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Abstract

Protein therapeutics have emerged as a significant role in treatment of a broad spectrum of 

diseases, including cancer, metabolic disorders and autoimmune diseases. The efficacy of protein 

therapeutics, however, is limited by their instability, immunogenicity and short half-life. In order 

to overcome these barriers, tremendous efforts have recently been made in developing controlled 

protein delivery systems. Stimuli-triggered release is an appealing and promising approach for 

protein delivery and has made protein delivery with both spatiotemporal- and dosage-controlled 

manners possible. This review surveys recent advances in controlled protein delivery of proteins 

or peptides using stimuli-responsive nanomaterials. Strategies utilizing both physiological and 

external stimuli are introduced and discussed.
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1. Introduction

Proteins, the “engines of life”, play the most dynamic and diverse roles among all the 

macromolecules in human body, including catalyzing biochemistry reactions, controlling 

cell fates, forming cellular structures, providing tissue scaffolds, and transporting molecules 

[1]. The history of protein therapeutics usage can be traced back to 1922, when insulin was 

first purified from bovine pancreas and served as a life-saving daily injection for type 1 

diabetes treatment [2]. However, protein therapeutics remained rarely used until the 

emergence of the first FDA approved recombinant protein therapeutic human insulin 32 
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years ago [3]. Ever since then, the development of protein therapeutics has experienced an 

explosive growth and protein drugs now play a pivotal role for treating a broad range of 

diseases, covering cancer, metabolic disorders and autoimmune diseases. To date, more than 

130 proteins or peptides have been approved for clinical use by FDA [1]. Compared with 

small-molecule drugs, protein therapeutics possess several advantages attributed to their 

highly specific and complex set of functions and superior biocompatibility [1]. Protein 

therapeutics can also bypass the requirement of permanent or random changes to genetic 

makeup of the cell, and is therefore a safer alternative compared with gene therapy [4].

Although the last few decades have witnessed significant progresses in the development of 

protein therapeutics, several challenges still remain to be addressed. Direct delivery of 

protein therapeutics suffers from their in vitro and in vivo instability, immunogenicity and a 

relatively short half-life within the body [5]. Also, most proteins are negatively charged at 

neutral pH, resulting in poor membrane permeability for intracellular delivery [6-8]. 

Therefore, vast efforts have been put into the design of versatile protein delivery systems for 

enhancing stability of cargoes, achieving “on demand” precise release and enhancing 

therapeutic efficacy [9]. In light of this, delivery approaches based on stimuli-responsive 

smart materials have drawn extensive attentions these years [10]. Stimuli-responsive design 

is capable of conformational and chemical changes in response to environmental stimuli, 

and these changes are subsequently accompanied by variations in their physical properties 

[11]. Such action can not only facilitate release of drug with desirable pharmacokinetics, but 

also guarantee that drug can be spatiotemporally released at a targeting site. As summarized 

using a “magic cube” in Fig. 1, based on the distinct functions of target proteins, specific 

nanomaterials and formulations were engineered and tailed with integration of stimuli 

triggers. As the central component of a design, stimuli can be typically classified into two 

groups, including physiological stimuli such as pH, redox potential, enzymatic activities and 

glucose concentration and external stimuli such as temperature, light, electric field, magnetic 

field and mechanical force [12]. Other three “faces” of the “magic cube” could involve a 

variety of diseases, specific targeting sites and bio-inspired designs. We will also 

incorporate these elements during our discussion.

The emphasis of this review is to introduce and classify recent progress in the development 

of protein/peptide delivery systems via nano-scale formulations integrated with stimuli-

responsive moieties. We will survey representative examples of each stimulus type. 

Advantages and limitations of different strategies, as well as the future opportunities and 

challenges will also be discussed.

2. Physiological stimuli-triggered delivery

2.1. pH-sensitive nanosystems

Physiological pH gradients have been widely utilized in the design of stimuli-responsive 

nanosystems for controlled drug delivery to target locations, including specific organs, 

intracellular compartments or micro-environments associated with certain pathological 

situations, such as cancer and inflammation [9]. These delivery systems are typically based 

on nanostructures that are capable of physical and chemical changes on receiving a pH 

signal, such as swelling, charge conversion, membrane fusion and disruption and bond 
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cleavage [13]. There are two general strategies to make such pH-responsive nanomaterials. 

One strategy is to utilize the protonation of copolymers with ionizable groups [14, 15]. The 

other strategy is to incorporate acid-cleavable bonds. [16-20]. Adopting these two 

fundamental mechanisms, researchers have developed numerous pH-responsive 

nanomaterials to achieve controlled delivery of protein/peptide therapeutics at both cellular 

and organ level [21]. At cellular level, pH-responsive nanomaterials have been designed to 

escape acidic endo-lysosomal compartments and lead to cytoplasmic drug release [22, 23]. 

At organ level, pH-responsive oral delivery systems for controlled delivery of proteins and 

peptides have been developed for differential drug uptake along the gastrointestinal tract 

[24, 25]. Herein, we will introduce recently developed approaches for intracellular delivery 

and oral delivery. The relevant systems covered in this manuscript are summarized in Table 

1.

2.1.1. pH-responsive nanosystems for intracellular protein/peptide delivery—
After endocytosis, rapid endosomal acidification occurs due to a vacuolar proton ATPase-

mediated proton influx [26]. As a result, the pH levels of early endosomes, sorting 

endosomes, and multivesicular bodies drop rapidly to pH<6.0 [27]. The process of 

endosomal acidification can be harmful to the cargo molecules, especially macromolecules 

such as DNA, small interfering RNA (siRNA) and proteins. However, endosomal 

acidification can also be used as a trigger for endosomal escape and cargo release. As the 

most studied stimuli-responsive mechanism, pH-triggered intracellular drug release has been 

extensively investigated and applied in the development of intracellular protein delivery 

system. pH-responsive protein/peptide delivery systems utilizing various formulations 

including micelles, liposomes, polymersomes, protein nanocapsules and inorganic 

nanoparticles such as mesoporous silica nanoparticles (MSNs) have been developed.

Utilizing the above mentioned pH reduction, Kataoka and co-workers developed an 

intracellular protein delivery strategy based on charge-conversional polyionic complex (PIC) 

micelles [28, 29]. The core-shell structured nanomicelles were prepared via electrostatic 

interactions between diblock copolymers, which were endued with both a neutral 

poly(ethylene glycol) (PEG) block and an ionic poly(amino acid) block, and their 

counterions. Equine heart cytochrome c (CytC), a cationic protein, was reversible 

conjugated with citraconic anhydride and cis-aconitic anhydride to increase charge density 

and eventually invert surface charge. The modified CytC was then mixed with a cationic 

block copolymer, PEG–poly[N-{N’-(2-aminoethyl)-2-aminoethyl}aspartamide] (PEG–

pAsp(DET)) to form PIC micelles. The PIC micelles remained stable at physiological pH 

(pH 7.4), while rapidly disintegrated at pH 5.5 based on a charge-conversional principle. 

Controlled endosomal release of CytC was confirmed in human hepatoma cell line (HuH-7). 

The researchers continued to apply this system to deliver bioactive immunoglobulin G 

(IgG), antibody with superior selectivity towards its corresponding antigen, into the 

cytoplasm of HuH-7, demonstrated the potential of this delivery strategy for intracellular 

imaging and controlled delivery.

Liechty et al. demonstrated the ability of a pH-sensitive phenylalanine derivatized polymer 

to deliver Apoptin protein into mammalian cells [30]. In this design, hydrophobic L-

phenylalanine were grafted onto the carboxylic acid moieties along the backbone of poly(L-
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lysine iso-phthalamide) with a stoichiometric substitution degree of 75 mol% (designated as 

PP-75). [31] The resulted polymer with both hydrophobic side chains and ionisable carboxyl 

groups would experience conformational change from extended state to collapsed globular 

state upon pH reduction (decreased to below its pKa). Apoptin, the cargo protein, was used 

in the form of a fusion protein with maltose binding protein (MBP) to enhance solubility. 

Evidenced by the results of flow-cytometry experiments and mean fluorescence, both the 

proportion of cells with internalized PP-75-FITC and amount of internalized PP-75-FITC 

increased with polymer concentration. In vitro, MBP-Apoptin spontaneously forms soluble, 

non-covalent, globular complexes with an approximate 80 nm diameter. Attributed to the N-

terminal portion of Apoptin and stabilized by hydrophobic interactions, these complexes 

were composed of 30~40 MBP-Apoptin subunits, and had estimated molecular weight of 

approximately 2.5±0.3 MDa. The ability of PP-75 to facilitate delivery of fluorescent MBP-

Apoptin conjugated with Alexa Fluor 647 (MA-AF647) to Saos-2 cells was examined via 

flow-cytometry. Complex dissociation is likely due to intercalation and solubilization of 

multimeric MBP-Apoptin globules by PP-75, enabling the migration of individual MBP-

Apoptin subunits through the gel. Preliminary research has been conducted to confirm MBP-

Apoptin activity delivered by PP-75. When MBP-Apoptin and PP-75 were delivered in vivo 

to Saos-2 cells, flow-cytometry analysis showed an approximately 30% increase of cell 

population in the mid-apoptotic state, as compared to either MBP-Apoptin or PP-75 alone. 

