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Abstract

Modification of hydrophilic proteins with amphiphilic block copolymers capable of crossing cell

membranes is a new strategy to improve protein delivery to the brain. Leptin, a candidate for the

treatment of epidemic obesity, has failed in part because of impairment in its transport across the

blood–brain barrier (BBB) that develops with obesity. We posit that modification of leptin with

poly(ethylene oxide)-b-poly(propylene oxide)-b-poly (ethylene oxide), Pluronic P85 (P85) might

permit this protein to penetrate the BBB independently of its transporter, thereby overcoming

peripheral leptin resistance. Here we report that peripherally administered leptin–P85 conjugates

exhibit biological activity by reducing food intake in mouse models of obesity (ob/ob, and diet-

induced obese mouse). We further generated two new leptin–P85 conjugates: one, Lep(ss)–

P85(L), containing one P85 chain and another, Lep(ss)–P85(H), containing multiple P85 chains.

We report data on their purification, analytical characterization, peripheral and brain

pharmacokinetics (PK). Lep(ss)–P85(L) crosses the BBB using the leptin transporter, and exhibits
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improved peripheral PK along with increased accumulation in the brain compared to unmodified

leptin. Lep(ss)–P85(H) also has improved peripheral PK but in a striking difference to the first

conjugate penetrates the BBB independently of the leptin transporter via a non-saturable

mechanism. The results demonstrate that leptin analogs can be developed through chemical

modification of the native leptin with P85 to overcome leptin resistance at the level of the BBB,

thus improving the potential for the treatment of obesity.
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1. Introduction

Leptin is a 16 kDa regulatory protein secreted by fat cells and acting within the brain to

control appetite and thermogenesis [1–3]. It crosses the blood–brain barrier (BBB) by a

specific, saturable transport system [4]. A decade ago, recombinant leptin was tested

unsuccessfully as a therapy for reduction of body weight in obese patients. We now

appreciate that the early attempts of leptin monotherapy failed because of leptin resistance

manifested in the obese patients. Animal and human studies show that leptin resistance can

occur at three levels: reduced transport at the BBB, impaired leptin receptor function in the

hypothalamus, and altered response of anorectic/orexigenic downstream neuronal circuitries

[5–7]. A great deal of effort has been made to address leptin receptor resistance. For

example, a combination of amylin with leptin led to profoundly synergistic reductions in

food intake and body weight in the obese patients and diet-induced obese (DIO) mice [8,9].

By activating amylin receptor within the hindbrain area postrema and subsequent

polysynaptic connection to the hypothalamus, amylin sensitizes the ventromedial

hypothalamus, resulting in the augmentation of leptin-induced phosphorylated signal

transducer and activator of transcription (STAT) 3 activation [8]. Leptin resistance at the

level of the BBB has also been demonstrated. Indeed, an impaired BBB transport is

important in the maintenance and probably in the progression of obesity [7,10–12]. In

particular, leptin transporter defects predominate over brain receptor defects early on in

outbred models of rodent DIO [7]. Modeling based on cerebrospinal fluid (CSF) and serum

levels of leptin indicates that in advanced obesity in humans (leptin levels of about 40 ng/

mL), transporter defects account for about 2/3 of resistance to peripheral leptin [13]. Thus,

just as in the rodent and canine models [10,14, 15], it is expected that moderately obese

humans with poor response to peripherally administered leptin [16] would still respond

better to a leptin that could reach brain receptors.

Several strategies have been explored to improve leptin action by way of peripheral

administration route. Modification of leptin with polyethylene glycol (PEG) extended leptin

serum circulation [17]. However, subcutaneous administration of PEGylated leptin failed in

clinical trials as a weight control drug for obesity treatment [18,19]. It is known that

PEGylation of proteins sometimes increases and sometimes decreases the permeability of

those proteins at the BBB [20–22], but in a specific study a PEGylated leptin was
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completely unable to cross the BBB [23]. Similarly, a genetically engineered Fc–leptin

fusion protein had no anti-obesity effect on DIO mice, although it increased serum half-life

of leptin and induced more weight loss than leptin in ob/ob mice [24]. To target brain, leptin

was also modified with trans-activating transcriptional activator (TAT), a cell-penetrating

peptide that is widely explored to facilitate cellular uptake of various molecular cargos.

After intravenous (i.v.) injection, the modified leptin was detected in a greater amount than

leptin in brain hypothalamus and showed greater response than leptin in inducing weight

loss in high-fat diet Balb/c mice [25,26]. The most recent attempt in leptin development is a

leptin peptide mimics that carries a carbohydrate moiety aiming for active transport across

the BBB. Following multiple daily intraperitoneal (i.p.) (0.5 mg/kg/day for 11 days) or

intranasal (0.1 mg/kg/day for 10 days) injections, this leptin peptide controlled body weight

gain in DIO mice [27]. The transport rate at the BBB is a key factor underlying the ability of

any substance to enter the brain and efforts have been made to improve leptin transporter

activity at the BBB. For example, leptin co-administration with epinephrine showed a

greater uptake by mouse brain [28]. Altogether, these studies suggest that overcoming

transporter resistance at the BBB and increasing delivery of leptin to the brain could

significantly improve leptin therapeutic efficacy and increase weight loss. Among the

aforementioned delivery strategies, some (e.g. leptin peptide mimics) might move to clinical

tests, while others (e.g. TAT modification) might encounter safety concerns. However, the

problem remains unresolved. Thus developing a safe, efficacious and translatable approach

to overcome peripheral resistance to leptin could address an unmet medical need and result

in a therapeutic product for the treatment of obesity.

Toward this goal we proposed to modify leptin with pluronic block co-polymers, aiming to

improve the peripheral pharmacokinetics (PK) of leptin and its brain uptake. “Pluronics” or

“poloxamers” are amphiphilic triblock copolymes consisting of (poly(ethylene oxide)-b-

poly (propylene oxide)-b-poly(ethylene oxide) (PEO–PPO–PEO, same as poly(polyethylene

glycol)-b-poly(propylene glycol)-b-poly(polyethylene glycol) or PEG–PPG–PEG). We

reported on the first generation of the modified product, Lep(ss)–P85, showing an elongated

serum half-life time, higher stability in blood and brain, and rapid transport rate across the

BBB in a non-saturable and leptin transporter independent manner [29]. The in vivo

biological activity of this Lep(ss)–P85 was shown by an acute reduction in food intake in

normal body weight mice [29]. In an extension of this approach, we have continuously

produced leptin–pluronic conjugates with the goal to improve their purity, PK profile, and

efficacy. Herein, we report the new data obtained during this optimization process that

involved conjugate production, analytical characterization, peripheral and brain PK analysis

and efficacy evaluation in models of obese mice.

2. Materials and methods

2.1. Materials

Mouse recombinant leptin (Lep) and a chimera leptin receptor (ObRFc) were purchased

from R&D Systems (Minneapolis, MN). 4-Methoxyltrityl chloride (MTr-Cl), 1,1′-

carbonyldiimidazole (CDI), 1,2-ethylenediamine (EDA), ninhydrin, L-glutathione (reduced),

ethylenediaminetetraacetic acid (EDTA), sinapinic acid, trichloroacetic acid (TCA),
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trifluoroacetic acid (TFA), iodoacetamide (IAA), triethylamine, anhydrous acetonitrile,

anhydrous pyridine, methanol, dichloromethane, toluene, acetone, ethanol, isopropanol,

dimethylformamide (DMF), PEG-SOD1 (S9549), human male AB serum and silica gel

(288616, 70– 270 mesh, 60 Å) were purchased from Sigma-Aldrich Co. (St-Louis, MO).

