suggesting increased conduction of K+ ions. These responses to magnetic 

particle stimulation were typically transient, lasting 2–10 s, which as the authors suggested 

was probably due to a desensitization of the TREK-1 channels to the mechanical stimulation 

or an adaptation of the cells to the applied stimulus. Notably, there was no obvious 

difference in the nature of responses following static or 1 Hz MNP stimulation which could 

suggest that the desensitization of TREK-1 channels to the initial stimulus failed to recover 

in time to show subsequent responses. Responses were absent when particles were coated 

with RGD (Arg-Gly-Asp) peptide that does not bind to TREK-1 or when magnetic fields 

were applied in the absence of magnetic particles. The observed phenomenon appeared to be 

similar to that of the “magnetic tweezers” with even the smallest of the nanoparticles 

affecting the individual ion channels. The estimate of the force generated by the MNPs as a 

result of the effect of the gradient field varied from 0.2 pN for the smallest (250 nm) to 40 

pN for the largest (2.7 μm) particles [118]. Subsequent work applied magneto-mechanical 

stimulation to human bone marrow stromal cells (hBMSC) labeled with 250 nm magnetic 

beads targeting TREK-1 [119]. In this case the cells were stimulated with an AMF for 1 h 

each alternate day at cyclic loading intervals (f = 1 Hz, 1–100 pN/particle). Repeated 

stimulations resulted in enhanced proteoglycan and collagen synthesis, extracellular matrix 

production and elevated the expression of type-1 and type-2 collagen in vitro and in vivo 
(with cells encapsulated into polysaccharide alginate/chitosan microcapsules and implanted 

subcutaneously in mice).

In another study, this group demonstrated magneto-mechanical actuation of human 

osteoblasts cells using magnetic microparticles (4.5 μm) that were either integrin attached or 

internalized in the cells [120]. In this case the cells responded to the application of a static 

magnetic field (~56 mT; gradient ~4.0 mT/mm) by changes in the intracellular calcium 

signaling as was monitored by measuring the intracellular Ca2+ concentration. Interestingly, 
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the responses were greater when the magnetic microparticles were internalized in the cells 

rather than attached to the cell surface. Subsequently, the same authors applied magneto-

mechanical stimulation in a tissue engineering application to induce differentiation of stem 

cells and bone formation [121]. This study used 250 nm MNPs modified with antibody to 

cell membrane receptors, platelet-derived growth factor receptor α (PDGFRα) or integrin 

αvβ3. The magneto-mechanical stimulation of PDGFR by the application of a static 

magnetic field (60 to 120 mT, gradient ~3.3 to 11.0 mT/mm) 1 h daily in the vicinity of the 

cells after 3 weeks increased the mineral-to-matrix ratio compared to stimulation of integrin 

αvβ3 and non-treated controls. The kinetics of osteogenesis and mineralization depended on 

the temporal schedule of the application of the magnetic field, which suggested the 

possibility to remotely control the tissue growth in the magnetic bioreactor. This was further 

demonstrated using functionalized MNPs (250 nm) to promote hBMSC differentiation 

towards a smooth muscle cell lineage by cyclical magneto-mechanical stimulation of 

PDGFRα and β via exposure to a magnetic field over a 3 h period at 1 Hz [122]. Overall 

these works provided proof of concept for remote controlled, locally-delivered 

mechanically-induced differentiation of hBMSCs which could have applications in 

regenerative medicine.

Results and prospects of magneto-mechanical activation of cell membranes are summarized 

in several other reviews that suggest that by properly choosing and modifying the MNPs one 

can selectively manipulate all mechano-sensitive structures of the cells including integrins, 

the cytoskeleton, kinase-type enzymes, mechano-sensitive enzymes (bound to the membrane 

and cytoskeleton) and mechano-sensitive ion channels (via membrane deformation) 

[31,123,124]. The future development of the magneto-mechanical stimulation of cellular 

functions and application of the emerging approaches in nanomedicine and 

nanobiotechnology requires engineering of small (~10 to 100 nm) MNPs with appropriate 

coatings that are stable in biological milieu in vitro and in vivo (in the presence of serum 

proteins and other biological components) and can react with individual molecules or 

supramolecular structures critical for cell function. One preview of opportunities and 

capabilities in this direction is provided by the study of the D. E. Ingber group [125]. They 

used superparamagnetic MNPs (~30 nm) that were modified with dinitrophenyl to 

selectively affect the transmembrane receptors that are normally activated by the binding of 

multivalent chemical ligands. These MNPs were pre-incubated with mast cells with IgE 

directed against dinitrophenyl so that the MNPs would bind to Fc1RI receptors on the cell 

surface through the antibodies. Activation of intracellular calcium signaling in response to 

the AMF was measured on single mast cells. A ferromagnetic needle of 10 μm was placed at 

a distance of 30 μm from the cell surface to serve as the field source. The field was induced 

by periodic (~1 min) switching on and off of the electric current, which led to a periodic 

increase in the intracellular concentration of calcium ions (Ca++) manipulated by the field. 

Due to the high field gradient (estimated ~104 T/m) the MNPs aggregated at the surface of 

the membrane, thereby causing clustering of the receptors and stimulation of the Ca++ 

signaling. This seminal work demonstrates possibility of activating individual cell 

membrane receptors through clustering, which acts as a nanomagnetic cellular switch that 

directly transduces magnetic inputs into physiological cellular outputs with rapid system 

responsiveness and non-invasive dynamic control [125].
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4.4. Magneto-mechanical destruction of cancer cells and drug release by an AMF

In a bold departure from classic magnetic hyperthermia the authors of a series of papers 

proposed a purely mechanical approach for killing cancer cells that employed unusual 

magnetic properties of iron–nickel magnetic disks as vortices for cancer cell destruction 

[32,126–130]. These disks (~60-nm thick, ~1 μm diameter) were made of permalloy 

(80:20% nickel–iron magnetic alloy) and were coated with a 5-nm thick layer of gold on 

each side [127]. They were obtained by optical lithography and by magnetron sputtering to 

deposit gold layers. The disks had essentially no magnetization in the absence of magnetic 

field (zero remanent magnetization) due to spin vortex formation, and exhibited intrinsic 

spin resonance at low frequencies. After application of a super-low frequency AMF (f = 10–

100 Hz, B up to 130 mT) the center of the magnetization vortex shifted vs. the geometric 

center of the disk, which resulted in the appearance of the macroscopic magnetic moment 

and led to the disk rotation in the field. In one of the studies the disks were coupled with 

anti-human-IL13α2R antibody that targeted the disks to the IL13α2R overexpressed on the 

surface of glioma cells [32]. As a result upon incubation of the disks with the glioblastoma 

multiforme cells the disks bound to these cells and then, after application of the AMF started 

rotating and killed the cells. Interestingly the greatest cell death was observed at an AMF 

with B = 10 mT and f = 10 to 20 Hz, while higher or lower values of B and f diminished the 

cell cytotoxic effect. The temperature of the cell culture was controlled and kept under 

22 °C. Obviously, at such low field frequency no heating of the system by the AMF could be 

observed.