Hu et al. utilized pH-responsive cross-linked PDEAEMA-core/PAEMA-shell particles for 

intracellular delivery of membrane-impermeable macromolecules, including ova protein, 

influenza A, and siRNA [32]. These particles were designed to physically segregate the 

function of cell/drug binding mediated by the particle shell from the function of 

endolysosomal disruption mediated by the core. Cationic particles with a shell containing 

primary amines and a core composed of cross-linked poly (diethylaminoethyl methacrylate) 

(PDEAEMA) were shown to elicit highly efficient endolysosomal disruption via the “proton 

sponge” effect while exhibiting minimal cytotoxicity. In their studies, Hu et al. 

demonstrated that proteins with net negative charge could be adsorbed to the cationic shell 

of pH-responsive core-shell particles, allowing cross-presentation to antigen-specific CD8+ 

T-cells. Cytosolic delivery of protein antigens by these materials dramatically lowered the 

dose of antigen required to elicit naïve CD8+ T-cell priming by DCs by at least ~100-fold 

compared to soluble antigen uptaken by DCs.

Giannotti and co-workers reported the synthesis of functional trimethyl chitosan (TMC)-

based polyelectrolyte complex (PEC) nanocarriers for the lysosomal enzyme R-GAL and 

prepared the assembly via simple aqueous solution mixing and ionotropic gelation [33]. 

According to atomic force microscopy (AFM) results, these polyelectrolyte nanoparticles 

were stable and active under physiological conditions and able to release the loaded 

enzymes at acidic pH. Gu et al. utilized layer-by-layer assembly of PADH (tertiary amine 

and hydrazide grafted polyaspartamide) and PACA (carboxyl and aldehyde grafted 

polyaspartamide) on silica spheres to prepare biodegradable shell cross-linked nanocapsules 

for protein delivery [14]. Both of the polyaspartamide derivatives are protein-like structured 

polymers obtained by aminolysis reaction of polysuccinimide which are water-soluble and 

biodegradable. Bovine serum albumin (BSA) was used as a model protein, and BSA 

encapsulated nanocapsules were prepared through a three-step procedure: i) layer-by-layer 
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assembly of PADH and PACA on the surface of protein-entrapped amino-functionalized 

silica spheres; ii) hydrazone cross-linking and iii) removal of silica core. BSA release 

exhibited a pH-dependent behavior: BSA release rate increased significantly as the ambient 

pH dropped from the physiological pH to acidic pH. Further cell viability study 

demonstrated that the shell cross-linked nanocapsules exhibited good biocompatibility.

Another facile yet delicate approach to achieve controlled protein release upon pH trigger is 

to utilize the cargo protein itself as a vehicle. Yan and co-workers reported an intracellular 

protein delivery system based on a nanocapsule with a single-protein core and a thin 

permeable polymeric shell (Fig. 2) [34]. Simply put, they covalently linked polymerizable 

vinyl groups to the protein core. And each protein core was wrapped in a thin polymer shell 

via subsequent polymerization in an aqueous solution containing monomers and 

crosslinkers. The degradability of the polymer shell was a result of the degradable 

crosslinkers, and the surface charge of the nanocapsule could be precisely regulated via 

tuning the ratio of the monomers (cationic monomers versus neutral monomers). The as-

prepared nanocapsules displayed a positive surface charge, which was desirable for cellular 

uptake. A notable advantage of this approach is that the single-protein core here can be 

chosen from a vast library of proteins, thus, this platform offers a general approach for the 

controlled delivery of a wide range of proteins. In this specific study, the researchers 

demonstrated successful delivery of enhanced green fluorescent protein (EGFP), horseradish 

peroxidase (HRP), BSA, superoxide dismutase (SOD) and caspase-3 (CAS). The researchers 

further developed this design principle and applied it in the synthesis of a triple-enzyme 

nanocomplex via DNA-directed assembly and nano-encapsulation [35]. The synthesis of this 

triple-enzyme nanocomplex was achieved by adopting a three step procedure. A DNA-

inhibitor scaffold linked with three inhibitors specific for the three enzymes was first 

formed, and the construction of triple-enzyme complex was realized based on the specific 

binding between the enzymes and the inhibitors. A polymer shell was then formed via in situ 

polymerization and the DNA-inhibitor scaffold was removed. Utilizing this approach, the 

researchers achieved controlled delivery of alcohol oxidase and catalase in order to reduce 

blood alcohol levels, which displayed potential as an alternative antidote and prophylactic 

for alcohol intoxication.

MSNs are appealing carriers for delivery of various biomolecules due to their excellent 

biocompatibility and stability [36]. Compared with other controlled protein delivery 

systems, using MSNs as intracellular protein delivery carriers has several superiorities: i) 

High protein-loading capacity can be achieved with the large pore volumes (>1 cm3/g) of 

MSNs. ii) The chemically and mechanically stable inorganic oxide framework of MSNs 

protects the cargo protein from exposure to harmful species. iii) It has been previously 

proved that MSNs are capable of escaping endolysosomal entrapment. MSNs functionalized 

with hydrophobic or acid labile moieties were recently employed to transport proteins into 

cells [37]. Wu et al. prepared aldehyde-displaying silica nanoparticles (MSN-aldehyde) 

containing lysosome activatable rhodamine-lactams for controlled protein delivery via 

lysosomal acidity-triggered release [38]. The MSN-aldehyde nanocomposites were site-

specifically embodied into lysosomes of HepG2, HeLa and L929 cells where the loaded 

protein cargoes, including arginase and green fluorescent protein, were released through 
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lysosomal acidity-mediated hydrolysis of the imine cross-linkages. The released proteins 

escaped from lysosomes into cytosol where arginase efficiently induced autophagy of the 

host cells. Slowing and co-workers synthesized and characterized a MCM-41-type MSN 

material with a large pore diameter (5.4 nm) [39]. Cell-membrane-impermeable protein 

cytochrome c was loaded as a model protein and its uptake and release profiles were 

investigated. The enzymatic activity of the pore-released protein was analyzed and 

compared with that of the native cytochrome c in physiological buffer solutions in order to 

examine any possible harmful effects caused by encapsulation. The test results showed 

identical kinetics of the two enzyme-catalyzed reactions, indicating the practicality of this 

MCM-41-type MSN material in intracellular protein delivery.

2.1.2. pH-responsive nanosystems for oral protein/peptide delivery—Each 

segment of the gastrointestinal tract maintains its own characteristic pH level, from the 

acidic stomach lumen (pH 1-3) for digestion [40], to the alkaline duodenum and ileum (pH 

6.6-7.5) for the neutralization of chyme [41, 42]. Oral delivery is an attractive drug delivery 

route for its convenience and patient compliance. However, orally-delivered drugs are 

exposed to strong gastric acid and presystemic enzymatic degradation, resulting in poor 

systemic exposure. Efficient oral delivery of proteins and peptides are hindered by three 

major barriers, including the enzymatic barrier, the mucus gel layer barrier and the 

absorption barrier. The development of smart oral delivery carriers capable of protecting 

cargo protein from digestion while releasing the loaded proteins at target site is therefore 

highly desirable.

Gao et al. developed a biodegradable and pH-sensitive hydrogels composed of four types of 

pH-sensitive polyacrylic acid derivatives (PAAD) and a biodegradable poly(L-glutamic 

acid) (PGA) crosslinker for oral delivery of proteins and peptides [43]. In this work, insulin 

was loaded into the hydrogels as a model protein. The results of the investigations of 

swelling and biodegradation behaviors indicated that the hydrogels based on PAAD with 

higher hydrophobicity exhibited the lower swelling ratios and less biodegradation in the 

condition of mimicking stomach environment, while the hydrogels showed the higher 

swelling ratios and more biodegradation in the condition of mimicking intestine 

environment. Following oral administration of insulin-loaded hydrogels to streptozotocin-

induced diabetic rats, significantly hypoglycemic effect was observed within 7 h. Lin and 

co-workers synthesized pH-responsive nanoparticles (NPs) composed of chitosan (CS) and 

poly-γ-glutamic acid (γ-PGA) blended with tripolyphosphate (TPP) and MgSO4 (multi-ion-

crosslinked NPs) and investigated their effectiveness in oral delivery of insulin [44]. The 

NPs were used to encapsulate insulin when pH<6 and release it at higher pH by the 

deprotonization of chitosan and destabilization of NPs.