Pluronic P85 (P85) (lot no. WPOP-587A, average M.W. 4600) was kindly provided by

BASF Corp. (Parispany, NJ). Dithiobis(succinimidyl propionate) (DSP), disuccinimidyl

propionate (DSS), dithiothreitol (DTT) and bovine serum albumin (BSA) were from Thermo

Fisher Scientific (Rockford, IL). Carboxymethyl dextran chip (CM5), N-

hydroxysuccinimide (NHS), 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC),

ethanolamine-HCl, HBS-EP buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.005%

surfactant P20, pH 7.4), protein G, Sephadex LH-20 gel and Illustra NAP-10 or 25 columns

were from GE Healthcare (Piscataway, NJ). Amicon Ultra 0.5 mL centrifugal filters (10 kDa

MWCO) and Amicon Ultra centrifugal filter units Ultra-15 (MWCO 10 kDa) were from

Sigma-Aldrich Co. (St-Louis, MO). FLOAT-A-LYZER G2 (8–10 kDa MWCO) was from

Spectrum Laboratories, Inc. (Rancho Dominguez, CA). Flexible thin-layer chromatography

(TLC) plates were from Whatman Ltd (Mobile, AL).

2.2. Synthesis, purification and analysis

2.2.1. Synthesis of leptin–P85 conjugates—The synthesis was carried out as

previously reported [30]. Briefly, P85 was reacted with MTr-Cl (1:1 molar ratio) and

purified on Silicagel column (3 × 40 cm) with stepwise elution in dichloromethane

containing 2%, 5% and 10% methanol. The resulting mono-MTr-P85 (80% wt. yield) was

activated by excess of CDI, mixed with EDA and finally treated with TFA to remove MTr

protection. The resulting monoamine P85 was further purified using gel-permeation

chromatography on Sephadex LH-20 column (2.5 × 30 cm) in methanol. The amino groups

were assayed qualitatively by TLC and quantitatively by ninhydrin assay. To produce

leptin–P85 conjugates, the obtained monoamine P85 was activated by excess of DSP linker

followed by elution in Illustra NAP-25 columns in 20% aqueous ethanol to remove excess

of unreacted linker. Fractions containing activated P85 copolymers were immediately mixed

with leptin (molar ratio of leptin to P85 1:10) in 20% aqueous ethanol supplemented with

sodium borate buffer (0.1 M, pH 8.0). After incubation overnight at 4 °C, the reaction

mixture was precipitated in cold acetone to remove excess of free P85 copolymers, as

described previously [30]. The obtained precipitates were then desalted, sterilized and stored

for animal feeding study or further purified as described below.

2.2.2. Purification of leptin–P85 conjugates—The above obtained conjugates

(Lep(ss)–P85) were subjected to size exclusion chromatography (SEC) on TSKgel

G2000SW column (7.8 mm × 30 cm, Tosoh Bioscience LLC, Grove City, OH) using a

Shimadzu HPLC system with a multiple-wavelength UV-detector (Shimadzu Scientific

Instruments, Columbia, MD) and eluted in 0.1 M Na3PO4/0.2 M NaCl (pH 7.4) containing

10% methanol at a flow rate of 1 mL/min. Protein fractions were collected, desalted using

Amicon Ultra centrifuge filter unit and analyzed by electrophoresis and mass spectra.

Fractions eluted at 8.8 min (designated as Lep(ss)–P85(H)) and 9.5 min (designated as

Lep(ss)–P85(L)) were further sterilized and stored for animal pharmacokinetic study.
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2.2.3. MALDI-TOF spectra—Mass values of leptin–P85 conjugates were determined by

matrix-assisted laser desorption/ionization time of fly (MALDI-TOF) spectroscopy in 4800

MALDI TOF/TOF™ analyzer (Applied Biosystems/MDS SCIEX) at a laser power of 3000

V and in a positive reflector mode. Solution containing saturated sinapinic acid in 50%

acetonitrile with 0.1% TFA was used as matrix for sample preparation. Briefly, 0.5 μL of

sinapinic acid solution was coated on the plate followed by 1) depositing 0.5 μL solution of

salt free leptin–pluronic conjugates in water (10−4 M), and, 2) coating with 0.5 μL sinapinic

acid solution. The mass spectrometer was calibrated against insulin (5729.61 Da) and

albumin (66429.09 Da) (Sigma-Aldrich Co. St-Louis, MO).

2.2.4. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
—Leptin and leptin–P85 conjugates were prepared in 5 μL deionized water at a protein

concentration of 2 μg/μL (as determined by MicroBCA) and diluted (1:1) with non-reducing

denaturing loading buffer (3.8 mL of H2O, 5 mL of 0.5 M Tris–HCl (pH 6.8), 8 mL 15%

wt/vol SDS, 4 mL of glycerol, 0.4 mL of bromophenol blue 1% wt/vol). The samples were

heated for 5 min at 100 °C and then loaded to 15% precast polyacrylamide Tris–HCl gel

(Bio-Rad Life Science Research, Hercules, CA). After running for 3 hr at 120 V, the gel was

fixed in 50% methanol/10% acetic acid, stained in SYPRO® Ruby solution and scanned on

a Typhoon gel scanner.

2.2.5. Size measurements—Particle size and size distribution were measured by

dynamic light-scattering (DLS) using Zetasizer Nano-ZS instrument (Malvern, UK). Leptin

samples were prepared at 100 μg/mL concentration in deionized water, sterilized by 0.22 μm

of sterile Ultrafree-MC centrifugal filter units and kept at equilibrium at 20 °C for 5 min

prior to measurement. The particle parameters were measured for 15 min at 25 °C with a 90°

scattering angle. Mean effective hydrodynamic diameter (Deff) and volume-average size

distribution were obtained by automatically repeating (six times) the measurement based on

the Zetasizer internal setting.

2.2.6. Circular dichroism (CD) spectra—Secondary structure of leptin samples was

determined by CD spectra in Chirascan™-Plus automated CD (ACD) spectrometer (Applied

Photophyscs Ltd, UK) using a 10 mm QS Hellma cuvette. Leptin samples were dissolved in

sodium phosphate buffer (10 mM, pH 7.5) at a concentration of 0.1 mg/mL. The far UV

spectra (190–260 nm) were recorded at 25 °C with bandwidth of 1.0 nm, step of 0.5 nm and

time-per-point of 1.25 sec (50,000 repeats per point). The results were reported as mean

residual molar ellipticity ([θ] in degree · cm 2 · dmol−1) and calculated using Eq. (1)

(1)

where θ (degree) is the observed ellipticity, M (g/mol) is the molecular weight of leptin of

16.14 kDa, C (mg/mL) is the sample concentration at 0.1 mg/mL, l (cm) is the optical path

of 0.1 cm and n is the number of leptin residues of 147. The secondary structure of leptin

samples, in particular the percentage of α-helix, β-strands, β-turns and remaining structures

were determined by computer program CONTIN based on a set of standard CD spectra from

37 proteins reported in literature [31,32].
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2.2.7. LC/MSMS Orbitrap mass spectrometry—The Lep(ss)–P85 or Lep(ss)–P85(L)

was mixed with DTT (10 mM in phosphate buffer saline (PBS)) at 65 °C for 5 min followed

by IAA (10 mM) treatment at 30 °C for 30 min to block free thiol groups. This removed the

bulk of the P85 molecule but left a remnant (–C(O)CH2-CH2SCH2C(O)NH2) attached to the

Lys residues and/or N-terminus at the site of P85-modification. Samples were filtered

through Amicon Ultra centrifuge membrane to remove low molecular mass agents, and

precipitated in cold acetone to remove detached P85. Complete detachment of P85 (except

the remnant) was verified by SDS-PAGE. The precipitate was digested with trypsin using

Filter Aided Sample Preparation (FASP) protocol [33]. The peptide (2 μg of protein digest/

analysis) was loaded onto a microcapillary fused silica precolumn (2 cm × 100 μm i.d.) and

washed with 95% solvent A (0.1% formic acid in water)/5% solvent B (0.1% formic acid in

acetonitrile) for 20 min at a flow rate of 2 μL/min, using a Nano-Acquity HPLC system

(Milford, MA Waters Corp.). The pre-column was connected to a C18 analytical column (14

cm × 75 μm i.d., 5 μm particle size) and the flow rate was reduced to 250 nL/min. Peptides

were eluted by increasing solvent B to 40% over a 2 hr gradient. The effluent from the LC

system was electrosprayed directly into an LTQ Orbitrap Velos ion trap mass spectrometer

(Thermo Electron Corp.). Data were collected in a data-dependent manner with each cycle

consisting of one high-resolution mass spectrum (over a 400–2000 mass to charge (m/z)

ratio) taken from initial scan in Orbitrap and ten MSMS fragmentation spectra in LTQ ion

trap that were automatically selected from the most abundant ions in subsequent collision-

activated dissociation. The Spectra were searched by MASCOT (V 2.3 from Matrix

Science) using Proteome Discoverer program (v 1.3 from Thermo Scientific). The searching

parameters included a mass tolerance of 10 ppm, fragment ion tolerance of 0.8 Da, variable

modifications for methionine oxidation, and remnant (–C(O)CH2CH2SCH2C(O)NH2)

modification of lysine/ methionine. Peptide assignments were made based on 2 MS/MS

spectra with a Mascot Expectation value of less than 0.01 and at least one was validated

manually.