There is one example of the drug release induced by a magneto-mechanical effect that was 

accomplished using magnetic disk vortices already described above [126]. These disks were 

functionalized with chitosan and used as carriers for doxorubicin. Upon application of the 

AMF with f ≤ 10 Hz the drug was released from the disks with the release rate being 

proportional to the f. To expand the range of effective frequencies that trigger unloading of 

the drug the authors used two mutually perpendicular AMFs.

Although magnetic vortices represent an ingenious and promising approach, the current 

sizes of magnetic disk microparticles would hinder their use in many important 

nanomedicine applications. The particles of micron and even submicron size would be 

rapidly removed by the RES, would not extravasate in tissues and not cross biological 

barriers [131]. Therefore, the authors of this approach point out that to enable its use in 

nanomedicine the disk geometry can be scaled down to ~100 nm diameter while still 

preserving the spin-vortex properties [130]. The estimates of the magneto-mechanical effects 

that can be induced using magnetic microdiscs in an AMF are provided in the cited paper 

[128]. Although a decrease in the disk volume would decrease the total magnetic moment 

per disk and the magnetic torque, the torque can be recovered by increasing the magnetic 

field amplitude. For example a disk that is smaller in volume than the one described above 

(e.g. ~300 nm diameter, ~17 nm thin), will experience the same magnetic torque if subjected 

to a ~270 mT field, instead of the ~9 mT [128]. Stronger magnetic fields are possibly 

achievable since the required magnetic field frequency is only a few tens of Hz. However, as 

of today this approach has not been realized at the size scale required for the nanomedicine 
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and drug delivery applications (from 10 to 100 nm) and therefore still remains hypothetical 

for such applications.

4.5. Magneto-mechanical modulation of enzymes by a uniform AMF

Our studies have shown the possibility of a magneto-mechanical change of protein (enzyme) 

conformation and altering the rate of the biocatalytical reaction by an AMF in the absence of 

heating [33,132]. The effects of mechanical deformation on the functional properties of 

proteins and other bioactive molecules immobilized on polymeric supports have been 

studied for nearly 40 years [133,134]. Immobilization of an enzyme molecule on a polymer 

support followed by mechanical deformation of this support can result in deformation of the 

protein globule and considerable change of enzyme activity [135]. Such approaches can be 

further extended to single molecule studies to modulate biocatalysis, membrane transport, 

protein synthesis and other essential biological functions by mechanically affecting 

enzymes, membrane channels, ribosomes, etc. [136–139].

To explore the possibility of translating AMF exposure into change in the function of 

individual enzyme molecules we synthesized colloidal clusters by coating magnetite MNPs 

(7 to 12 nm diameter) with anionic poly(ethylene glycol)-b-polyacrylate or poly(ethylene 

glycol)-b-polymethacrylate block copolymers [33]. Each cluster contained up to 10–15 

MNP cores electrostatically bound and cross-linked by the copolymers. The enzyme 

molecules, e.g. α-chymotrypsin and β-galactosidase, were covalently coupled (through 

amino groups) to the polymer chains. The effects of the AMF were studied using two 

different setups. One was a regular RF AMF (B = 26.4 mT, f = 337 kHz) commonly used in 

magnetic hyperthermia. Another was a super-low frequency field (B up to 250 mT, f = 10 to 

100 Hz) that was uniform (i.e. zero gradient) within the entire sample volume in a striking 

contrast to most other studies described in this review that used gradient fields. The field 

uniformity ensured: a) same field conditions within the sample volume, and b) predominant 

effect of twisting moment upon MNPs with translational forces being negligible. In addition 

both the field space and the coil were well thermostated that ensured constant temperature 

during the experiment.

Exposure of the sample dispersion to both types of fields resulted in inactivation of the 

enzymes immobilized in the clusters [33]. Interestingly, the inactivation effect was the 

greatest when the fields were supplied in several pulses (2–3 min) rather than continuously 

for the same overall durations. Similar observations were also reported for an enzyme (α-

chymotrypsin) immobilized on the ~30 nm nanoparticles with magnetite MNP cores and 

gold shell [132]. These studies provided very strong arguments in support of the non-thermic 

mechanism of enzyme inactivation. First, the experiments were carried out at 20 °C to 25 °C 

and changes in the bulk temperature were negligible. Second, measurements in the absence 

of the field suggested that comparable inactivation of enzymes immobilized on same MNPs 

only occurred at 45–50 °C. Third, no local heating effects could have taken place upon 

exposure to super low frequency fields (f = 100 Hz). Fourth, the inactivation effect increased 

as the number of the points of attachment of the enzyme to the polymer support increased, 

which is more consistent with the mechanical but not thermic mechanism of inactivation. 

Even effect of the pulses at high frequency of the field argued against a thermic mechanism 
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as the periods between the pulses (several minutes) facilitate heat dissipation in the 

environment. Finally, the circular dichroism (CD) showed that pulsed exposure to the AMF 

resulted in changes in the secondary structure of the immobilized enzyme that were very 

different from those observed upon heat denaturation of the same samples [33].