Oral delivery using nanoparticles is often highly limited by their low transportation 

efficiency across the intestinal epithelium. In order to address this, Pridgen and co-workers 

developed Fc-targeted nanoparticles and evaluated their potential in oral delivery of insulin 

[45]. The surface of PLA-PEG NP was modified with IgG Fc fragments to target the 

neonatal Fc receptor (FcRn), which played an essential role in the transport of IgG across 

epithelial barriers. Under the acidic environment of the intestine, IgG Fc on the NP surface 

bond to FcRn on the apical side of epithelial cells. Fc modified NPs then went across the 
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epithelial cell through the FcRn transcytosis pathway. Upon exocytosis, Fc modified NPs 

dissociated from FcRn under physiological pH, the NPs were thus set free and eventually 

entered systemic circulation. In this study, enhanced transepithelial transportation was 

observed both in vitro and in vivo.

2.2. Redox-responsive nanosystems

Glutathione (GSH) is a tripeptide found at 2 to 3 orders higher level (approximately 2-10 

mM) in the cytosol than the extracellular fluids (approximately 2-20 μM) [46], rendering the 

relatively low intracellular redox potential. Thus, redox-responsive vehicles are mostly 

intended to disassemble and release drugs in the cytosol. Disulfides are degradable in 

presence of various reducing agents, including GSH, while the resulting thiol groups can 

reversibly reform disulfide bonds upon oxidation. [47] This thiol-disulfide exchange offers 

opportunity to achieve programmable drug release utilizing redox potential as trigger. [48] 

Attributed to the reversible characteristic of thiol-disulfide chemistry, disulfide bonds can be 

incorporated into either the polymer backbone or the crosslinkers in order to design redox-

responsive nanomaterials.

Zhao et al. reported the preparation of redox-responsive single-protein nanocapsules for 

intracellular protein delivery [49]. In this delivery system, target protein was non-covalently 

encapsulated into a positively-charged polymeric shell interconnected by disulfide-

containing crosslinkers via in situ interfacial polymerization. Cell-free assays were 

conducted to demonstrate the dissociation of the polymeric shell under reducing conditions 

and subsequent release of protein in the presence of GSH. The nanocapsules were proved to 

be capable of validly releasing protein cargoes into cytosol. Caspase 3 (CP-3) was delivered 

and hence induced apoptosis in a variety of human cancer cell lines, including HeLa, MCF-7 

and U-87 MG, using these nanocapsules as carriers. Recently, Zhao and co-workers 

continued to report a core-shell structured redox-responsive polymeric protein nanocapsule 

for intracellular delivery of recombinant maltose-bindingprotein fused apoptin (MBP-APO) 

(Fig. 3) [50]. In this delivery system, MBP-APO was reversibly encapsulated in a positively 

charged, water soluble polymer shell and was released in the reducing environments of 

cytoplasm.

Zheng et al. designed and synthesized biodegradable redox-responsive nanocapsules 

adopting the layer-by-layer technique with poly (L-aspartic acid) and chitosan as vehicles 

for transmucosal delivery of proteins and peptides [51]. TEM images showed that intact 

nanocapsules were obtained and the shell of the nanocapsules was about 40 nm. Muco-

adhesion test indicated that the adsorption amount of the mucin could reach up to 96.2 μg 

per 2 mg. The cell viability test demonstrated that all types of nanocapsules had good 

cytocompatibility and the cell viability was above 90%. As a model protein, insulin was 

loaded into the nanocapsules, and with a loading efficiency about 5%. The release amount of 

insulin could be regulated by the levels of GSH.

2.3. Enzyme-responsive nanosystems

Enzymes play a central role in biochemical processes, and therefore are important targets for 

drug development [52]. When an enzymatic activity is associated with a particular tissue or 
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an enzyme level is upregulated at the target site, nanomaterials can be designed to deliver 

drugs via specific enzymatic conversion. Compared with delivery approaches utilizing other 

internal or external stimuli, such as temperature, pH, and light, the enzyme-based approach 

represents an elegant biocompatible method of both high sensitivity and selectivity for 

programmed delivery of proteins to the enzyme-overexpression target sites [53], which has 

led to growing interest in developing enzyme-responsive nanomaterials as smart protein 

delivery systems. In the past few years, considerable progresses have been made in the field 

of enzyme-responsive protein delivery systems.

Biswas et al. designed a biomimetic protein delivery system, where cargo proteins were 

encapsulated in a nano matrix crosslinked by bisacrylated peptides with a specific sensitivity 

towards furin [54]. The development of this furin-degradable construction was inspired by 

the various and essential natural rules of furin, a ubiquitous intracellular protease expressed 

in all eukaryotic organisms and many mammalian cells. Furin is a transmembrane protein 

cycling between the surface and the trans Golgi network during substrate processing. [55] 

Elevated furin expression is associated with a series of diseases, including cancer, thus can 

be utilized as a target for drug delivery towards various cell lines, especially cancerous cell 

lines. A general mechanism adopting a facile two-step procedure was developed for the 

delivery of a wide sort of functional proteins: positively charged monomer (N-(3-

aminopropyl) methacrylamide (APMAAm)), neutral monomer (acrylaminde (AAM)), and 

furin-cleavable bisacrylated peptide crosslinkers were first enriched around protein surfaces 

via electrostatic and hydrogen bonding interactions, followed by the formation of a thin 

polymer layer around protein surfaces through in-situ free-radical polymerization, leading to 

the formation of protein nanocapsules (NCs) with controlled composition. The surface 

charge of the nanocapsule was controlled via regulating the ratio of the positive-charged and 

the neutral monomers. The sizes of resulting protein-containing NCs were within the range 

of 10 to 15 nm. And these NCs were positively charged, favorable for intracellular uptake. 

Furin-triggered protein release from the NCs was quantified via the enzyme-linked 

immunosorbant assay (ELISA) using enhanced green fluorescence protein (eGFP) as a 

model protein. No significant protein release was observed over 24 h in absence of furin, 

conversely, upon the addition of 4 unit furin, a rapid release of eGFP was observed and 

~80% of the encapsulated eGFP was released before reaching the plateau level. Utilizing 

this nanoplatform, the researcher delivered both cytosolic and nuclear proteins, such as 

EGFP, CP3, BSA and the transcription factor Klf4, in active forms to different of cell lines. 

Wen et al. reported an enzyme-responsive delivery platform with controlled-releasing 

capability and specificity based on protein nanocapsules [56]. When exposed to proteases, 

the peptide crosslinkers surrounding the protein surface were cleaved, releasing their protein 

cargo. Specific enzyme-degradation of nanocapsules could be achieved by picking particular 

enzymes and utilizing peptide crosslinkers with specific sequences. In their research, 

vascular endothelial growth factor (VEGF) for promoting angiogenesis was used as a model 

protein [57]. Since matrix metalloproteinases (MMP) [58] and serine proteases, such as 

plasmin, are generally upregulated in diseased or injured tissues [59, 60], they were chosen 

as the enzyme trigger to demonstrate the controlled release of VEGF from their 

nanocapsules.
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Aimetti et al. presented a method of fabricating enzyme-responsive PEG hydrogels for 

controlled protein delivery via thiol-ene photopolymerization [61]. Thiol-ene 

photopolymerization is based on the radical catalyzed addition of a thiol to a vinyl 

functional group. At the presence of light, a photoinitiator abstracts a hydrogen atom from a 

thiol and form a thiyl radical which can add across a carbon-carbon double bond. The 

subsequent propagation-chain transfer events result in a step-growth mechanism. Based on 

this mechanism, highly cross-linked polymer networks are formed when multifunctional 

monomers with an average functionality greater than two are utilized [61, 62]. In order to 

treat inflammation locally, they designed a PEG hydrogel system with human neutrophil 

elastase (HNE) sensitive peptide crosslinkers synthesized via thiol-ene photopolymerization 

rendering the gel degradable at sites of inflammation. Protein therapeutics physically 

entrapped within the network would be selectively released upon exposure to HNE. The 

controlled delivery of a model protein, BSA, based on this PEG hydrogel system was 

demonstrated. Thornton and co-workers functionalized Amino-functionalized poly (ethylene 

glycol acrylamide) (PEGA) hydrogel particles with peptide actuators that cause charge-

induced swelling and cargo release upon exposure to enzyme stimuli [63]. The peptide 

actuators here were designed based on both the specificity of the target enzyme and the 

charge properties of the to-be released protein cargo, thereby allowing for tunable release 

profiles. Fluorescently labelled albumin, avidin and proteins of similar size but opposite 

charge were released at a rate that was regulated by the peptide actuator linked to the 

polymer carrier, exhibiting a highly controlled release mechanism. In this work, release 

profiles were examined using a combination of fluorescence spectroscopy of the solution 

and two-photon fluorescence microscopy in order to analyze enzymatically triggered 

molecular events within hydrogels during the initial stages of protein release.