2.2.8. Enzyme-linked immunosorbent assay (ELISA)—The ELISA protocol was

kindly provided by Academia Sinica (Taipei, Taiwan). Briefly, 96-well microplates

(eBioscience, Inc. San Diego, CA) were coated first for 4 hr at 37 °C and then overnight at 4

°C with 50 μL/well of 5 μg/mL of anti-PEG antibody (AGP4, mouse IgM anti-PEG,

Academia Sinica, Taipei, Taiwan) in 35 mM NaHCO3/15 mM Na2CO3 (pH 9.3), then

blocked with 5% skim milk in PBS for 2 hr, and washed thrice with PBS. The analyzed

samples in 50 μL dilution buffer (2% skim milk in PBS) were added to each well and

incubated for 2 hr at 25 °C. Plates were washed (thrice with 0.05% Tween 20 in PBS (PBS-

T) and twice with PBS) and supplemented with 50 μL/well biotinylated anti-PEG antibody

(3.3-biotin, 5 μg/mL in dilution buffer, Academia Sinica, Taipei, Taiwan). After 1 hr at 25

°C the plates were washed and stained for 1 hr with 50 μL/well of streptavidin–HRP (1

μg/mL, Jackson ImmunoResearch Lab., West Grove, PA). Finally, the plates were washed

again and peroxidase activity was measured by adding 100 μL/well tetramethylbenzidine

(Thermo Fisher Scientific., Rockford, IL) for 5–30 min followed by 100 μL/well of stopping

reagent (Thermo Fisher Scientific, Rockford, IL). Absorbance (450 nm) was measured in

microplate reader SpectraMax M5 (Molecular devices, Sunnyvale, CA).
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2.2.9. Stability of disulfide bond in leptin–P85 conjugates—The disulfide bond

stability was investigated in the presence of human serum, mimicking extracellular

conditions, or cytosolic concentration of L-glutathione (reduced), a main contributor of

intracellular reductive environment as described in the literature [34–36]. Briefly, leptin or

Lep(ss)–P85 (100 μg) was mixed with 200 μL of sterile-filtered human male AB serum at 37

°C. Two microliters of aliquot was sampled from the mixture at desired time point, stored at

−80 °C and analyzed by standard Western blot using antibody against mouse leptin. The

aliquot samples were prepared and electrophoresed as described previously using non-

reducing denaturing loading buffer. Western blot was conducted by transferring the non-

stained gels to PVDF membrane in Tris/glycine transfer buffer (Bio-Rad) containing 20%

methanol at 60 V for 2 hr, washing thrice in Tris buffered saline (TBS) containing 0.05%

Tween 20 (TBST) and subsequent 1 hr of blocking in 5% skim milk in TBST at room

temperature (RT). To detect the blot, the membrane was probed with anti-leptin polyclonal

antibody (AF498, goat IgG anti-mouse leptin, R&D Systems, Minneapolis, MN) in TBST

containing 1% BSA overnight at 4 °C. After washing in TBST 3 times, the membrane was

incubated with donkey anti-goat IgG-HRP (1:10,000, Santa Cruz biotechnology, Inc. Dallas,

TX) at RT for 1 hr, washed thrice in TBST and twice in TBS, and then visualized using ECL

detection kit (Thermo Fisher Scientific, Rockford, IL). Densitometry analysis was conducted

using Image J (v1.47, NIH, USA) and data were presented from three independent Western

blot experiments.

To study the stability of disulfide linker upon L-glutathione (reduced) treatment, Lep(ss)–P85

or Lep(cc)–P85 (a control sample prepared using a non-degradable linker DSS, 50 μg in 500

μL PBS, pH 7.4) were dialyzed in FLOAT-A-LYZER (8–10 kDa) against PBS containing

20% ethanol and 6 mM L-glutathione (reduced) at 4 °C for 24 hr with three complete buffer

changes. Samples were then purified using Amicon Ultra 0.5 mL centrifugal filters to

remove excess of reducing re-agent. Protein content was measured using reducing agent

compatible BCA Protein Assay (Thermo Fisher Scientific, Rockford, IL). Samples were also

analyzed by mass spectra and SDS-PAGE to confirm the disul-fide bond reduction and

stored at −20 °C for further measurement of CD spectra and binding affinity.

2.2.10. Surface plasmon resonance (SPR)—The binding affinity of leptin–P85

conjugates was measured by SPR in Biacore3000 instrument (GE Healthcare, Piscataway,

NJ), using a method reported previously for leptin [37]. To prepare the sensor chip, protein

G was immobilized on CM5 (Channel A and B) by consequent injection of 1) 115 μL

NHS/EDC (1:1, vol/vol) (to activate dextran surface); 2) 60 μL protein G (200 μg/mL, 10

mM sodium acetate buffer, pH 4.0) (to bind the surface at 2000-3000 resonance units (RU)),

and 3) 75 μL of 1 M ethanolamine hydrochloride, pH 8.5 (to deactivate NHS-ester and

remove electrostatically bound protein). The Fc fragment of ObR-Fc was used to reversibly

bind to protein G that was pre-immobilized onto the sensor chip. The ObR-Fc N-terminus

represented the extracellular domain of the putative leptin transporter at the BBB (ObRa)

that interacts with circulating leptin; it also shared the sequence of leptin receptor (ObRb)

expressed in the brain for leptin binding and signal activation. Therefore, the ObR-Fc N-

terminus was adsorbed onto the sensor chip to detect leptin sample for binding affinity

measurement which could reflect leptin activity at both of the BBB level and its central
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receptor site. CM5 surface response was recorded by first, immobilization of ObR-Fc (0.5

μg/mL, 15 μL in HBS-EP, 5 μL/min flow rate) in channel A following 1800 s washing (to

capture 100–300 RU of ObR-Fc); second, capture of leptin or leptin–P85 conjugates (0–300

nM, 100 μL in HBS-EP, flow rate 20 μL/min) and dissociation (900 s) in channel A (ObR-

Fc surface) and B (protein G surface); third, regeneration of a fully active protein G surface

by 5 μL glycine (10 mM, pH 2.0). The data (sensorgrams in channel A) were corrected by

non-specific protein G surface binding (sensorgrams in channel B) and baseline drift

(sensorgrams of HBS-EP injection in channel A) which can occur due to a slow dissociation

of ObR-Fc and protein G and then fitted to a 1:1 binding model using BIA evaluation

software 3. The rate constants ka and kd were derived from these association and dissociation

data using nonlinear least square (χ2) analysis model and further used to calculate the

equilibrium dissociation constants (KD). The values shown represent average of three

separate measurements.

2.2.11. Cell proliferation assay—The proliferation assay was conducted in BaF/3 cells

transfected with the long form of human leptin receptor (hObR). Cells were cultured in

RPMI-1640 medium containing 10% fetal bovine serum, 50 μM 2-mercaptoethanol, 20

ng/mL rhleptin and 0.5 mg/mL of geneticin. To conduct proliferation assay, the cells were

harvested, washed and re-suspend at 2 × 105 cells/mL in 50 μL/well of RPMI-1640 medium

in a 96-well plate. Leptin or leptin–P85 conjugates were diluted in the same medium at

various concentrations from 0 to 50 μg/mL and added to the plate in duplicate at 50 μL/well.