The observed phenomena were predicted and explained by theoretical analysis suggesting 

the possibility of translating the energy of a non-heating AMF (f < 1 kHz) to the mechanical 

deformation of macromolecules immobilized on MNPs [140–142]. Specifically, realignment 

of the MNPs along the AC magnetic field may lead to stresses in MNP-linked polymer 

chains. A chain attached to two particles in a MNP cluster can undergo tensile, compression, 

twisting and tangential (grinding) forces actuated by an external AMF (Fig. 5). A MNP 

experiences torque L, which leads to its rotary-oscillating movement. In turn the 

macromolecule attached to MNPs can undergo tensile, compression, twisting and shear 

deformation (depending of the mutual orientation of the magnetic moments μi of oscillating 

MNPs, direction of the vector of magnetic induction B and the points of attachment of this 

macromolecule to the MNPs). The estimates of forces F that could act upon the 

macromolecule chain attached to two MNPs are presented in [140–142]. These estimates 

suggest that upon exposure of MNPs to B < 1 T, the resultant F could be as high as hundreds 

of pN and cause deformations up to dozens of nm. As found from Single Molecule Force 

Spectroscopy studies such forces and deformations are sufficient to induce various 

macromolecular transitions and stimulate some processes that are essential for nanomedicine 

and drug delivery (Table 1) [38,143–146]. Therefore, a variety of applications in 

nanomedicine and drug delivery can be explored using readily achievable magnetic fields 

with B from a few dozen to a few hundred mT.

4.6. Magneto-mechanical cell injury by MNPs in a rotating magnetic field

Some studies used a rotating or precessing magnetic field with the rotation axis of the 

induction vector being perpendicular or tilted in relation to the direction of the field instead 

of an AMF. The amplitude of such field could be either constant or altering with a given 

frequency. In essence, a rotating field is a kind of an AMF. It is usually produced by a 

reciprocating or rotary movement of constant magnets or superposition of two orthogonal 

AMFs having a phase shift π / 2 between each other. Mizuki et al. studied the effects of a 

rotating magnetic field on superparamagnetic magnetite MNPs coated with dextrane (~130 

nm in diameter) and containing immobilized enzyme (α-amylase) [147]. The particles 

assembled into clusters of ~1000 particles that rotated with the field with a frequency of 1 

Hz. Once the frequency increased the clusters broke down to smaller ones containing few 

hundred of particles, and then further broke down to individual particles as the frequency 

exceeded 5 Hz. Concurrently, the activity of the enzyme increased as the field rotation 

frequency increased reaching a maximum at 5 Hz and then decreased again at higher 

frequencies. They explained this phenomenon by the increased collisions of the substrate 

and enzyme molecules in the rapidly rotating clusters but, unfortunately, the paper did not 

provide sufficient experimental detail to determine the mechanism. In our opinion the 

activity change could occur due to the shift from a diffusion controlled to a kinetically 

controlled regime of enzyme reaction due to better mixing at 5 Hz followed by inactivation 

of the enzyme by the shear stress at higher frequencies.
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In a more recent study Zhang et al. used commercial superparamagnetic MNPs (~100 nm) to 

induce cancer cell death by the rotating magnetic field [148]. The MNPs were modified with 

antibody against lysosomal membrane protein, LAMP1, to enhance their binding with the 

lysosomal membranes. Remote activation of the slow rotation of LAMP1-modified MNPs 

by the magnetic field (B = 30 mT) rotating at 20 Hz enhanced the MNP uptake in the cells 

where they were preferentially localized in the lysosomal membranes due to binding with 

LAMP1. Subsequent exposure to the rotating field resulted in lysosome injury and death of 

the cancer cells. The authors underscore that in contrast to the reports using high-frequency 

alternating (but not dynamic) magnetic fields their approach uses a low-frequency rotating 

field that induces the rotation of every individual particle in the field around their own axis 

and thereby causes apoptosis via mechanical forces exerted on membranes by targeted 

MNPs without any heating [85,149].

5. Models of the magneto-mechanical effects of an AMF

The studies discussed above observed the cell injury, drug release, enzyme inactivation and 

other non-thermic effects of the low frequency and super-low frequency AMFs translated to 

biological systems by MNPs. Some of these effects appeared to depend on the parameters of 

the field. However, no detailed theory or quantitative model of such effects has been 

developed so far. Such theory could be highly instrumental for the rational design of MNPs 

including selection of proper sizes and structures, as well optimization of the field 

parameters, that would best suit the desired pharmacological effect of such MNPs in an 

AMF. Previously, we have published theoretical analyses pertaining to select magneto-

mechanical phenomena such as macromolecule or membrane deformation by the low-

frequency AMF [140–142,150,151]. This chapter presents a systematic consideration and 

extension of several quantitative models that could serve purposes in nanomedicine and drug 

delivery as well as other biomedical and bioengineering applications.

5.1. Dynamics of MNPs in an AMF

Let us consider a case of a core–shell nanoparticle with a MNP core and a solid (e.g. gold) 

shell that can be grafted with polymer chains forming a corona (Fig. 3). The therapeutic 

agent can be attached to this polymeric corona either covalently or through various non-

covalent interactions. The behavior of such functionalized MNPs after exposure to a uniform 

AMF will depend on the ratio of their magnetic energy in the field vs. losses of energy to 

viscous friction as well as the magnetostatic interactions and energy of thermal vibrations 

[151]. One can neglect the magnetostatic energy of interactions of MNPs if these particles 

have a gold and/or polymer coatings with the net thickness exceeding several times the 

radius of the magnetic core Rm. The contribution of the thermal fluctuations will be 

discussed below.

It is well known that the energy of the system reaches its minimum when the vectors μ and 

B become collinear and co-directed. Let us further assume that upon change of the instant 

value of the field B according to a sinusoidal law with the frequency f the relaxation of the 

magnetic moment of the MNPs proceeds via the particles’ mechanical rotation, i.e. the 

Brown relaxation (Fig. 4). A competing process is the Neel relaxation, when the MNPs 
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remain immobile, but the spins of each atom of ferromagnetic rotate overcoming the energy 

of crystallographic anisotropy. Brown relaxation proceeds faster than Neel relaxation, if the 

radius of MNPs is greater than some critical value Rc (see Supplementing material 1). This 

value depends upon the nature of a ferro- or ferrimagnetic material. For example, for 

magnetite (one of the most frequently used materials for preparation of MNPs) this value Rc 

≈ 7 nm [24]. Therefore, to ensure efficient transduction of the AMF energy to the energy of 

the MNPs’ mechanical movement the MNPs should have a radius Rm > Rc. However, at a 

low frequency of an AMF (when the half-period of field oscillation exceeds the Brown 

relaxation time) the small MNPs that first respond by Neel relaxation can also follow up by 

the mechanical spinning. Under these conditions the angle between the direction of the field 

vector and axis of the small spontaneous magnetization decreases, which contributes to the 

decrease of the magnetic energy of the system.