Jiang et al. recently reported an enzyme-responsive gel-liposome-mediated delivery system 

and achieved programmed co-delivery of tumor necrosis factor-related apoptosis inducing 

ligand (TRAIL) and small-molecule anticancer drug Dox (Fig. 4) [64]. The core-shell 

structured nano-vehicle was designed to have a cell-penetrating peptide (CPP, R8H3) 

modified liposome (R8H3-L) core for Dox loading and a hyaluronic acid (HA) based cross-

linked shell for protein encapsulation (designated Gelipo). This smart controlled drug 

delivery system underwent sequential trigger-responsive mechanisms in the tumor 

microenvironment, leading to precise release of protein and small-molecule cargoes at 

different target sites. First, hyaluronidase (HAase), which was proved to be highly expressed 

in tumor area, promoted the degradation of the HA shell and released the encapsulated 

TRAIL, which then bond to the plasma membrane and induced apoptosis. The exposed inner 

core subsequently entered tumor cell and located into endo-lysosomes. Consequent Dox 

release was then achieved with the aid of R8H3. The synergistic antitumor efficacy of 

TRAIL/Dox-Gelipo was thoroughly evaluated with both in vivo and in vitro assays. HAase-

treated TRAIL/Dox-Gelipo, with concentration ratio fixed at 2 ng/mL TRAIL and 100 

ng/mL Dox, induced a higher than 80% apoptosis ratio on MDA-MB-231 cells, which was 

prominent compared with the 36.48% of free TRAIL (2 ng/mL) and 38.52% of Dox-R8H3-

L (100 ng/mL). The researchers then investigated the in vivo antitumor efficacy of TRAIL/

Dox-Gelipo using MDA-MB-231 tumor-xenograft mouse models. The Dox amount in 

tumor tissues was increased by 5.72- and 2.70-fold, respectively, using Gelipo as carrier 
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instead of Dox solution and Dox-R8H3-L. Also, a notable enhanced effect on tumor 

inhibition was observed after TRAIL/Dox-Gelipo treatment.

2.4. Glucose-responsive insulin release

Diabetes is a disorder of glucose regulation, which is performed by an accumulating of 

blood glucose [65]. According to data from International Diabetes Federation, in 2013, there 

are 382 million children and adults throughout the world suffering from diabetes, and by 

2035, this number will rise to 592 million [66]. It has become one of the top health concerns 

of our time. So far, the major treatment of this disease has been insulin injection together 

with diet restriction, which is both inconvenient and painful, resulting in a huge desire for an 

alternative treatment which can directly response to blood glucose levels and achieve a 

noninvasive and continued insulin administration [67]. Therefore, glucose-responsive based 

closed-loop platforms have attracted more and more attention in the recent decades. Three 

typical strategies have been developed for glucose-responsive insulin delivery systems 

(GRIDS) [68]: incorporation of glucose oxidase (GOx), glucose-binding proteins and 

boronic acids as glucose-sensitive moieties. We will briefly analyze some recently 

developed GRIDS.

2.4.1 Glucose oxidase based Insulin delivery—GRIDS based on GOx are one of the 

most studied glucose-responsive systems that have been thoroughly explored in the past few 

decades. These GRIDS are typically prepared via the combination of GOx and pH-

responsive hydrogel backbones. GOx converts glucose into gluconic acid in the presence of 

oxygen, resulting in a decrease of pH, which triggers the swelling or deswelling behavior of 

the pH-sensitive backbones, contributing to the controlled release of insulin. In 2002, 

Guiseppi-Elie et al. reported a glucose-triggered insulin delivery system based on hydrogels 

containing GOx and insulin [69]. GOx was entrapped inside the network of the amphiphilic, 

pH-responsive membranes (synthesized via the copolymerization of hydroxyethyl 

methacrylate, dimethylaminoethyl methacrylate and 3-trimethoysilypropyl methacrylate) via 

UV polymerization, contributing to the glucose-responsiveness of the system. Insulin 

loading was achieved via either gel entrapment or equilibrium partitioning.

Gu et al. developed a novel glucose-triggered release strategy for the self-regulated insulin 

delivery via an injectable and acid-degradable polymeric network (Fig. 5) [70]. In this work, 

surface-modified dextran (designated m-dextran) was utilized as an acid-degradable and 

biocompatible matrix material. Dextran nanoparticles coated with chitosan (positively 

charged) and alginate (negatively charged) were prepared adopting double emulsion method, 

respectively. The cohesive gel-like nano-network here was formed via electrostatic 

interaction between oppositely charged dextran nanoparticles loaded with insulin and GOx. 

In the hyperglycemic state, this porous architecture would dissociate and subsequently lead 

to the release of insulin as a result of the catalytic conversion of glucose into gluconic acid. 

Based on in vitro studies, pulsatile insulin release was achieved in response to glucose 

concentrations. The researchers then extended their investigations to in vivo systems by 

applying this degradable nano-network in type 1 diabetic mice. According to the in vivo 

studies, a single injection of this reported nano-network was able to stabilize blood glucose 

levels within the normoglycemic state for up to 10 days. This novel insulin delivery nano-
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network based on glucose oxidase has showed a great potential in the development of smart 

insulin delivery systems and is a promising strategy in self-regulated and long-term diabetes 

therapy. Gu et al. also developed an injectable glucose-responsive system based on enzyme 

nanocapsule-integrated pH-responsive microgels [71]. This glucose-responsive insulin 

delivery platform, prepared via a facile one-step electrospray procedure, was composed of a 

pH-responsive chitosan matrix, enzyme nanocapsules, and recombinant human insulin. 

Upon being exposed to hyperglycemic environment, GOx encapsulated in nanoparticles 

began to converting glucose into gluconic acid, which caused the protonation of the chitosan 

network, and eventually led to the swelling of the microgel. This system was then further 

adjusted to achieve different insulin release rates under different blood sugar concentrations. 

In vivo studies carried out in streptozotocin-induced diabetic mice demonstrated the 

possibility of using this smart system in glucose regulation for diabetes therapy.

2.4.2 Glucose-binding proteins based insulin delivery—There are three major 

classes of glucose-binding proteins (apo-enzymes, lectins and a family of proteins recently 

found in certain bacteria), among which lectins are most used in the development of GRIDS. 

Lectins are sugar-binding proteins which are highly specific due to their sugar moieties [72]. 

The first lectin that could be purified on a large scale and achieved on a commercial basis 

was concanavalin A (ConA) and the first GRIDS based on ConA was developed by 

Brownlee and Cerami in 1979 [73]. ConA is a saccharide-binding lectin which displays 

reversible affinity for non-reducing α-D-mannose, α-D-glucose, N-acetyl-D-glucosamine and 

polysaccharide with unmodified hydroxyl groups at C-3, C-4, and C-6 [74]. In the native 

state of ConA, one molecule binds two metal atoms: one Ca2+ and one transition metal ion, 

usually Mn2+. The binding site for the sugar is adjacent to the metal atoms. Then, in the 

active state of ConA, four molecules join together to form a functional aggregate with four 

binding sites. Such a specific structure of ConA aggregate is capable of inducing affinity 

gelation of polysaccharide or other polymers that contain glucose moieties. Free glucose can 

seize the specific binding sites of ConA-polymer complex, leading to the dissociation of the 

complex and thus forming glucose-responsive systems [75, 76].

Tanna and co-workers developed a glucose-responsive gel formulation, which contained 

ConA and specific polysaccharides for the controlled delivery of insulin [77]. The gel here 

was synthesized through the covalent coupling to two structurally different carbomers 

(Carbopol 934P and Carbopol 941P) achieved by using the carbodiimide chemistry 

described by Tanna et al. in 2001 [78]. The gel was proved to be glucose-sensitive and could 

be triggered repeatedly by the stimulus of glucose. Their study showed the possibility to 

formulate glucose-responsive gels with covalently coupled carbomer carriers with distinct 

structures. Nie et al. prepared glucose-responsive hydrogels based on methacrylate 

derivatives of dextran and ConA and investigated its capability in self-regulated insulin 

delivery [79]. The results showed that the insulin release was dependent on the glucose 

concentration. The glucose sensitivity, which could be regulated by the degree of 

substitution (DS) of the dextran methacrylate derivative, was reversible. The bioactivity of 

released insulin was also studied, and the results demonstrated that the activity of insulin 

remained unchanged.
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2.4.3 synthetic boronic acids based Insulin delivery—The water-solubility of 

boronic acids can be regulated by pH or diol concentration. In aqueous, boronic acids exist 

in an equilibrium between an undissociated neutral trigonal form and a dissociated anionic 

tetrahedral form. With the existence of saccharides, the anionic form binds with diols 

reversibly to form a 5- or 6-membered ring cyclic boronate ester, shifting the above 

equilibrium towards the anionic form side. This unique behavior of boronic acids can be 

used to design GRIDS.