The plate was incubated at 37 °C for 3 days and during the final 16–20 hr of incubation

period, 10 μL/well of a 0.1 mg/mL resazurin was added. Cell proliferation was assessed by

measuring the fluorescent intensity at the excitation wavelength of 544 nm and at emission

wavelength of 590 nm. The data were analyzed using a 4-parameter fit and the activity was

interpreted as IC50.

2.3. Feeding study

The feeding study was conducted in St. Louis University School of Medicine using

procedures that are approved by the National Institutes of Health Guide for Care and Use of

Laboratory Animals. Male ob/ob mice, 8 weeks of age, were purchased from Jackson

laboratories (Bar Harbor, MA). Male CD-1 from in house colony was placed into two

groups at 3 weeks of age. This mouse has been used by us and others in DIO models [38].

To produce DIO mice, one group was placed on regular chow (5001 rodent diet, PMI

Nutritional International, Brentwood, MO; 4.5% fat) and one group was placed on breeder

chow (Teklad mouse breeder diet, Harlan-Teklad, Madison, WI; 10% fat) for 4 months. At

the end of this time, total body weights were 40.4 ± 2.81 (mean ± SD) in regular chow mice

(estimated 10 g of body fat 30) and 58.1 ± 6.3 g (estimated 30 g of body fat) in breeder

chow mice. Mice were individually housed prior to the start of the food intake studies.

Ob/ob mice were weighted. Mice were then given a subcutaneous (s.c.) injection of either

Lep(ss)–P85 (40 μg/day) or vehicle. On days 2 and 3 mice food and body weights were

taken and mice were given s.c. injection of the same dose of Lep(ss)–P85 or vehicle. On day

4 food and body weights were taken. This design is similar to our previous study in ob/ob

mice [38]. In the study using DIO mice, mice were food deprived overnight. In one group of

mice intracerebroventricular (i.c.v.) surgery was applied using the procedure described
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previously [29]. Prior to drug treatment, mice were lightly anesthetized with isoflurane, and

an injection of Lept(ss)–P85 (25 μg) or vehicle was given i.c.v. In another group, mice

received an i.v. injection of Lep(ss)–P85 (3 mg) or vehicle via tail vein. For both groups 15

min. post injection a known amount of food was placed in the cage. Two and 24 hr later the

food was weighted to determine 2 hr and 24 hr intake.

2.4. PK studies

2.4.1. Radioactive labeling—Leptin or leptin–P85 conjugates were radioactively labeled

by chloramine-T method as previously described for Lep(ss)–P85 [29]. Briefly, 5 μg of

leptin or 10 μg of leptin analogs was mixed with 1 mCi Na131I or 0.5 mCi Na125I

(PerkinElmer Life Sciences, Boston, MA), respectively, in a final volume of 45 μL sodium

phosphate buffer (0.25 M, pH 7.5). A freshly made 10 μg of chloramine-T solution (2 μg/μL,

in 5 μL sodium phosphate buffer) was added to the mixture; after 60 s incubation with

mixing, the radioactively labeled substance was purified with Illustra NAP-5 columns (GE

Healthcare, Piscataway, NJ). Fractions were collected in Eppendorf tubes pretreated with

1% BSA in lactated Ringer's solution (1% BSA-LR) to prevent non-specific absorbance and

counted in a PerkinElmer γ-counter. Similarly, albumin was labeled by Na131I using

chloramine-T method and purified with Illustra NAP-5 columns. TCA precipitation was

conducted to determine the iodine association of labeled samples. Briefly, 1 μL of collected

fractions was added to 0.5 mL of 1% BSA-LR and then precipitated in 0.5 mL of 30% TCA

followed by centrifuging at 5400 g for 10 min at 4 °C. The resulting supernatant and pellet

were counted in a γ-counter and the values used to calculate the percent of radioactivity that

was precipitated with acid. Samples containing N100,000 cpm/μL of radioactivity and

N90% precipitation from TCA were used for the animal studies.

2.4.2. Animal procedures—The PK experiments were conducted in CD-1 male mice (8

to 10 weeks of age) (Charles River Laboratories, Wilmington, Mass) in the Department of

Medicine, University of Washington under an approved IACUC protocol. The mice had free

access to food and water and were maintained on a 12-hr dark/light cycle in a room with

controlled temperature (24 ± 1 °C) and humidity (55% ± 5%). Mice were anesthetized with

an i.p. injection of 0.2 mL of urethane (4.0 g/kg). Radioactively labeled substances were i.v.

injected into the jugular vein in a volume of 0.2 mL of 1% BSA-LR. Blood from the pre-

exposed right carotid artery was collected at various time points after injection; mice were

immediately decapitated and then the whole brain was removed and weighed. In some cases,

a procedure that washed out the vascular contents of the brain was performed before

decapitation. In these animals, the arterial blood was collected from the abdominal aorta in

an open abdomen prior to wash out. After the collection of the arterial blood, the thorax was

opened, the descending thoracic was clamped, both jugular veins were severed, the heart

was exposed, and 1% BSALR was perfused into the left ventricle of the heart over 1 min.

Finally, the mouse was decapitated and the whole brain removed and weighed.

2.4.3. Serum clearance, influx rate and brain vascular volume—Mice were given

an i.v. injection of 300,000 cpm of 125I-Lep(ss)–P85(L) or 125I-Lep(ss)–P85(H) co-injected

with 300,000 cpm of 131ILep. Blood and brain samples were collected between 2 and 90

min after i.v. injection. In a separate study, mice were given an i.v. injection of 300,000 cpm
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of an 125I-leptin analogs with 300,000 cpm of 131I-albumin (131I-Alb); brain and serum were

collected between 2 and 180 min after injection. The arterial blood was centrifuged at 5400g

for 10 min at 4 °C, and the serum was collected. The levels of radioactivity in serum (50 μL)

and brain samples were counted in the dual channel γ-counter. At the end of the experiment,

the radioactivity of the material from the injection vial was counted and used to determine

the amount of material administered. For samples containing both of 125I and 131I

radioactivity, radioactivity levels were measured in the dual channel γ-counter capable of

distinguishing between the two isotopes. To calculate the clearance from serum, the level of

radioactivity was expressed relative to the amount injected (%Inj/mL) and these values were

plotted against time (min) to obtain the serum concentration vs time curve. The brain/serum

ratios for 131I-leptin or for 125I-leptin analogs were expressed in units of μL/g of brain. In

some cases, the brain/ serum ratio for 125I-leptin analogs was corrected for the vascular

space by subtracting the brain/serum ratio of the co-injected 131I-Alb in each individual

mouse. These brain/serum ratios were then plotted against exposure time and multiple-time

regression analysis used to calculate the blood-to-brain unidirectional influx rate (Ki) and

volume of distribution for brain (Vi), using Eq. (2) [39,40].

(2)

where the brain/serum ratio (Am/Cpt) is calculated by cpm/g of brain (Am) normalized by

cpm per microliter of arterial serum at time t (Cpt); the exposure time (0tCp(t)dt/Cp(t)) was

calculated as the area under the serum concentration time curve divided by the serum

concentration at time t.

The slope for the linear portion of the relation between the brain/ serum ratios and respective

exposure times is Ki, measured in units of μL/g · min and representing the rate at which

compounds are moving across the BBB from the circulation into the brain parenchyma; The

y-intercept of the line represents Vi, the apparent volume of material that is distributed to the

brain parenchyma at time 0, measured in μL/g of tissue weight.

2.4.4. Stability of serum and brain samples—Mice were given i.v. injection of

300,000 cpm of an 125I-leptin analog that also contained 300,000 cpm of 131I-leptin. Arterial

blood and brain were collected at 15, 60 and 240 min after injection and the stability was

determined by TCA precipitation. In a separate group, mice were given an i.v. injection

containing 1,000,000 cpm of an 125I-leptin analog and 1,000,000 cpm of 131I-leptin. Prior to

brain and serum collection, a brain washout was performed as described previously at 240

min following administration. The blood sample was processed as described previously and

the resulting serum (50 μL) was precipitated in 0.5 mL of 1%BSA-LR with 0.5 mL of 30%

TCA followed by centrifugation. The brain sample was homogenized in 3 mL of sodium

phosphate buffer (0.25 M, pH 7.5) for 10 strokes, and then centrifuged at 5400g for 10 min

at 4 °C. The obtained brain supernatant was then precipitated in an equal volume of 30%

TCA followed by centrifugation. To correct for the degradation of radioactivity during the

ex-vivo processing, serum or brain from untreated animals was directly exposed to

radioactively labeled samples and then processed identically as above. The radioactivity in

acidified serum and brain supernatants and pellets as well as the processing controls were
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counted in a γ-counter. The stability of serum and brain samples was accessed by the percent

of radioactivity precipitated in the pellet and normalized by the values for processing

controls.