Taking into account the above assumptions the rotational movement of a free spherical MNP 

in a viscous media exposed to the AMF is described by the following equation:

(1)

where φ – is the angle between the vector of the magnetic moment of the MNP and direction 

of the AMF in even half-periods, ω – is the cyclic frequency of an AMF ω = 2πf, I – is the 

moment of inertia of MNP, and VHD – is the hydrodynamic volume of the MNP. The 

characteristic frequency ωI, i.e. the frequency above which the inertia of the MNPs cannot 

be neglected, is determined from the following equation . For the magnetite MNPs 

with the radius of the nuclear core Rm ≈ 10 nm, having a gold shell of 5–8 nm and 

hydrodynamic radius RHD ≈ 30 nm in the field B ≈ 0.1 T the characteristic value ωI ≈107 

s−1. If ω ≪ ωI

Eq. (1) can be presented as follows:

(2)

where the critical frequency parameter ωc = μB/(6ηVHD). Because magnetic moment μ of a 

single domain magnetite nanoparticle is the product of magnetite saturation magnetization Js 

and its mass, which in turn is the product of magnetite density ρ and volume VM, critical 

frequency can be expressed as , where RM is the magnetite core radius. 

For MNPs having RM / RHD = 1 / 2 in an aqueous media or another media with the viscosity 

η = 0.65 · 10−3 Pa · s at 40 °C exposed to the field B ≈ 100 mT this parameter ωc ≈ 1.5 · 106 

s−1 (fc ≈ 250 kHz). This could be considered an estimate of the maximal ωc parameter, as an 

increase in the hydrodynamic diameter of the MNPs (larger shell), lower field or higher 

viscosity should result in its significant reduction. For example, for MNPs with RM / RHD = 

1 / 5 in the media with the viscosity that exceeds that of water by 1–2 orders of magnitude in 

10 mT field the ωc value becomes as low as ~10–100 s−1. Thus, the critical frequency fc lies 

in the range from a few hertz to several tens of kilohertz in most plausible cases.

The solution of Eq. (2) is as follows:
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(3)

According to this solution the MNPs are moving periodically returning after the entire 

period to their initial state with an angle φ0. However, in reality upon transition of the field 

through the zero value during time τ ≈ 2kBT/(ωμB) the particle will be subjected to heat 

oscillations that will result in the uncertainty of its angular position φ2=kBTτ/(6ηVHD). At ω 

≈ 103 s−1 for the MNPs discussed above τ ≈ 10−6 s, hence the mean deviation is 〈φ2〉1/2 ≈ 

0.1 rad. After several periods of AMF oscillation this will lead to a symmetric rotational–

vibrational movement of MNPs relative to the direction of the field. Then the following 

conclusions can be made from the equation of the steady movement, symmetrical relative to 

position φ = π / 2,

(4)

At ω ≪ ωc MNPs undergo sharp flip-flop like turns after each change of the sign of the 

external AMF (Fig. 5). As the frequency ω increases the role of viscosity increases and 

under the condition ω ≫ ωc the oscillations should asymptotically approach a harmonic 

with small amplitude: φ =π/2-(ωc/ω)cosωt.

Based on the dependence of the amplitude of oscillation of MNP Δφ on the frequency 

Δφ=4arctg[exp(ωc/ω)]-π (Fig. 6, curve 1) one can conclude that at ω ≪ ωcΔφ ≈ π, and at ω 

≫ ωcΔφ approaches zero. The fraction of time during which the MNP moves with an 

angular velocity close to ωc, depends on Δφ according to the equation Δt/t∝Δφ · (ω/ωc) (Fig. 

6, curve 3).

The hydrodynamic force FHD, acting upon the therapeutic molecule Rmol attached to the 

shell of the MNP can be determined using the Stokes equation:

(5)

The value of this force is proportional to the instant angular velocity φ̇ (t) that is presented in 

Fig. 5b. As follows from Eq. (2), |φ̇(t)| ≤ ωc, so that maximal possible value of FHD is 

FHDmax = FHD(ωc) and relative hydrodynamic force . At condition ω ≫ ωc 

the maximal value of the angular velocity |φ̇
max| = ωc, and at ω ≪ ωc its value |

φ̇max|∝(ωωc)1/2. So, at ω ≳ ωc amplitude value FHD depends neither on ω nor on η and 

approaches FHDmax, but at ω ≪ ωc this value FHD
∝ω1/2 · η1/2. (Fig. 6, curve 2). For a 

therapeutic agent molecule having a radius Rmol = 2.5 nm, attached to MNP having the 

above considered parameters in the viscous media with η ≈ 10−3 Pa · s, the amplitude value 

FHD ≈ 0.1 pN.
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5.2. Hydrodynamic models of release of therapeutic agent from MNPs

Here we consider possible mechanisms of release of a therapeutic agent from the polymeric 

corona of MNPs induced as a result of the action of AMF. We assume that the therapeutic 

agent is bound with the polymeric corona with one or few number of bonds (i.e. the 

cooperativity of interaction is zero or relatively low). This assumption is likely to be correct 

for relatively low molecular mass therapeutic agent molecules. We also do not consider 

possible entropic contributions of the polymer chains and therapeutic agents as well as 

contributions of low molecular mass counterions that could play a significant role for 

polyelectrolytes.

In thereby simplified consideration, the potential energy Ub of interaction of the therapeutic 

agent with the polymer chains in the corona of the MNPs should be sufficiently high to 

avoid a spontaneous release from the particle as a result of the heat oscillations, random 

collisions of MNPs with each other, etc. At the same time the Ub value should not be too 

high to ensure that the rotary-oscillating movement of MNPs upon exposure to AMF led to 

an accelerated release of the therapeutic agent. It is reasonable to consider the van der Waals, 

electrostatic and hydrogen bond interactions between the therapeutic agent and MNP 

polymeric shell. The covalent bonds are too strong to be cleaved using AMFs that are readily 

accessible in the laboratory (Table 1). The energy profile of the van der Waals interactions 

(Fig. 7, curve 1) is assumed to be more flat than the profiles corresponding to electrostatic 

interaction and/or hydrogen bond interactions. The van der Waals interactions profile has 

random perturbations due to local interactions of the neighboring therapeutic agent 

molecules, polymer chain local curvature, etc. The small minima could be found due to 

localization of the therapeutic agent on the polymeric chain. In the cases of electrostatic 

interaction and/or hydrogen bond interactions the energy profiles will also have minima, 

which could be deeper and more regular (Fig. 7, curve 2). Both curves are limited at the left 

side by an infinitely high barrier due to the presence of the MNP “wall”, and at the right side 

with a finite barrier which corresponds to the detachment of the therapeutic agent from the 

polymer chain. With these assumptions two release mechanisms are briefly summarized 

below (their more detailed consideration is provided in the Supplementary material 3).