Kim and co-workers reported a sugar-responsive insulin delivery system based on 

polymersomes of polyboroxole block copolymers [80]. In their study, monosaccharide-

responsive poly(styreneboroxole) (PBOx) was synthesized from the controlled radical 

polymerization of a boroxole-containing styrenic monomer adopting the reversible addition-

fragmentation and chain transfer (RAFT) method. Amphiphilic block copolymers of PBOx, 

which could self-assemble into polymersomes in water, were then prepared by performing a 

RAFT polymerization of PBOx together with a PEG-based macro-chain-transfer agent. 

Polymersomes of these PBOx copolymers could encapsulate water-soluble cargoes such as 

insulin in their water-filled inner compartment [81]. Kim et al. investigated the controlled 

insulin delivery ability of these saccharide-responsive polymersomes by encapsulating 

fluorescein isothiocyanate (FITC)-labeled human insulin within polymersomes and 

successfully demonstrated that sugar-triggered insulin release under physiologically relevant 

pH conditions could be achieved with such a PBOx based polymersome system.

Lin et al. designed and prepared a boronic acid-functionalized MSN-based drug delivery 

system (BA-MSN) in order to achieve the controlled double release of both cyclic adenosine 

monophosphate (cAMP), which could activate Ca2+ channels of pancreas beta cells and thus 

stimulate insulin secretion upon glucose trigger (Fig. 6) [82]. In this delivery model, 

gluconic acid-modified insulin was immobilized onto the exterior surface of MSN and 

served as caps to encapsulate cAMP molecules. Their investigation demonstrated that BA-

MSN could be applied as an efficient co-delivery system for glucose-responsive triggered 

release of insulin and cAMP.

3. External stimuli-triggered delivery

3.1. Thermal stimuli

Thermal sensitive polymers are polymers which exhibit a volume phase transition at a 

certain temperature. Thermal responsive behavior of polymers is generally viewed as a 

phenomenon governed by the balance of hydrophilic and hydrophobic moieties on the 

polymer chain [83]. This temperature-responsive character of certain polymers has been 

often applied in the design of stimuli-responsive delivery systems.

One major class of thermal sensitive materials are temperature-responsive covalently 

crosslinked hydrogels, which are probably the most extensively studied thermal responsive 

drug delivery systems. Although there are several different ways to immobilize proteins in 

gels, the number of these methods which can be adopted in drug delivery systems is rather 

limited. One commonly used strategy is to mix the cargo molecules with proper monomer, 

crosslinker and initiator, which then polymerize and form matrix encapsulated with the 
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cargo molecules. This method can be modified as adding cargo molecules into the formed 

polymer and then crosslinked them chemically. The most used protein loading strategy is to 

utilize the equilibrium swelling of a hydrogel in a protein-containing solution. According to 

the studies of Gehrke et al., high protein-loading efficiency can also be achieved via 

partitioning proteins from polymer solutions of low affinity [84]. Thermal-responsive 

materials are typically materials with properties, such as solubility, displaying a nonlinear 

relationship with temperature. [85] Thermal sensitive materials hold a sharp transition 

temperature at which they either become increasingly soluble or insoluble. [86] Polymers 

become insoluble upon being heated to the transition temperature exhibit a lower critical 

solution temperature (LCST). The local temperature of the tumor microenvironment is 1-2 

°C higher than that of normal tissue, thence thermal responsive polymers will undergo phase 

change from the hydrophilic extended state to hydrophobic collapsed state upon transported 

to tumor site. This temperature-triggered phase switch endues thermal-responsive polymers 

the capability to release drugs when entering tumor sites. Most of the thermal-sensitive 

polymers used in biomedical applications exhibit LCST behavior [87], while only a few 

natural polymers display LCST behavior. Zhang et al. reported a chitosan-PEG copolymer 

based injectable thermo reversible hydrogel for sustained protein release [88]. The hydrogel 

was prepared via grafting PEG onto the chitosan backbone. This thermo responsive system 

was then studied for protein delivery, where BSA was chose as model cargo protein. Their 

study also confirmed that the structure of BSA maintained unchanged after the release. 

Compared with natural polymers, synthetic polymers display more potential in the 

development of thermal responsive protein delivery system. The most extensively studied 

synthetic polymer which displays a thermo responsive character in biomedical applications 

is poly(N-isopropylacrylamide) (PNIPAm), due to the fact that its LCST is 32 °C, therefore 

suitable for in situ gelling [89]. Yang and co-workers studied the interactions between 

proteins and PNIPAAm hydrogels, which were cross-linked using N, N’-

methylenebisacrylamide and displayed a low LCST. Insulin and BSA were chose as model 

proteins in order to examine the ability of PNIPAAm hydrogels as potential protein delivery 

carriers. The release of the protein was not complete as a result of the strong interaction 

between the polymer and the cargo protein [90]. Hu et al. achieved a sufficient 

concentration of surface-coupled ATRP initiators (the porous polycaprolactone (PPCL)-Br 

surfaces) via the reaction between hydroxyl groups on the PPCL films (prepared by using 

PEG as the pore-forming agent) and 2-bromoisobutyryl bromide for the subsequent surface 

initiated ATRP of NIPAAm [91]. The resultant PNIPAAm-grafted PPCL films possessed an 

interconnected porous structure and exhibited a low LCST of about 32°C. The potential of 

this grafted polymer film as controlled protein delivery system was then demonstrated using 

BSA as a model protein.

Metal nanoparticles are capable of absorbing energy and generate heat in response to radio 

frequency (RF), thus can also be utilized in the design and development of thermal-

responsive systems. Stanley and co-workers achieved remote regulation of in vivo insulin 

production by decorating a modified temperature-sensitive channel, TRPV1, with iron oxide 

nanoparticles (FeNPs) (Fig. 7) [92]. These FeNPs were coated with antibodies and heated in 

a low-frequency magnetic field, resulting in a temperature rise. Upon the rise of the local 

temperature, thermal-responsive TRPV1 was triggered to accelerate calcium transport and 

Lu et al. Page 13

J Control Release. Author manuscript; available in PMC 2015 November 28.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



increased insulin gene expression, leading to the synthesis and release of bioengineered 

insulin.

3.2. Light

Among all the stimuli utilized as controlled drug release triggers, light is especially 

attractive, as it can remotely trigger drug release with extremely high spatial and temporal 

precision with an on/off switching pulsatile manner [93, 94]. Additionally, in light-triggered 

delivery systems, release profiles can be regulated via the adjustment of a broad range of 

parameters, such as wavelength, light intensity, duration of exposure and beam diameter 

[95].

TiO2 nanomaterials have superior photocatalytic properties and show excellent 

biocompatibility, therefore, are considered as suitable nanocarriers for light-triggered protein 

delivery [96, 97]. Song et al. reported fabrication of an amphiphilic TiO2 nanotubular-

structured carrier for protein delivery. The controlled delivery aim was achieved via a 

hydrophobic cap on the hydrophilic TiO2 nanotube (Fig. 8) [98]. The loading and release 

efficacy of this delivery system were investigated and demonstrated using horseradish 

peroxidase (HRP) as model payload. The hydrophobic cap mentioned above prevented 

uncontrolled leakage of the hydrophilic protein cargo into aqueous environment, and it could 

then be removed upon exposure to UV signal via exploiting the photocatalytic nature of 

TiO2 for UV induced chain scission of attached organic monolayers [99], leading to UV-

triggered controlled release of protein cargoes. It is yet noteworthy that most proteins such 

as BSA were not endurable to UV irradiation [100]. Residues such as tryptophan, tyrosine, 

phenylalanine, and cysteine/cysteine will undergo photoinduced oxidation, thus are the 

primary targets of photodegradation in proteins. [101] Photooxidation has been recognized 

as the major contributor of protein degradation and can lead to changes in the primary, 

secondary, and tertiary structures of proteins. In a recent work, dendritic conjugates have 

been developed as fluorescent dendritic nanoprobes for an enhanced photostability. [102] 

Similar principles can be utilized to develop nanocarriers capable of protecting cargo 

proteins from photoinduced damages. Compared with UV, visible light is less harmful to 

proteins due to its lower energy. Luo and co-workers developed a visible light responsive 

protein delivery system assembled through coordinating hydroxyl onto TiO2 nanoparticle 

[103]. In their work, hemoglobin (Hb) was chosen as a model protein and covalent attached 

onto the surface of TiO2 nanoparticles utilizing the coordination of 3, 4-dihydroxyl benzoic 

acid (DB) to the unsaturated coordinative TiO2 ions. DB formed a charge-transfer complex 

with TiO2. Controlled release of Hb could then be achieved via cleavage of the coordination 

bonds between DB and TiO2 surfaces triggered by visible light. According to their 

investigation, the released Hb still maintained its structure and bio-catalytic activity.