2.4.5. Brain uptake—Mice received an i.v. injection of 125I-Lep(ss)–P85(L) or 125I-

Lep(ss)–P85(H) with a co-injection of 131I-leptin as described in Section 2.4.3. Brain

samples were collected 240 min after injection from animals without brain washout. Brain

uptake was calculated using Eq. (3) to obtain the percent of the injected dose entering each

gram of brain tissue (%Inj/g). These values were further corrected for the sample stability

assessed based on acid precipitation.

(3)

2.4.6. Inhibition study—To determine the role of the BBB transporter in the BBB

penetration of the leptin analogs, 10 μg/mouse of nonradioactive recombinant leptin was co-

injected with 125I-Lep(ss)–P85(L) and 131I-leptin or 125ILep(ss)–P85(H) and 131I-leptin in

the 0.2 mL of 1% BSA-LR into the jugular vein of CD-1 mice. Blood and brain samples

were collected 30 min after i.v. injection and processed as described previously. Samples

were counted in a dual channel γ-counter. Brain to serum ratio was calculated for each

isotope in each group (n = 10/group).

2.4.7. Statistical analysis—Statistical analysis was done using Student's t-test for two

groups and one-way ANOVA followed by Newman–Keuls multiple comparison test. A

minimum p value of 0.05 was estimated as the significance level. Statistic analysis was done

with the Prism 5.0 software (GraphPad, San Diego, CA, USA).

3. Results

3.1. Effect of leptin–P85 conjugates on feeding in obese mice

Leptin–P85 conjugates in this work were produced by modifying leptin primary amino

groups (Lys residues and N-terminal) with NHS-activated mono-amine P85 using disulfide-

containing linker (Scheme 1). The conjugate obtained using this chemistry, Lep(ss)–P85 was

reported previously [29]. This conjugate as discussed below contains several modified forms

of leptin along with unmodified leptin. It was shown to maintain biological activity in

reducing food intake of normal CD1 mice at a dose of 4 μg per mouse following i.c.v.

injection or at a dose of 3 mg per mouse following tail vein injection. To further confirm the

biological effect of this conjugate in obese mice, here we reported the acute food intake

response of Lep(ss)–P85 in ob/ob mice and DIO mice. After 3 days of treatment, s.c.

injection of Lep(ss)–P85 at dose of 40 μg per mouse induced significant weight loss (p <

0.006) and a decrease of food intake (p < 0.02) in ob/ob mice (n = 6 ~ 7/group) (Fig. 1).

Direct administration of Lep(ss)–P85 at 25 μg per mouse into the lateral ventricle of the

brain in DIO mice drastically reduced food intake, a 18% decrease over the next 24 hr (n =

5/group, p < 0.03), comparing to that in the control group that received the vehicle injection

(Fig. 2A). The reduced food intake was also observed in DIO mice 2 hr (p < 0.001) and 24
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hr (p < 0.0001) after tail vein injection of Lep(ss)–P85 at a dose of 3 mg per mouse (n = 10/

group) (Fig. 2B and C).

3.2. Purification and characterization of leptin–pluronic conjugates

3.2.1. Fractionation and analysis of conjugates by HPLC—In spite of

demonstrated biological activity and previously reported improvements in brain PK profile,

the initial Lep(ss)–P85 conjugate was a fairly heterogeneous product that contained

unmodified leptin and leptin modified with 1 or more P85 chains. To improve its purity and

homogeneity, a fractionation method by SEC was established to remove the majority of

unmodified leptin and isolate leptin modified with 1 P85 chain and multiple P85 chains (Fig.

3A). In SDS-PAGE (Fig. 3B) the fraction eluted at 8.8 min (Lep(ss)–P858.8 min) displayed a

major MW band (indicated by arrow in Lane C), corresponding to leptin modified with 2

P85 chains and a smear above the band, representing leptin modified with 3 or more P85

chains. The major band corresponding to fraction eluted at 9.5 min (Lep(ss)–P859.5 min) was

leptin modified with 1 P85 chain (indicated by arrow in Lane D). Characterization of these

fractions by mass spectra further confirmed that HPLC SEC was able to reduce the

heterogeneity, resulting in Lep(ss)–P859.5 min containing mainly 1 P85 chain (mass peak

detected at 21 kDa) and Lep(ss)– P858.8 min containing mainly 2 and 3 P85 chains (mass

peak detected at 26 and 31 kDa) (Fig. 3C). Therefore, Lep(ss)–P859.5 min and Lep(ss)–

P858.8 min were further designated as Lep(ss)–P85(L) and Lep(ss)–P85(H), respectively.

The elution profile (Fig. 3A) was generally similar to that previously observed during

fractionation of pluronic-modified superoxide dismutase (SOD1) using the TSKgel

G3000SW SEC column [41]. While both methods were adopted from purification of SOD1-

PEG (PEG at 5 kDa) [42], the elution resolution for these P85 modified proteins was notably

lower than that for SOD1-PEG, most likely due to the effect of the hydro-phobic PPO block

of pluronic. To tackle the problem, we attempted to purify Lep(ss)–P85 using hydrophobic

interaction chromatography (HIC). After optimization of elution conditions, we were able to

isolate leptin attached with 1 P85 chain (Lep(ss)–P85(L)) from unmodified leptin but the

elution of the more hydrophobic species, Lep(ss)– P85(H), did not succeed (Supplementary

data Fig. S1).

3.2.2. Particle size and protein secondary structure—The DLS measurements of

the particle size for the 100 μg/mL of native leptin, Lep(ss)–P85, Lep(ss)–P85(L) and

Lep(ss)–P85(H) in distilled water resulted in the Deff values of 3.8 ± 0.2 nm (PDI 0.27), 15

± 1 nm (PDI 0.43), 10.4 ± 3.5 nm (PDI 0.60) and 8.4 ± 0.4 nm (PDI 0.68) respectively. The

increased size and PDI indices observed for the conjugate samples, were probably, due to

self-assembly of Pluronic-modified protein in an aqueous solution.

The secondary structures of leptin and Lep(ss)–P85 conjugates were analyzed using CD

spectra (Fig. 4A). Consistent with the literature, recombinant mouse leptin exhibited high

content of α-helix (67%) featured by negative bands at 208 and 222 nm, no β-sheet and 8%

of β-turn [43]. The CD spectrum of Lep(ss)–P85 (un-fractionated mixture) was generally

similar to that of leptin suggesting presence of 49% α-helix, 20% β-turn and absence of β-

sheet. Overall the CD data indicated the proper protein folding. However, changes in signal
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intensity, a decrease in α-helix and an increase in β-sheet content in Lep(ss)–P85 suggest

that leptin has undergone some conformation changes in the course of the modification.

3.2.3. Identification of modification sites in leptin–P85 conjugates—Mouse

recombinant leptin contains eight primary amino groups (seven Lys residues and the N-

terminus), which all could be modified (Supplementary data Fig. S2). The site(s) of

modification was determined by LC/MSMS Orbitrap mass spectrometry. Of the eight

primary amino groups, five modification sites (Lys 6, 12, 16, 34 and 107) were identified in

both of Lep(ss)–P85 and Lep(ss)–P85(L) conjugates (Fig. S2).