The first mechanism is based upon hydrodynamic force acting on the therapeutic agent 

molecule due to the rotational–vibrational movement of MNPs in the external AMF. The 

overall energy profile is tilted to the left because of the affect of the hydrodynamic force 

FHD acting upon the therapeutic agent molecule. It should be noted that the slope of the 

profile is always negative starting from the MNP surface, although its magnitude is changing 

over time as the AMF oscillates. As the therapeutic molecule agent undergoes thermo-

activated random walk along the chain the affect of this weak hydrodynamic force imposes a 

drift of this molecule towards the outward end of the polymer chain that accelerates the 

therapeutic agent release.

The second mechanism considers the therapeutic agent molecules bound to two polymer 

chains simultaneously. If the chains are stiff enough, MNP rotational–vibrational movement 

results in an oscillating force applied through the chains to the therapeutic agent molecule 

bound between them. This force facilitates overcoming the barriers between neighboring 

energy minimum positions that effectively accelerates the movement of the therapeutic agent 
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along the pair of polymer chains in any direction. The effect is small at the beginning 

because initially the number of therapeutic agents interconnecting the polymer chains is high 

and the forces are divided between them. But as some part of therapeutic agent molecules 

are released, the second mechanism can noticeably accelerate the release of the remaining 

therapeutic agent molecules.

5.3. Models of interaction of a rod-like MNP with a lipid membrane

The model of the therapeutic agent release described above accounts for relatively weak 

hydrodynamic forces created by the movement of functionalized MNPs in viscous media. 

The magnitude of the magneto-mechanical effects could greatly increase if the torque L of 

the MNP in the AMF is balanced by the forces of contact interaction of MNPs with 

supramolecular structures, such as elements of biological membranes, liposomes, micelles, 

etc. In this case the rotational–vibrational movement of MNPs can cause deformations and 

structural transitions that can translate into functional changes remotely induced by the 

AMF. A recent study by Golovin et al. considered a model of interaction of rod-like MNPs 

with a lipid membrane [150]. Anisometric MNPs have several advantages in terms of 

magneto-mechanical actuations compared to spherical MNPs. In particular, in addition to 

the shear they can also cause normal deformations in the membrane. A general case is 

presented in Fig. 8. A rod-like MNP with the length LM and midsection diameter D having 

magnetic moment μ is attracted to the bilayer lipid membrane by the relatively weak 

adhesion forces (van der Waals, dispersion and hydrogen bond). In most cases there are also 

the forces of electrostatic attraction as many MNPs are either conjugated with 

polyelectrolytes or carry excessive surface charge. In the case of a live cell and MNPs 

functionalized by antibodies or other ligands the MNP is strongly attached via these ligands 

to the cell receptors, ion channels and other structural and functional components of the 

biological membrane.

Application of the AMF having arbitrary orientation of the induction vector B induces a 

complex oscillating movement of MNP reminiscent of the movement of the double paddle 

of an Aleutian kayak. This is accompanied with the appearance of oscillating forces and 

deformations with the oscillating and lateral components (Fig. 9). Assuming that the force is 

concentrated at the ends of the MNP the estimate for the maximal value of its normal 

component is as follows:

(6)

where Js – is saturation magnetization, and ρM and VM – are the density and volume of the 

MNP, respectively. Since VM ≈ D2LM, the value of Fz as first approximation does not 

depend on LM. Therefore, Fz ≈ 150 pN for the rod-like magnetite MNPs having D = 30 nm, 

placed in a field with Bz = 0.5 T. The mechanical deformation of the membrane caused by 

the force Fz is mainly dependent on the mechanical rigidity E* of the membrane (and in the 

case of the cell also by the rigidity of the cytoskeleton), where E* = 0.1–10 kPa [145]. 

Already in a field with B = 0.1 T the local pressure P ≈ Fz/D2 ≈ 40 kPa near the ends of the 

MNP exceeds E* several fold which may lead to the rupture of the membrane. In the case of 

the cell membrane this could result in the death of the cell (e.g. cancer cell).
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Let us now consider the movement of the MNP in the plane of the membrane (Fig. 9). As 

the oscillating field B increases after passing zero and the MNP long axis and magnetization 

vector μ orient along the projection of B to the membrane surface at an angle φ0, the MNP 

starts to rotate to achieve co-linearity of μ and B. In a general case this movement will be 

described by an equation similar to Eq. (1) describing the dynamics of the movement of a 

spherical MNP. In this case, however, the parameter η has a meaning of a characteristic 

viscosity that is determined by the force of viscous resistance of the surrounding 

(membrane, structures). At ω ≪ ωI ≈ 107 s−1 Eq. (1) transforms to Eq. (2), and its solution 

to Eq. (3).

The angle swept that is passed by the MNP is Δφ = 2arctg[tg(φ0 / 2)exp(2ωc / ω)] – φ0. The 

maximal value of Δφ depends on ω similar to the curve 1 in Fig. 6. This means that the 

considered magneto-mechanical effects can take place only at the AMF frequencies ω < ωc. 

The effective viscosity upon interaction of the MNP with the membrane can be much higher 

than that in the aqueous solution; the estimates of ωc for magnetite MNP with D = 10–20 nm 

and aspect ratio LM / D ≈ 5–10 at η ≈ 0.1 Pa · s range from 100 to 1000 s−1.

Upon considering the 3-D movement of the MNP, one should account for the moment of 

inertia that in general is not a scalar quantity but a tensor of the second order. Therefore, the 

pressure upon the membrane grows concurrently with the rotation of the MNP. As the field 

induction passes zero the normal and lateral projections of the field change the sign. If ω ≪ 

ωc, the orientation of MNP will flip-flop by 180° followed by an increase of the normal 

tensions of the membrane near the ends of the MNP. The direction of the deformation will 

remain the same.