Instead of directly delivering proteins, Schroeder and co-workers chose a different approach 

by delivering a “protein factory”, where the synthesis of proteins could be remotely 

triggered by UV (Fig. 9) [104]. This lipid based vesicle was filled with amino acids, 

ribosomes, and plasmid caged with a photolabile protecting group. Upon UV signal, the 

vesicle began to synthesize proteins with the cell free protein synthesis machinery. GFP and 

enzymatically active luciferase were produced using this method. In order to evaluate the 
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vesicle’s ability of protein production in vivo, the particles were injected locally into mice 

which were later treated with UV or kept untreated. Results of whole body bioluminescence 

imaging (Fig. 9-C) verified the nanoparticles’ capability of spatiotemporally producing 

active luciferase upon UV trigger.

Near-infrared light (NIR) has also been utilized to achieve controlled delivery. Tang et al. 

applied silica-coated gold nanorods onto the skin surface as NIR-responsive heat generator, 

in order to facilitate transdermal protein delivery [105]. NIR irradiations of the mouse skin 

using both a continuous-wave laser (CW-laser) and a pulsed laser were investigated, 

separately, using OVA as model protein. The researchers found that in the case of CW-laser, 

skin temperature rose upon irradiation, causing migration of inflammation cells and induced 

expression of heat shock protein (HSP70). Pulsed laser, on the other hand, didn’t increase 

skin temperature since the heated area was limited to the stratum corneum, thus skin 

histology remained unchanged and no HSP70 induction was observed. In both cases, the 

permeability of protein through the stratum corneum was enhanced due to the photothermal 

effect of gold nanorods, therefore providing an alternative approach for transdermal protein 

delivery and vaccination.

3.3. Electric field

Electric current has also been utilized to trigger protein/peptide release. There are basically 

two methods to develop electro-stimulated drug delivery systems.

One approach is to synthesize a pH-sensitive polymer and change the local pH via 

regulating the presence or absence of an electric current [106]. Electro stimulus is an indirect 

trigger, and this electro-responsive drug delivery system is essentially one derivative of pH-

responsive delivery systems. A typical class of materials with this kind of indirect electric-

sensitivity is complex of poly(ethyloxazoline) (PEOx) and poly(methacrylic acid) (PMAA) 

formed via hydrogen bonding between oxazoline group and carboxylic group. When pH is 

below 5.0, PEOx and PMAA form complex and precipitate immediately, while this solid-

state complex will dissolve instantly when pH is above 5.4 [107]. Kwon et al. investigated 

the phase change of PEOx/PMMA complex towards electric current trigger by attaching the 

PEOx/PMMA matrix onto platinum cathode. When an electric current was applied, the 

matrix surface facing the cathode began to dissolve as a result of the increased local pH.

The other way is the transportation of counterions and water molecules in the non-

degradable polymer matrix. Relevant electro-responsive hydrogels have long been studied. 

Back in 1995, Florence et al. reported the electro-responsive behavior of crosslinked 

hyaluronic acid (HA) [108]. HA is a naturally existing polysaccharide distributed widely 

throughout connective, epithelial, and neural tissues, which plays a central role in regulating 

cell growth and renewal. The system they developed showed a pulsatile release of model 

macromolecules: the hydrogel swelled upon switching off electric field, leading to release of 

the model macromolecule, and such a release behavior stopped immediately after the 

reapplication of the electric field. Shim and co-workers prepared semi- and full-

interpenetrating polymer network (IPN) hydrogels composed of poly(vinyl alcohol) and 

polyethyleneimine and investigated their bending behavior upon electro stimulus [109]. 

Semi-IPN referred to the IPN where one component of the assembly was crosslinked and the 
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other maintained its linear form, and full-IPN referred to the IPN where all polymer chains 

were crosslinked. The swelling behaviors showed that the swelling ratio of the semi-IPN 

hydrogels increased with PEI content in the matrix, while that of full-IPN hydrogels 

displayed a significant decrease by increasing PEI contents. In the water state of the 

hydrogels, the full-IPN hydrogels contain less free water in comparison with the semi-IPN 

hydrogels. Murdan et al. investigated the potential of chondroitin 4-sulphate (CS) hydrogels 

as electro-controlled carrier to delivery protein and peptide [110]. They studied the loading 

efficiency and release profiles of a CS hydrogel crosslinked with ethylene glycol diglycidyl 

ether, using three positively charged molecules (vasopressin, aprotinin and lysozyme) and 

one negatively charged protein (BSA) as model cargo. According to their study, the CS 

hydrogel displayed the capability to concentrate positively charged compounds while failed 

to concentrate negatively charged compounds effectively. Also, the loading efficiency 

increased with the decrease of the molecular size of the cargo molecules. The release of 

cargoes could be regulated by changing voltage, and protein was not released in the absence 

of an electrical field, which indicated the potential of this CS hydrogel as electro-responsive 

protein delivery platform.

3.4. Magnetic force

Magnetically guided delivery strategies have great potential in enhancing the therapeutic 

profile of drugs by increasing their distribution to the target site as well as lowering off-

target interactions. Magnetic targeting is based on two primary elements: a magnetic field 

source and a magnetically responsive drug carrier [111].

Magnetic nanoparticles are capable of targeting specific sites to kill tumors under the 

guidance of a magnetic field. Thus, designing nanovehicles based on magnetic nanoparticles 

is a rather appealing approach in designing controlled protein delivery systems. In order to 

determine whether mesoporous magnetic hollow nanoparticles (MMHs) can penetrate cell 

membranes and deliver protein into subcellular compartments, Huang et al. prepared 

different functionalized MMHs and investigated their intracellular trafficking using BSA as 

a model protein payload [112]. The MMHs were prepared adopting a reported facile three-

step procedure, where negatively charged polystyrene (PS) nanospheres were used as 

templates and then removed to form the hollow structure [113]. The results indicated that 

MMHs modified with amino groups (AMMHs) were efficient in protein loading and capable 

of transporting BSA into the cells and releasing the protein cargo into subcellular 

compartments, such as cytosol and nucleus. In addition, studies showed that the 

nanoparticles were biocompatible, and the encapsulated BSA maintained its bioactivity. 

Chorny and co-workers developed a magnetic force triggered protein delivery system based 

on magnetically responsive nanoparticles (MNP) prepared via the precipitation of calcium 

oleate in the presence of magnetite-based ferrofluid [114]. This system displayed great 

efficiency in the encapsulation of antioxidant enzymes, superoxide dismutase (SOD) and 

catalase, and also a considerable therapeutic effect via combating a severe oxidative insult in 

vitro under the guidance of magnetic field. Quantitative assay of cell uptake verified a 

71±4% internalization ratio of MNP (1 μg/well) after being treated with magnetic field for 4 

hours. The MNP’s capability of providing antioxidant protection was assayed by cell 
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viability study and demonstrated by the 62±12% recovery of HUVEC exposed to hydrogen 

peroxide at 10mM concentration for 5 hours.

Cho et al. developed a magnetic switch for the control of cell death signaling. In this work, 

death receptor 4 (DR4) monoclonal antibodies, which were highly expressed on tumour 

cells, were conjugated to magnetic nanoparticles via a specific antigen-antibody interaction 

(Fig. 10) [115]. They chose Zinc-doped iron oxide magnetic nanoparticles here for their high 

saturation magnetization value. When applying a magnetic field to aggregate magnetic 

nanoparticle conjugated DR4s, the magnetic switch is ‘ON’, thus promoting apoptosis 

signalling pathways. The efficacy of the magnetic switch for inducing apoptosis in vivo was 

evaluated using a zebrafish model. An approximately 3.5-fold morphological alteration in 

the tail region, which was a visible consequence of apoptosis signaling, confirmed the 

occurrence of apoptosis after applying a 0.50 T magnetic field for 24 hours.

3.5. Mechanical force

These years, controlled drug applying mechanical force as a trigger has attracted increasing 

interests. For example, Lee and co-workers developed alginate hydrogels to achieve 

pulsatile release of vascular endothelial growth factor (VEGF) in response to compressive 

forces with varying strain amplitudes [116]. Encapsulated cargo protein was released upon 

compression. And once the strain was removed, hydrogel resumed its initial volume.