3.2.4. Immunoassays of leptin–P85 conjugates using Anti-PEG antibody—To

confirm the presence of P85 in leptin conjugates, a double sand wich ELISA was performed

using the monoclonal anti-PEG backbone antibody AGP4 and 3.3-biotin. Previously these

antibodies were successfully used to assay PEGylated proteins and nanoparticles [44–49]. In

this work using ELISA we were able to quantitatively measure PEGSOD1 (5 kDa PEG,

multiple PEG chains) and Lep(ss)–P85 at concentrations as low as ca. 0.001 μg/mL and 0.1

μg/mL respectively (Fig. 4B). In contrast, no signal was observed for free P85 and native

leptin. Moreover, this ELISA did not recognize Lep(ss)–P85(L) that contained a single P85

chain; this finding was consistent with the prior report, in which a similar ELISA assay

failed to recognize lysozyme modified with a single PEG chain of 2 kDa or 5 kDa [49].

Finally, no ELISA signal was observed for SOD1 modified with multiple pluronic L81, a

copolymer with nearly the same length of PPG but much shorter PEG block compared to

P85 (Supplementary data Fig. S3), indirectly suggesting that AGP4 antibody is selective to

PEG rather than PPG. Altogether, these results suggest that the anti-PEG antibody

recognizes P85 chains linked to leptin. However, quantitative measurement using this

antibody was only possible for leptin–P85 conjugates containing multiple P85 chains.

Moreover, in addition to the number of polymer chains linked to the polymer this assay is

dependent on the length of PEG block. The used ELISA assay relies on the ability of both

the capture and detection antibodies (AGP3 and biotin3.3) to bind with the PEG chain to

detect the PEGylated protein. Lep(ss)–P85(L) contains leptin modified with a single P85

chain, carrying approximately 2.3 kDa PEG molecule. To produce positive ELISA signal

both AGP3 and biotin3.3 would need to bind with the same fairly short PEG chain, which

most likely is sterically hindered. Similarly, the free P85, once it is captured by AGP3,

possibly cannot be detected by biotin3.3 because of the steric hindrance.

3.2.5. Disulfide bond stability in serum—To examine stability of the disulfide bond in

the presence of serum, Lep(ss)–P85 or leptin (control) was incubated with human serum (0.5

μg/μL) at 37 °C for up to 24 hr and analyzed by Western blot using anti-leptin antibody.

There was no change in the profile of native leptin showing one major band at 16 kDa

corresponding to monomeric form at either 0 or 24 hr. Lep(ss)–P85 contained multiple

species, including a monomeric and a dimer form of leptin (16 and 32 kDa), and leptin

conjugates modified by one, two and multiple P85 chains (as indicated by arrows) (Fig. 5).

Although there were some apparent changes in the density of bands, the differences

particularly for the leptin monomer were marginal (Supplementary data Fig. S4). Most

importantly, Lep(ss)–P85 conjugate at all time points displayed similar bands. These results
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suggest that Lep(ss)–P85 remains stable in serum for at least 24 hr with little if any disulfide

bond reduction and release of P85.

3.2.6. In Vitro binding of leptin–P85 conjugates to the leptin receptor—The in

vitro activity of leptin–P85 conjugates was examined by SPR and cell proliferation assays.

The SPR association and dissociation pro-files were recorded for native leptin, Lep(ss)–P85,

Lep(ss)–P85(L), and a mixture of native leptin and free P85 copolymer (Fig. 6A). The

resulting kinetic constants, ka (“on rate”) and kd (“off rate”) were used to calculate KD

(Table 1). Native leptin displayed extremely fast association and slow dissociation phases,

resulting in a KD of ca. 10−10 M. This activity was of the same order of magnitude as

previously reported value [37]. Interestingly, the binding affinity for the leptin and P85

mixture decreased 3 fold, suggesting that free P85 interferes with interaction of native leptin

with its receptor. The Lep(ss)–P85 mixture including modified leptin conjugates with

multiple P85 chains displayed a dramatic decrease in the binding affinity as exhibited by

500 fold increase in KD compared to that of the native leptin. In contrast, a more

homogenous sample Lep(ss)–P85(L) with low degree of modification displayed much

higher binding affinity, although it was still 12 fold less active than the native leptin. The in

vitro activity was further measured by a cell-based proliferation assay using in BaF/3-hObR

cells. Here the results were somewhat different. Based on this assay, IC50 of mouse

recombinant leptin was 0.08 ng/mL, consistent with the activity reported from its vendor,

R&D System. The IC50 of Lep(ss)–P85(L) and Lep(ss)–P85(H) decreased about 14 and 18

fold respectively compared to that of unmodified leptin (Fig. 6B and Table 1). Surprisingly,

Lep(ss)– P85 displayed high activity in the proliferation assay relative to activity shown in

the SPR study, with IC50 of Lep(ss)–P85 being only 5 fold less than IC50 of leptin. The

presence of unmodified leptin in the Lep(ss)– P85 mixture appears to explain relatively

higher activity shown in the proliferation assay by this mixture compared to purified

Lep(ss)– P85(L) and Lep(ss)–P85(H) forms.

3.2.7. Disulfide bond cleavage in Lep(ss)–P85 conjugates—We posit that the

disulfide bond in the Lep(ss)–P85 conjugate may be cleaved in the biological milieu.

Therefore, the disulfide bond stability was studied by exposing Lep(ss)–P85 samples to L-

glutathione (reduced), a major chemical that contributes to the reductive intracellular

environment. The disulfide bond in the Lep(ss)–P85 conjugate was considerably, albeit not

completely reduced after 24 hr incubation with L-glutathione (reduced). This was evident in

mass spectra by the disappearance of a signal for leptin modified with two P85 chains and a

decrease of a signal for leptin modified with one P85 chain (Supplementary data Fig. S5). In

comparison to the non-degradable analog, Lep(cc)–P85 did not display any change in the

mass spectra before or after treatment by L-glutathione (reduced) (Supplementary data Fig.

S5). Notably, both Lep(ss)–P85 and its reduced form, Lep(s ≠ s)-P85 exhibited almost

identical CD spectra, showing some decrease in α-helix and increase in β-sheet content

compared to native leptin (Fig. 4A). Thus, removal of the P85 chain from leptin did not

result in a recovery of the secondary structure of leptin to its native form. That could be due

to the presence residual groups, –C(O)CH2CH2SH or – C(O)CH2CH2S-glutathione, which

may remain attached to the leptin amino groups after cleavage of the P85 moiety from

Lep(ss)–P85 (Fig. S2). However, another possibility is that the leptin secondary structure
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was affected during its exposure to L-glutathione (reduced), for example, as a result of thiol

exchange reaction with the unique disulfide bond of leptin (Fig. S2). In favor of this

suggestion is that the treatment of native leptin with L-glutathione (reduced) also produced a

similar CD spectrum to that of Lep(ss)–P85 (Fig. 4A). In spite of minimal changes in its

secondary structure, according to the SPR assay Lep(s ≠ s)–P85 did exhibit a higher binding

affinity as shown by 3 fold decrease in the dissociation constant KD compared to that of the

non-reduced Lep(ss)–P85 form (Table 1). Therefore after cleavage of P85 in vitro Lep(ss)–

P85 partially regained the receptor binding affinity although it never reached the level

observed for the native leptin.

3.3. PK of Lep(ss)–P85 conjugates

The brain PK profile of leptin–pluronic conjugate, Lep(ss)–P85 has been previously

reported by us [29]. In brief when compared to native leptin after i.v. injection Lep(ss)–P85

had a longer half-life in blood and similar influx rate across the BBB. Here we determined

three major components of this Lep(ss)–P85 mixture: unmodified leptin, Lep(ss)–P85(H)

and Lep(ss)–P85(L)). These components would have collectively contributed to the PK

profile in our prior study. Thus, we radioactively labeled each component and studied their

serum clearances and brain uptakes.

3.3.1. Serum clearance—To compare the PK profiles of leptin and leptin–P85

conjugates, we co-injected 131I-leptin with 125I-labeled conjugates to each animal, collected

the brain and serum samples, and measured 125I and 131I radioactivity for each sample.

Statistical comparisons of these results thus minimize the variability originating among

individual animals as two compounds are assessed in each animal. The serum clearance

curve was obtained by plotting serum radioactivity (%In/mL) vs. time (min). A first-order

kinetics was observed for the early phase of clearance of all substances, which was

demonstrated by the statistically signifi-cant relation between log(%Inj/mL) and time t (Fig.