The rotation of the MNP in the plane of the membrane creates wave-like shear deformations 

in the circle of diameter ~ LM. The amplitude of these deformations can also be sufficient 

for the destruction of the membrane because the value of 4Fx / LM in the field B = 0.1 T is 

comparable with the linear tension of the membrane σ ≈ 0.01 N/m [145]. Similar 

considerations are also correct for the MNPs embedded in the membrane structure (at any 

angle to the membrane plane). The combined action of normal and lateral tensions and 

deformations, comparable with the energies of interaction of the molecules in the membrane 

(including biomacromolecules embedded in the membrane) can be achieved in the low 

frequency AMF with induction much less than 1T. This can cause the loosening of the 

membrane and increase in its permeability long before its physical destruction. In the 

conditions when ω ≫ ωc, the MNP may remain nearly immobile, but the membrane may 

experience the sign alternating deformations near the ends of the MNP.

If in addition to the dispersed adhesion forces the MNPs are connected to the membrane 

covalently via strong ligand–receptor bonds (Fig. 8) the estimated value of the lateral force 

FMM determined using an equation similar to Eq. (6) can be as high as FMM ≈ 300 pN 

(assuming that there are two strong attachment points). If the MNP is strongly attached to 

the membrane not on its tips but closer to its center the FMM value can increase even further 

several fold. Taking into account the data on the forces characterizing various molecular 

interactions in biological membranes and cells and using Eq. (6), one can estimate the 

required values of the field B to induce magneto-mechanical affects that disrupt these 
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interactions which in many cases are in the range of dozens to hundreds of mT (Table 1). 

The presented model can be also useful for understanding of the effects of very small (e.g. 5 

to 10 nm) MNPs, that, in certain conditions, interacting with each other and the membrane 

can assemble into 2D rafts or rods and behave similar to rod-like MNPs described in this 

section [141].

The choice of an optimal AMF frequency range for the magneto-mechanical stimulation of 

the membrane receptors is complex and requires a separate consideration and investigation. 

Different molecular structures in the cells and the functional processes controlled by them 

are known to have different characteristic times ranging from nanoseconds to hundreds of 

seconds [152–154]. In essence, a cell can be considered a “frequency bandwidth filter” of 

sorts that is capable of responding to mechanical actuation of a specific frequency or 

duration [155]. This can have enormous consequences for nanomedicine because in addition 

to a commonly discussed spatial selectivity of nanomedicine technologies (realized through 

a precise delivery of the nanoparticles to certain receptors or structure in the target cell) one 

could employ the frequency selectivity that can be achieved by tuning the magneto-

mechanochemical stimulation.

5.4. Model of magneto-mechanical deformation of biomacromolecules

As discussed above the forces acting on macromolecules attached to the single MNPs with a 

hydrodynamic radius RHD < 100 nm, have a hydrodynamic nature and by the order of 

magnitude do not exceed 1 pN. Much greater forces can be observed in the aggregates 

containing two and more MNPs interconnected with each other by one or several 

macromolecules that are linked simultaneously to two or more MNPs. Such forces will have 

a contact nature. They can cause deformations of biomacromolecules that in the case of 

enzymes or receptors can change the conformations of the active centers and modulate 

functional activity of such biomacromolecules. The models of the magneto-mechanical 

deformation of enzymes were recently discussed in the literature [140–142]. Here we briefly 

summarize them.

In the simplest case of an aggregate – a dimer of MNPs interconnected through one 

macromolecule (Fig. 10) the movement of each MNP is described by the system of 

equations:

(7)

(8)

where Fe – is the constraint reaction force, r – the radius vector of the particle center, and 

RAu – radius vector from the center of MNP to the point of application of Fe.

Analysis of Eqs. (7) and (8) suggest that for any reasonable length of the interconnecting 

chains, upon exposure to the external AMF the MNPs, are pulled by the constraint reaction 

forces and rapidly come in contact with each other. The time of their rapprochement t* 
depends on the main parameters of the system as follows:
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(9)

where l0 – is the initial distance between MNPs, Ba - is an amplitude value of MF intensity. 

The value t*, normalized by the period of oscillations of the external AMF (T = 2π / ω) is 

proportional to ω1/2. At ω ~ 104 s−1 one concludes that t* / T ~ 10−2. Because the 

rapprochement of the MNPs proceeds much faster than the external field period one can 

exclude from the consideration of Eq. (7) the translational movement of MNPs.

Since the long linkers due to their own deformation decrease the magneto-mechanical affect 

upon the macromolecules, it is advisable to use short linkers. In this case the net length of 

the linker and the polymer chains separating two MNPs in general becomes much less than 

the size of the MNP aggregates. In such systems the linking chain can be fixed in the points 

close to the axis connecting the centers of MNPs. Being affected by the AMF, the MNPs in 

“dimer” form are in contact with each other during the most part of the period, so the forces 

of deformation appear due to particle rotation in the AMF being constrained by the linker 

chain. Further, we consider exactly such “dimer” aggregates.

Upon exposure to the AMF such a system undergoes a complex oscillating motion, that is a 

sum of the motions of the dimer as a whole and the relative motions of each MNP within the 

dimer. During the first ~10−6–10−5 s after exposure to the external field (that is a small 

fraction of the period in the range of frequencies of interest to us) the dimer “adjusts”, to the 

changed conditions and then its vibrational movements become steady. These adjustments 

include two turns. The first one is the rotation of each MNP across the axis connecting the 

center of the MNPs, so that their magnetic moments μ1 and μ2 become coplanar with vector 

B and each other. The second one is the rotation of the dimer axis to ensure that the sum of 

the magnetic moments μ1 + μ2 becomes collinear to B.

In the phase of steady oscillations upon the increase of the external field the magnetic 

moments of the MNPs in the dimer are oriented symmetrically to the field lines, and the 

dimer net moment is codirectional with B. The MNPs will rotate in different directions 

essentially rolling over each other’s surface, trying to align their magnetic moments along 

the field lines, and the centers of MNPs will remain immobile. The interconnecting chains 

will stretch and counteract the rotation of the MNPs. As the field goes through zero and 

changes the sign to the opposite the net magnetic moment μ1 + μ2 and the vector B will 

become oppositely directed, which will result in a flip-flop of the dimer to 180° relative to 

the axis, perpendicular to the field direction. The μ1 + μ2 and B will become co-directed, and 

the movement, similar to that described above will repeat itself.