Among all kinds of mechanical force, ultrasound has long been utilized in drug delivery area 

for its simplicity, security, inexpensiveness and real time applications [117]. Recently, Jin et 

al. reported a novel ultrasound-triggered insulin delivery system based on injectable 

polymeric nano-network (Fig. 11) [118]. PLGA was chosen as the matrix material and 

insulin loaded nano-network was prepared using a double emulsion method. Positively 

charged chitosan and negatively charged alginate were used as surfactants, respectively, in 

order to prepare oppositely charged nanoparticles. A cohesive nano-network was then 

developed by mixing the above-mentioned two kinds of oppositely charged nanoparticles. 

The insulin released from the nano-network displayed a ultrasound-triggered pulsatile 

profile mainly attributed to cavitation induced by focused ultrasound system (FUS). To fully 

evaluate the efficacy of this smart insulin delivery system as an alternative diabetes therapy, 

the reaserchers further extended their investigation to in vivo studies using STZ-induced 

adult diabetic mice as animal model. FUS was applied to the injection site for 30 sec 2 days 

after nano-network injection, leading to a rapid decrease of blood glucose level. Similar FUS 

treatment performed on day 4, day 7 and day 10 indicated the potential of this FUS-triggered 

insulin delivery stragety for sustained long-term insluin delivery.

4. Dual and multi-stimuli responsive systems

One appealing strategy that has emerged recently is to fabricate systems with the ability to 

respond to dual and multiple stimuli, thereby assuring drug release under complex 

pathological conditions with fine tuned drug release profile to augment therapeutic efficacy 

[119, 120]. Considerable variety of nanomaterials responsive to dual and multi-stimuli, such 

as pH/temperature, pH/redox, pH/glucose, pH/enzyme, dual enzyme, pH/temperature/

glucose have been developed and studied [120]. Among all the dual and multi-stimuli 
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responsive nanomaterials, nanomaterial responsive to both pH and temperature signals is 

one of the most studied. Zhang et al. developed smart hydrogels composed of pH-sensitive 

poly (acrylic acid) (PAA) and temperature-sensitive hydroxypropylcellulose-g-acrylic acid 

(HPC-g-AA) as protein carriers [121]. With respect to pH responsiveness, hydrogels with 

higher HPC-g-AA content resulted in lower equilibrium swelling. Decrease of swelling ratio 

was observed in the as-prepared hydrogels with the increase of temperature, yet the change 

was not significant. Although temperature had little influence on the swelling of the 

hydrogels, it determined the optical transmittance of the hydrogels, which indicated that the 

HPC parts of hydrogel became hydrophobic when the temperature was above the lower 

critical solution temperature. In addition, the hydrophilicity of PAA increases with the 

increase of pH, resulting in a pH-dependent temperature-sensitivity. In vitro protein release 

experiment was carried out first in artificial gastric juice (pH = 1.2) for 2 h and then in 

artificial intestinal liquid (pH = 6.8) for the subsequent 6 h, using BSA as a model protein. 

The release profiles showed that both HPC-g-AA and AA contents played important roles in 

the protein cargo release behaviors.

Wang and co-workers reported a triple-responsive protein delivery system prepared via the 

copolymerization of pH and temperature-sensitive (2-dimethylamino) ethyl methacrylate 

(DMAEMA) with glucose-sensitive 3-acrylamidephenylboronic acid (AAPBA) [122]. BSA 

was selected as a model protein to study the release profiles. The pH, temperature and 

glucose sensitivities were studied, respectively, and the effect of AAPBA content on the 

swelling ratio was also investigated. Based on the results of the mentioned studies, it was 

established that the swelling and protein release behavior of the ‘smart’ hydrogels were 

significantly influenced by both pH/temperature and glucose concentration at physiological 

pH.

Gu and co-workers incorporated photolabile caged peptide sequences into an enzymatically 

degradable polymeric nanocapsule and achieved controlled protein release triggered by 

enzyme and light (Fig. 12) [123]. This cocoon-like nanocapsule was prepared using a facile 

one-pot procedure (Fig. 12-A): deposition of monomers and crosslinkers onto the surface of 

cargo protein through physical adsorption including electrostatic force and van der Waals 

force followed by formation of polymeric protective shell via in situ free-radical 

polymerization facilitated by protease-cleavable bisacrolylated short peptide crosslinkers. 

The peptide crosslinkers began to proteolyze upon exposure to proteases, leading to the 

enzyme-triggered release of cargo protein. The degradability of the polymeric shell can be 

controlled by choosing the sequences of peptide crosslinker based on their sensitivity to 

different kinds of proteases, thus this study actually offered a general approach for the 

controlled protein delivery to different target sites. Photolabile caged peptide sequences 

were incorporated into the crosslinkers in order to achieve the spatiotemporally controlled 

release. In this study, the researchers selected CP3 as a model target protein to demonstrate 

the effectiveness of the nanocapsule for cytoplasmic delivery. A photolabile o-nitrobenzyl 

ester moiety (Dm) was conjugated onto the VDEVDTK peptide cross-linker in order to cage 

the P1 aspartic acid (Fig. 12-D). Upon exposure to UV, Dm was cleaved and exposed P1 

aspartic acid, the uncaged peptide cross-linker could then be cleaved by CP3, leading to the 

dissociation of the polymeric shell. Thus, the dissociation of the polymeric shell and release 
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of cargo protein could only be achieved via synergistic effect of UV irradiation and CP3 

hydrolysis.

Dual- and multi-responsive nanomaterials capable of targeting complex physiological 

environment hold great potential in further fine tuning the delivery precision and enhancing 

the therapeutic efficacy of released proteins and peptides, thence have been aggressively 

pursued these years. However, to date, these reported dual- and multi-responsive systems are 

often proof-of principle studies due to difficulty in validating sequential or synergistic 

effects in complicated in vivo environment. Systemic investigations need to be conducted 

and enormous efforts are required to be invested before these novel systems can finally be 

utilized in clinical practice.

5. Summary and outlook

As discussed above, nanomaterials sensitive to physiological or exogenous stimuli have 

been widely applied to delivery therapeutic proteins at the right time and (or) place. Dual 

and multi-responsive nanomaterials sensitive to combinations of triggers in order to 

customize more specific delivery have also been developed. Relevant materials can be 

flexibly assembled into diverse formulations to achieve enhanced efficacy. Table 1 

summarizes typical examples of different stimuli-responsive nanosystems reported recently.

Despite remarkable achievements in this field, systems tested in in vivo preclinical models 

or stepped into the clinical stage remain elusive [124]. There are still several challenges that 

hamper their translation from the bench to the bedside and need to be essentially addressed. 

First of all, in order to fully achieve clinical potential, the relationship between precise 

release of protein cargoes at the exact “responsive” site (location/time) and 

pharmacokinetics should be coordinated [125]. For example, an effective and efficient 

intracellular protein delivery tool should make sure the nanocarriers have sufficient period 

of time to be activated to release cargoes through cellular environmental elements, such as 

acidic or redox potential. Additionally, for glucose-responsive insulin delivery systems, one 

challenging issue is to achieve fast response to mimic the function of healthy pancreatic 

cells [67]. Relevant parameters associated with materials, formulations and target proteins 

can be further tailored to meet the criteria. Second, the translation is limited by the 

complexity of formulation design and obstacles in scaling-up of synthesis. Formulations 

with compromise of a simple but effective architectural design are highly possible to win the 

chance for clinic. Third, how to achieve sufficient biocompatibility is an intractable issue to 

be solved. One emerging research theme includes engineering nanomaterials that 1) can 

highly avoid biological sequestration for reducing immune toxicity; 2) have good 

biodegradability to eventually eliminate through renal clearance for reducing long-term or 

whole-body toxicity [126]. Lastly, issues related to the tissue penetration depth and side 

effects of the exogenous physical stimulus would also need to be solved. Meanwhile, 

exploring new stimuli, for example, those are closely associated with metabolic levels and 

have targeting efficacy, can also be highly desirable [127].
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Fig. 1. 
Schematic of “Magic Cube” for protein delivery: combination of a variety of triggering 

mechanisms and carrier formulations for delivery of a broad spectrum of functional proteins.
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Fig. 2. 
(A) Schematic illustration of the synthesis and cellular uptake of cationic single-protein 

nanocapsules with degradable and non-degradable polymeric shells. (B) (i)(ii) TEM (i) and 

AFM (ii) images of the HRP nanocapsules; (iii) TEM image of nanocapsules with a gold-

quantum-dot-labelled HRP core for demonstration of the nanocapsule architecture. (C) 

Particle sizes of degradable and non-degradable nanocapsules at pH 5.5 (i) and pH 7.4 (ii). 