7). Serum half-life (t1/2) of leptin, Lep(ss)–P85(L) and Lep(ss)–P85(H) was 11.98 min,

40.75 min and 75.8 min respectively, suggesting that pluronic modification prolonged leptin

circulation, with a higher number of P85 chains attached to the protein producing a longer

circulation time. The serum half-life for the unpurified conjugates, Lep(ss)–P85, was

reported previously at 32.35 min [29], consistent with that being a mixture of all three forms

of leptin. The initial vascular volume distribution for all three substances was not

significantly different from each other, indicating that the addition of pluronic moieties did

not alter distribution of leptin outside of the vasculature.

3.3.2. Influx rate across the BBB—The brain/serum ratios were plotted vs. exposure

times and analyzed by multiple-time regression (Fig. 8). In this analysis the slope of the

linear portion of the plot determined the blood-to-brain unidirectional influx rate, Ki and the

Y-intercept determined the distribution volume in brain at t = 0 (Vi). The previously

reported value of Ki of Lep(ss)–P85 mixture at the BBB was 0.272 ± 0.037 μL/g · min,

which is not statistically different from Ki of leptin [29,50]. Here, both Lep(ss)–P85(L) and

Lep(ss)–P85(H) crossed the BBB at a slower rate than the co-injected leptin (Fig. 8A and

B), as shown by their ca. 6.2 to 6.4-fold lower influx rates (KiLep(ss)–P85(L) = 0.038 ± 0.008

μL/g min vs KiLepti n = 0.236 ± 0.017 μL/g · min, KiLep(ss)–P85(H) = 0.020 ± 0.007 μL/g ·
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min vs KiLepti n = 0.129 ± 0.011 μL/g · min). The initial volume of brain distribution was

also reduced for both purified conjugates. Both Lep(ss)–P85(L) and Lep(ss)–P85(H),

however, did cross the BBB at a rate faster than albumin. This was evident from positive

values of their influx rates corrected for the vascular space using co-injected albumin (Fig.

8C and D).

3.3.3. Stability of serum and brain samples—The stability of leptin–P85 conjugates

in serum and brain was assayed using acid precipitation, a previously established method

allowing to estimate the integrity of the iodinated leptin [4]. As shown in Table 2, the

percentage of radioactivity recovered from serum and brain, as an indicator of the protein

integrity, was highest in the Lep(ss)–P85(H) group, followed by Lep(ss)–P85(L) group and

lowest in the leptin group. It is notable that this difference was negligible for samples

collected at 15 min following i.v. injection when degradation of the leptin and its analogs

was minimal. However, at the later time points as degradation of native leptin became more

pronounced the greater stability of the leptin conjugates became more evident. In addition,

Lep(ss)–P85(H) brain samples collected from mice with a brain washout were also more

stable than that of Lep(ss)–P85(L) and leptin (51% vs 34% and 17%).

3.3.4. Brain uptake—The brain uptake (%inj/g brain) was determined at 240 min

following i.v. administration of 125I-Lep(ss)–P85(H) or 125I-Lep(ss)–P85(L) with co-

injection of 131I-leptin. To obtain the uptake of intact protein in the brain parenchyma, the

%inj/g in brain was corrected for the Vi of each radioactively labeled substance. The

resulting brain uptake of Lep(ss)–P85(L) and Lep(ss)–P85(H) more likely represents the

amount of the substance that has crossed the BBB and as presented here shows that both

compounds had significantly higher brain uptakes compared to that of native leptin (Fig. 9).

3.3.5. Inhibition study—The role of the leptin transporter in the BBB penetration of the

leptin analogs was assessed by the effect of co-injection of excess of nonradio-active leptin

(10 μg/mouse) on the brain uptake of 125I labeled leptin– P85 conjugates and co-

injected 131I-leptin at 30 min following injection. As shown in Fig. 10, in the presence of

free leptin, both 125I-Lep(ss)– P85(L) and 131I-leptin showed a significant decrease in their

brain/ serum ratios (p < 0.05 for 125I-Lep(ss)–P85(L) and p < 0.005 for 131I-leptin, n = 10/

group), whereas no significant changes was observed for 125I-Lep(ss)–P85(H) (n = 10/

group). These results suggest that leptin modified by a single P85 chain crosses the BBB

using leptin transporter; however, Lep(ss)–P85(H) modified with several P85 chains enters

the brain independently of the leptin transporter.

4. Discussion

Modification of proteins with synthetic polymers has been studied for several decades.

PEGylation, the leading technology in this field, has achieved enormous success in

improving bioavailability and therapeutic efficacy of proteins for diseases with peripheral

pathological targets. Like PEGylation, modifications with amphiphilic Pluronic triblock

copolymers can decrease degradation of proteins in physiological fluids. Additionally, it

increases permeability of proteins at physiological barriers, such as the BBB. Leptin, is one

of the molecules that we have modified using this technology, aiming to improve its brain
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delivery and effects on feeding. The first generation of leptin–P85 conjugate, Lep(ss)–P85

was biologically active and reduced food intake of normal body weight mice at doses of 3

mg/mouse i.v. and 25 μg/mouse i.c.v. [29]. An extensive PK study reported for Lep(ss)–P85

showed its longer blood circulation, better stability in serum and brain, and most

importantly, transport across the BBB via a leptin transporter independent pathway [29].

This suggests that pluronic modification can potentially overcome leptin peripheral

resistance and formed the basis for the further work reported here.

The initial progress in this work was the improvement of the purification of Lep(ss)–P85 by

SEC, allowing the removal of the majority of unmodified leptin and isolation of two more

homogenous conjugates: Lep(ss)–P85(L) and Lep(ss)–P85(H). Next, we studied serum and

brain PK for these two conjugates and compared them to the native leptin. We found that 1)

both conjugates were superior to the native leptin in terms of the blood PK and 2) the higher

the modification degree of the conjugate is, the greater their blood half-life and serum

stability are (i.e. Lep(ss)–P85(H) N Lep(ss)–P85(L) N leptin). Moreover, in the brain tissue

Lep(ss)–P85(H) was also more stable than Lep(ss)–P85(L) and both conjugates were much

more stable than native leptin. Notably, both Lep(ss)–P85(H) and Lep(ss)–P85(L) entered

the brain from the blood at slower rates than that of leptin. However, despite their decreased

influx rate, both Lep(ss)–P85(L) and Lep(ss)–P85(H) accumulated in the brain in greater

amounts than leptin as assessed at 240 min after injection. The increased uptake of these

conjugates to the brain is most likely due to the improvement in their peripheral PK and the

higher stability within the brain, which compensate for some loss of their BBB permeability.

Remarkably, the transport inhibition studies demonstrated that these conjugates exploited

strikingly different pathways for the brain entry. Specifically, Lep(ss)–P85(H) was crossing

the BBB by a mechanism independent of the leptin transporter; whereas Lep(ss)–P85(L)

penetrated the BBB by a mechanism inhibited by leptin. We posit that attaching multiple

P85 chains to leptin in Lep(ss)–P85(H), could considerably diminish its interaction with the

leptin transporter at the BBB. However, hydrophobic PPG blocks could interact with lipids

membranes and as a synthetic carrier, triggering the endocytosis of Lep(ss)–P85(H) at the

brain endothelium. P85 alone, for example, is known to bind to lipid rafts and transport in

brain microvessel endothelial cells through both caveolae and caveolae- and clathrin-

independent endocytosis routes [51,52]. It is possible that similar mechanisms are also

involved in the BBB permeability of Lep(ss)–P85(H) in vivo with P85 chains attached to

leptin serving as synthetic transport elements. Lipid moieties have been purposefully

introduced to therapeutic small molecules and peptides to gain a better penetration at the

BBB via diffusion mechanism [53]. However, to date, the largest reported molecule to

diffuse across the BBB is CICN1 with molecular weight of 7.8 kDa, at least 4 time smaller

than Lep(ss)–P85(H) (N26 kDa) [54]. Therefore it is less likely that the slow and non-

saturable penetration of Lep(ss)–P85(H) involves trans-cellular diffusion at the brain

endothelium. In a striking difference Lep(ss)–P85(L) modified with a single copolymer

chain seems to cross the BBB mainly via interaction with the leptin transporter. This

suggests that on the one hand attaching a single P85 chain to leptin possibly cannot trigger

sufficient hydrophobic interaction with brain endothelium necessary to bypass the BBB
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transporter. On the other hand, modification of leptin with a single P85 chain does not

completely block the ability of the analog to bind the leptin transporter.