The movement of each MNP in the regime of steady oscillations is entirely described by Eq. 

(8). Assuming as first approximation the viscosity and inertia forces being negligible (at ω 

≪ ωc and ω ≪ ωI) the equation can be presented as follows:

(10)
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where θ – is the angle of initial orientation of the magnetic moments of MNPs relative to the 

field lines. The parameter c has a meaning of some effective value of the rigidity of 

macromolecule [143,144,146]. Accounting for the non-linearity of the deformation of 

macromolecules does not change in principle the character of the MNPs motions.

A direct consequence of Eq. (3) is that the dimensionless parameter 

reflecting the ratio of the characteristic torques of magnetic interaction and the constraint 

reaction forces, entirely defines the motion of the MNPs if the initial orientation of vectors μ 
described by the angle θ0 is known. One can suggest that at λ ≫ 1 when the moment of the 

constraint reaction forces can be assumed negligible compared to the moment of the AMF 

forces each MNP behaves as an individual particle. The time of the active deformation of the 

macromolecule, in this case, can be several orders of magnitude lower that the period of 

oscillation of AMF. At λ ≪ 1 the amplitude of oscillation of the MNPs will be very small. 

Typical values of the parameter λ for the magnetite MNPs with Rm = 7–10 nm, δ ~ 5 nm, c ~ 

1–10 mN/m in AMF with induction Ba ~ 0.1–1 T range from ~0.1 to ~10. The possibilities 

to increase this value by increasing the sizes of the magnetic nuclei are limited because of 

the tendency of such particles to aggregate due to the increased dipole–dipole interactions. 

Creation of AMF with B ≳ 1 T is technically challenging. The parameter λ can be increased 

by selecting materials with greater Js value (for example Fe, Co, Ni, their alloys, some 

lanthanides). However their biomedical applications is hindered by high toxicity.

As could be seen in Fig. 11 the dependencies of the maximal force Fmax and deformation 

Δlmax on the main parameters (Ba,c,Rm) are monotonous. Non-monotonous under certain 

conditions is the dependence of Δlmax on the thickness of a shell δ, when there is an optimal 

value δ, that results in maximal deformation.

The statistics of the angles of the initial orientation of the magnetic moments of chaotically 

disoriented MNPs relative the vector B affects the mean value of the force. Accounting for 

the above assumption of free rotation of MNP around the axis of the dimer and assuming the 

uniform initial spatial angle distribution of the MNPs’ magnetic moments its azimuthal 

angle is distributed as p(θ)= cosθdθ. Therefore, the difference of the angles of orientation of 

MNPs in one plane is distributed as:

(10)

The mean value |Δθ| is π/4, that corresponds to the mean angle of initial disorientation of the 

magnetic moments θ = π/8.

In addition to macromolecules attached to the linkers that participate in the formation of 

bonds between MNPs, the mechanical stress can be also experienced by the macromolecules 

attached to the MNP surface when they become entrapped between the oscillating MNPs. 

Such macromolecules undergo different types of deformation like compression, twisting and 

shear. The macromolecules affected by these stresses are located in the arch-shaped region 

of contact of the MNPs having the length RAuφmax and width , where d ~ 5 nm is a 

characteristic diameter of the macromolecule. Based on this the fraction of the 

Golovin et al. Page 27

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



macromolecules that undergo deformation (assuming their uniform distribution in the 

surface of the MNPs) can be estimated as . Its limiting value 

 for typical MNP sizes in the considered model is ~10–15%. In the “real” 

conditions where there are more than two bonds with long linkers the fraction of 

macromolecules undergoing deformation can reach 20–30%. The statistics at given values of 

λ can be derived from θ distributions and the equation of motion discussed above.

The deformation force Fs at a small λ depends on the current angle of the MNP turn as 

follows Fs = cRAuφ2/2. Its maximal value for particles with Rm = 7–10 nm, δ ~ 5 nm, c ~ 10 

mN/m in the AMF with Ba ~ 0.5 T is about 250 pN. The mean compression and shear stress 

in the macromolecule can be as high as ~100 MPa. Such forces and resulting strains, like in 

the case of the linear tension of the macromolecule are sufficient to significantly change its 

conformation.

In a real situation heterogeneity of the geometry and magnetic properties of the MNPs can 

cause deviations from this model. Thus if the MNPs differ in diameter there can be a twist of 

the dimer axis and slippage of MNPs as they roll over each other with the bond between 

them remaining parallel to the dimer axis. This can lead to additional longitudinal shear 

deformation of the macromolecule.

The macromolecule can also experience torsion deformation during the initial rotation of the 

MNP relative to the dimer axis. At the initial chaotic orientation of the magnetic moments 

the torsion angle is uniformly distributed from 0 to π. Under these conditions the maximal 

shear stress τmax =(μBa·d/2)/(πd4/32) can be as high as 10 MPa for the above-discussed 

MNP and AMF parameters. The torsion tension in this case acts together with the 

compression. The fraction of the macromolecules undergoing the torsion in the real 

aggregates can reach 30–50% of the total number of macromolecules.

6. Conclusion

This paper provides a critical review of recent experimental studies on magneto-mechanical 

and related phenomena displayed by single-domain MNPs in an applied AMF and outlines 

potential directions of application of these phenomena in nanomedicine and drug delivery. 

The examples of such applications include modulation of cell responses, eradication of 

cancer cells, drug release from nanoparticulate carriers, activation of membrane receptors, 

change of activity of enzymes, and other remotely controlled processes of biomedical 

importance. The theoretical considerations and models describing some of these phenomena 

are also provided, including the dynamics of the MNP in alternating fields, solute release 

from the MNP polymeric corona, interaction of MNPs with lipid membranes, and magneto-

mechanical deformation of biomacromolecules.