(D) Fluorescence intensity of native EGFP, non-degradable EGFP nanocapsules (nEGFP) 

and degradable EGFP nanocapsules (de-nEGFP) after exposure to 1 mg·L−1 trypsin and α-

chymostrypsin in buffer (pH 7.4, 50 °C). (E) Fluorescence intensity of HeLa cells incubated 

with nEGFP or de-nEGFP for 3 h followed by incubation in fresh media. Adapted with 

permission from Ref. [34].
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Fig. 3. 
Redox-responsive polymeric nanocapsule for intracellular delivery of tumor-selective 

apoptin complex: (A) Schematic illustration of degradable apoptin nanocapsules (S-S APO 

NC) synthesis (upper) and intracellular delivery to induce apoptosis of tumor cells (lower). 

(B) TEM image of S-S APO NC. (C) Tumor inhibition observed in mice treated by S-S 

APO NC. Adapted with permission from Ref. [50].
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Fig. 4. 
(A) Scheme of TRAIL and Dox co-loaded Gelipo (TRAIL/Dox-Gelipo) for sequential and 

site-specific drug delivery. (B) TEM image of TRAIL/Dox-Gelipo, scale bar: 200 nm. (C) 

MDA-MB-231 tumor growth curves after intravenous injection of different formulations. 

Adapted with permission from Ref. [64].
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Fig. 5. 
(A) Schematic illustration of injectable nano-network for glucose-responsive insulin 

delivery. (B) SEM image of formed nano-network. (C) In vitro accumulated insulin release 

from nano-network under different glucose concentrations. (D) In vivo studies of the nano-

network for type 1 diabetes therapy: blood glucose levels (i) and plasma human insulin 

concentration (ii) in type 1 diabetic mice injected with 1×PBS, insulin and enzyme 

encapsulated nano-network, insulin encapsulated nano-network, enzyme encapsulated nano-

network, and insulin solution. Adapted with permission from Ref. [70].
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Fig. 6. 
MSN-based glucose-responsive system for co-delivery of insulin and cyclic AMP: (A) 

Schematic illustration of the glucose-responsive co-delivery system; (B) TEM images of 

boronic acid-functionalized MSN (i) and FITC-G-Ins-capped MSN (ii). Adapted with 

permission from Ref. [82].
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Fig. 7. 
Iron oxide nanoparticle based plasma glucose regulation triggered by radio-wave heating: 

(A) Schematic illustration of cell activation and gene expression induced by iron oxide 

nanoparticle. (B) Effects of RF treatment on blood glucose (i) and plasma insulin (ii) in PBS 

and nanoparticle-treated mice with tumors expressing TRPV1His and calcium-dependent 

human insulin. Adapted with permission from Ref. [92].
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Fig. 8. 
UV-responsive amphiphilic TiO2 nanotube arrays for controlled drug delivery: (A) Scheme 

of amphiphilic TiO2 nanotube layer fabrication. (B) Four methods for HRP loading. (C) 

Schematic illustration of HRP release under UV illumination. (D) Relative intensity of 

reflected light over time of HRP loaded TiO2 nanotubes after exposure to PBS without 

illumination (a), 50% UV illumination (b), and full UV illumination (c). Curve d shows the 

release of HRP from TiO2 nanotubes without surface modification. Adapted with permission 

from Ref. [98].
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Fig. 9. 
Light-triggered protein-producing nanoparticle: (A) Scheme of lipid vesicles encapsulated 

with cellular machinery responsible for transcription and translation. (B) Overlaid 

transmitted light and fluorescence images of a GFP-producing particle. (C) Production of 

luciferase in vivo induced by UV irradiation: (i) bioluminescence imaging of mice injected 

locally with protein-producing nanoparticles; (ii) quantitation of the bioluminescence 

imaging shown in (i). Adapted with permission from Ref. [104].
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Fig. 10. 
(A) Schematic illustration of magnetic switch for apoptosis signaling in vitro and in vivo; 

(B) (i) magnetic switch set-up for apoptosis signaling; (ii)(iii) confocal microscope (ii) and 

SEM (iii) images of Ab–MNP (1 pM)-treated DLD-1 cells; (iv) biomimetic magnetic switch 

for apoptosis signaling induction via receptor aggregation. Adapted with permission from 

Ref. [115].
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Fig. 11. 
(A) Schematic illustration of FUS-mediated insulin delivery: (i) FUS triggered insulin 

release from nano-network; (ii) noninvasive long-term blood glucose regulation controlled 

by FUS. (B) FUS-mediated in vivo blood glucose regulation: (i) schematic illustration of 

experimental apparatus; (ii) blood glucose levels in STZ-induced C57B6 diabetic mice with 

and w/o FUS treatment: FUS treatment was repeatedly applied three times and the 

administration windows are represented by the blue solid columns. Adapted with permission 

from Ref. [118].
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Fig. 12. 
(A) Scheme of protein nanocapsule preparation via in situ free-radical polymerization. (B) 

Typical monomers and cross-linker used in this study. (C) TEM images of fresh CP3 

nanocapsules (i) and CP3 nanocapsules after self-degradation (ii). (D) Schematic illustration 

of the structure and function of the peptide cross-linker CL-VDEVDmTK. Adapted with 

permission from Ref. [123]
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Table 1

Summary of recently reported stimuli-responsive nanomaterial based protein/peptide delivery systems covered 

in this review

Stimulus Nanomaterial Model
protein/peptide

Target location Ref

Physiological pH PIC micelles CytC, IgG Intracellular: HuH-7 [28,
29]

PP-75 MBP-Apoptin Intracellular: Saos-2 [128]

cross-linked PDEAEMA-core/
PAEMA-shell particles

OVA protein Intracellular: CD8+

T-cells
[32]

TMC-based PEC nanocarriers R-GAL Intracellular [33]

polyaspartamide nanocapsules BSA Intracellular: NIH-3T3 [14]

single-protein nanocapsules EGFP, HRP,
BSA, SOD and
CAS

Intracellular [34]

triple-enzyme nanocomplex alcohol oxidase
and catalase

Serum [35]

aldehyde-displaying silica
nanoparticles

Arginase, GFP Intracellular: HepG2,
HeLa and L929

[38]

PAAD/PGA hydrogels insulin Serum [43]

multi-ion-crosslinked NPs insulin Serum [44]

PLA-PEG NP insulin Serum [45]

Redox single-protein nanocapsules CP3 Intracellular: HeLa,
MCF-7 and U-87 MG

[49]

Protein nanocapsules MBP-APO Intracellular:
MDA-MB-231, HeLa,
MCF-7, and HFF

[50]

chitosan/poly(L-aspartic
acid) nanocapsules

insulin Intracellular: A549 [51]

Enzyme crosslinked nano matrix EGFP, CP3, BSA
and Klf4

Intracellular: Chinese
hamster ovary (CHO)
cell lines, HeLa and
MEF

[54]

protein nanocapsules BSA, VEGF Intracellular:
HUVECs

[56]

PEG hydrogels BSA, lysozyme [61]

PEGA hydrogels BSA [63]

Gelipo TRAIL Intracellular:
MDA-MB-231

[64]

Glucose GOx contained hydrogels insulin [69]

acid-degradable polymeric
network

insulin Serum [70]

enzyme nanocapsule-
integrated pH-responsive
microgels

insulin Serum [71]

ConA contained hydrogels insulin [77]

hydrogels based on dextran
methacrylate derivative and
ConA

insulin [79]
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Stimulus Nanomaterial Model
protein/peptide

Target location Ref

PBOx insulin [80]

BA-MSN insulin Serum [82]

External

Temperature chitosan-PEG copolymer based
hydrogels

BSA [88]

PNIPAAm hydrogels insulin, BSA [90]

PNIPAAm-grafted PPCL films BSA [91]

FeNPs insulin Serum [92]

Light amphiphilic TiO2

nanotubular-structured
nanocarrier

HRP [98]

TiO2 nanoparticles Hb [103]

lipid based nanoparticles GFP, luciferase Serum [104]

silica-coated gold nanorods OVA Skin [105]

Electric field HA hydrogels BSA [108]

CS hydrogels vasopressin,
aprotinin,
lysozyme and
BSA

[110]

Magnetic force AMMHs BSA Intracellular: A375 [112]

fatty acid calcium salt antioxidant
enzymes, SOD
and catalase

Intracellular: BAEC
and HUVEC

[114]

Ab-MNPs DR4 Intracellular: DLD-1 [115]

Mechanical
force

calcium alginate hydrogels VEGF [116]

PLGA nano-network insulin Serum [117]

Dual and
Multi-stimuli

pH/temperature HPC-g-AA/AA hydrogels BSA [121]

pH/temperature
and glucose

P(DMAEMA-co-AAPBA)
hydrogels

BSA [122]

Enzyme/light polymeric nanocapsules CP3 Intracellular: Hela [123]
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