We also made an attempt to relate the magneto-mechanical phenomena that are a relatively 

new field of study with more established and advanced studies on magnetic hyperthermia. In 

this regard, one needs to take into account that the magneto-mechanical and thermic 

responses of the MNP systems in the applied AMF depend on multiple parameters including 
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the properties of the MNPs, the surrounding environment and the magnetic field 

characteristics. Fig. 12 presents a schematic illustration that relates these responses to the 

size of the MNPs, as well as the field frequency and strength. It is evident that under certain 

field conditions the MNP containing systems will preferentially display either thermic or 

magneto-mechanical responses and in other conditions both responses can be 

simultaneously exhibited. In addition to the size dependence of these responses one should 

account for the effects of the shape, the type of material used and even the method of 

preparation of MNPs. The picture can become even more convoluted for surface-modified 

MNPs, MNPs incorporated into various nanoscale structures and MNP clusters that are 

commonly observed in experiments. Notably, upon interaction of MNPs with serum proteins 

and cells, the aggregation of MNPs can also change thereby possibly affecting both the 

thermic and the magneto-mechanic components of their responses to the AMF. Future 

experimental studies should focus on further dissecting these responses and optimizing the 

field space and composition of the nanomaterials for their application in nanomedicine and 

drug delivery. The experimental and theoretical studies should also focus on better 

understanding the physical phenomena such as for example the effects of the pulsed fields 

observed by us and others that are currently not very well understood. However, there is no 

doubt in our view based on already available data that application of MNPs and the 

magneto-mechanical actuation approach in nanomedicine and drug delivery is very 

promising. We hope that this paper will help many academic and industrial researchers in 

their future successful quest into this exciting field.
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Fig. 1. 
Various strategies for remote actuation of nanomedicine and drug delivery systems.
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Fig. 2. 
Three different routes of influencing biochemical processes using magnetic field: (a) spin-

dependent, (b) thermal (magnetic hyperthermia), and (c) magneto-mechanical. R1 and R2 

radicals; MNP – magnetic nanoparticle; μ – the magnetic moment of this nanoparticle; B – 

induction of the magnetic field; T∞ – temperature at the infinite distance; ΔT – local 

temperature increase at the surface of the MNP; R* – radius of the thermal diffusion; F and 

L force and torque, respectively, acting upon MNP in a non-uniform magnetic field.
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Fig. 3. 
Schematic presentation of currently explored directions in nanomedicine and drug delivery 

that exploit magneto-mechanical actuation of functionalized MNPs in a low frequency 

magnetic field. Abbreviations correspond to a low frequency AMF (LF MF); therapeutic 

agent (TA), the magnetic moment of (μ), the torque applied to MNP (L), the macromolecule 

(e.g. enzyme) attached to MNP (MM), the magneto-mechanical force causing 

macromolecule deformation (FMM). A schematic of functionalized MNP is presented having 

a superparamagnetic core of a radius Rm, a solid shell (e.g. gold) of a radius RAu and water-

soluble polymeric corona. The hydrodynamic radius of the functionalized MNP is RHD.
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Fig. 4. 
A single domain MNP in the external magnetic field B. Left to right – pristine state, Neel 

relaxation, and Brown relaxation. O–O is the axis of easy magnetization, mi and μ– the 

magnetic moments of the i-th atom and the nanoparticle, respectively, L – torque, Tb – 

blocking temperature of the magnetic moments of the atoms.
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Fig. 5. 
Steady-state dependencies on the current time t of the (a) induction of the AMF B and 

angular position of the magnetization vector μ; (b) instant angular velocity φ of the MNP at 

different ratios ω/ ωc (where ωc = μB/(6ηVHD)).
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Fig. 6. 
Steady-state dependencies of the amplitude of oscillation of MNP, Δφ (1), relative 

hydrodynamic force, FHD / FHDmax (2) and relative time of movement, Δt / te (3) on the 

cyclic frequency of the external AMF ω, normalized by the characteristic frequency ωc =μB/

(6ηVHD).
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Fig. 7. 
The profile of the energy of (1) van der Waals interactions, or (2) electrostatic interaction or 

hydrogen bond interactions of a therapeutic molecule with polymer chains of the length lp. 

The insert presents a schematic of the functionalized MNP. The rest of the abbreviations are 

presented in the text.
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Fig. 8. 
Schematic representation of interactions of a rod-like MNP having a magnetic moment μ 
with the lipid membrane upon application of the external AMF having induction B. The 

vector of induction is directed arbitrary to the membrane surface and μBx, By, Bz ИLx, Ly, 

and Lz are projections of the induction and torque, respectively.

Golovin et al. Page 44

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 9. 
Schematic demonstration of the forces and deformations that appear in the membrane upon 

action of the MNP and an AMF. Weak adhesive forces connect the MNP and membrane.
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Fig. 10. 
Magneto-mechanical forces and deformation in immobilized macromolecules.

Golovin et al. Page 46

J Control Release. Author manuscript; available in PMC 2016 December 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 11. 
Force and deformation of the system “linker–enzyme–linker” caused by the effect of the 

AMF depending on the main parameters of the system. (a) Dependence of maximal 

achievable force applied to the enzyme on the magnetic radius of MNP at various fields. (b) 

Dependence of maximal deformation on the ratio Ba/c for different radii of the magnetic 

core (δ = 5 nm, θ0 = 90°).

Based on Ref. [141].
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Fig. 12. 
The areas of optimal conditions for magnetic hyperthermia (ΔT), and magneto-mechanical 

(FMM) and/or hydrodynamic (FHD) actuation as functions of (a) the magnetic core radius 

(Rm), (b) the field frequency (ω = 2πf) and (c) field strength (B).
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Table 1

Characteristic forces and the field values corresponding to the onset of some mechano-chemical processes in 

living organisms [38,144,145].

Process Force, pN Required field B,a mT

Activation of various ion channels 0.2–10 0.6–30

Protein–protein interaction 1–10 3–30

Activation of membrane receptors 10–50 30–150

Rupture of attraction between lipid membrane and membrane protein 30–50 90–150

Antibody–antigen interaction 10–100 30–300

Protein molecule unfolding 20–100 60–300

Ligand–receptor interaction ~1000 3000

Lipid–protein interaction 50–100 150–300

Rupture of a bilayer membrane (at R = 10 nm) 60–150 180–450

Breakage of a covalent bond 103–5 · 103 3000–15,000

a
The estimated values of the field B required to induce magneto-mechanical disruption of the processes and interactions presented in the table as 

estimated based on Eq. (6) below.
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