In parallel to the purification and brain PK profile, we characterized the physicochemical

properties of leptin–P85 conjugates by various analytical assays. Using Lep(ss)–P85 as an

example, we observed an increase in the hydrodynamic diameter of particles measured by

DLS, suggesting some aggregation of the modified protein that may be an issue for further

pharmaceutical development. We also observed some changes in the secondary structure of

the modified leptin analog, which was not rectified by chemical cleavage of the P85 chains

in a test tube. Interestingly, the binding affinity of Lep(ss)–P85 to its receptor in SPR assay

was 500 fold less than that of leptin, whereas in the cell proliferation assay it was only 5 fold

less as compared to leptin. The apparent discrepancy is not very clear and may have

something to do with differences in interaction of P85 modified protein with SPR substrate

and cell membranes. In the first case the block copolymer chains may adhere to and mask

the leptin sites responsible for binding with the receptor. This may also involve

unconjugated leptin molecules, which could incorporate into protein aggregates observed by

the DLS. In the proliferation assay studies, however, the block copolymer chains may bind

with the cell membrane thus making leptin molecules more available for interacting with

their receptors. This speculation of course would need to be confirmed in the future.

We also for the first time report here the points of the copolymer attachment to leptin in the

Lep(ss)–P85 conjugates as determined by Orbitrap mass spectrometry. These are amino

groups of Lys 6, 12, 16, 34 and 107. To visualize how each modification could affect leptin

interaction with its receptor, we determined the 3D structure of each isomer of P85 modified

leptin using molecular modeling and further aligned the structure with a reported molecular

model of putative leptin–receptor complex [55]. Attaching P85 at Lys 6 and 12 notably

causes steric hindrance for leptin interaction with its receptor. However, modification at Lys

16, 34, 107 in all likelihood provides less steric barrier for the leptin–receptor binding

(Supplementary data Fig. S6). Notably, the leptin transporter at the BBB displays structural

similarity to the leptin receptor [56]. Therefore, the results of this analysis may explain why

Lep(ss)–P85(L) modified with a single copolymer chain is still capable to transport across

the BBB via the receptor mediated route. However, the leptin analog with higher

modification degree, Lep(ss)–P85(H) seems to be less likely to enter the brain though the

transporter dependent pathway. However, these two analogs did not show much difference

in cell proliferation assay, which complicates the simple explanation and may mean that the

binding of these analogs with receptors in cell membranes is more complex than assumed in

the model.

In the design of our leptin–pluronic conjugates, we purposefully introduced the disulfide

bond, the linkage that can degrade intracellularly yet is relatively stable in plasma [34]. With

this reversible disulfide bond, Lep(ss)–P85 might act as a prodrug that presents in a

modified form during circulation, allowing for improved peripheral bioavailability, but then

releases free leptin with translocation across the BBB. Indeed, we found no disulfide

breakdown upon exposure of Lep(ss)–P85 to serum for up to 24 hr. Our most recent results

also suggest that the conjugates are fairly stable after exposure to brain homogenates.

Whether the conjugate is broken down during penetration of the BBB is yet to be
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determined. On the other hand Lep(ss)–P85 conjugate was shown to release leptin, albeit

incompletely, when treated with L-glutathione, an agent, which at least partially recaptures

the reductive intracellular environment. This suggests the possibility that leptin might be

released from its prodrug Lep(ss)–P85 within brain endothelium.

Finally we tested the anti-obese effect of leptin–P85 conjugates in two models of obese

mice. The ideal and most interesting compound in this regard would be Lep(ss)–P85(H),

considering its lower heterogeneity, improved PK profile, and BBB penetration independent

of the leptin transporter. However the current conjugation chemistry and post purification

procedure limit the supply of a large quantity of Lep(ss)–P85(H) for feeding studies. As we

think the rationale of modification is to overcome peripheral resistance, which was shown

by both Lep(ss)–P85(H) and Lep(ss)–P85, the latter compound, which at this stage is easier

and more affordable to produce in needed amounts, was tested here. The first model was the

ob/ob mouse that produces no leptin and is very sensitive to its effects. It was used here to

determine whether the conjugated leptin retained any biological activity. We found that a

rather modest dose of 40 μg/ mouse given by the s.c. route decreased both feeding and body

weight. This showed that the mixture form of leptin–pluronic conjugate, Lep(ss)–P85 can be

produced that retains leptin-like activity. It is very likely that all three components of

Lep(ss)–P85, Lep(ss)– P85(L), Lep(ss)–P85(H) and native leptin can contribute to this

activity because each component can be transported across the BBB of ob/ob mice. The

second model we tested was the DIO mouse, which demonstrates both central and especially

peripheral resistance to leptin. We found that Lep(ss)–P85 was active after i.c.v. injection,

demonstrating its activity once it reaches leptin receptors at the arcuate nucleus. We then

determined whether i.v. injected Lep(ss)–P85 could inhibit feeding. This would require

leptin to cross the BBB in the animal model that is characterized by peripheral resistance to

leptin. We found that tail vein injection evoked an acute response in reduction of food intake

at a dose of 3 mg/mouse. In contrast to ob/ob mice, DIO mice most likely cannot respond to

Lep(ss)– P85(L) and native leptin forms because of insufficient transport of these forms to

the brain. At the same time, Lep(ss)–P85(H) penetrates to the brain and thus contributes to

the food reduction effect observed in DIO mice. While the ultimate goal is to prove its

improvement in treating DIO, we are currently exploring the dose response curve of leptin

substance and hope to address this key question based on an appropriate dose comparison

between leptin and the conjugates in either acute or/and long term feeding experiment.

5. Conclusion

In this study we generated two new leptin–pluronic conjugates. Lep(ss)–P85(H), a leptin

analog containing multiple P85 chains and Lep(ss)–P85(L), a leptin analog containing one

P85 chain. Lep(ss)– P85(H) is a promising anti-obesity drug candidate because of its

improvement in peripheral bioavailability, its increased brain uptake and, most importantly,

its ability to cross the BBB independently of the leptin transporter. Lep(ss)–P85(L) also

shows promise to be developed as leptin therapy alternative because of improved PK and

brain bioavailability.
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Scheme 1.
Generation of leptin–P85 conjugates by modifying leptin lysine and N-terminal amino

groups with monoamine P85 via disulfide-containing linker. The leptin–P85 conjugate

Lep(ss)–P85 was further purified to produce Lep(ss)–P85(L) and Lep(ss)–P85(H).
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Fig. 1.
The effect of peripherally administered Lep(ss)–P85 in ob/ob mouse. (A) Body weight in

ob/ob mice after 3 days of Lep(ss)–P85 treatment (40 μg/day/mouse, s.c.) was significantly

decreased (p < 0.006, by t-test). (B) Lep(ss)–P85 treatment also induced a significant

reduction in average daily food intake (p < 0.02, by t-test) (n = 6 for vehicle group and n = 7

for Lep(ss)–P85 group).
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Fig. 2.
The effects of Lep(ss)–P85 in DIO mice. (A) The DIO mice that received 25 μg/mouse i.c.v.

Lep(ss)–P85 ate significantly less food 24 hr post food induction than mice that was given

with vehicle. (n = 5/group, p < 0.03, by t-test). (B and C) Tail vein injection of Lep(ss)–P85

at a dose of 3 mg per mouse significantly reduced food intake of DIO mice 2 hr (p < 0.001)

and 24 hr (p < 0.0001) post food induction (n = 10/group).
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Fig. 3.
Purification and characterization of leptin–P85 conjugates. (A) Lep(ss)–P85 conjugate

contained unmodified leptin and leptin modified with different numbers of P85 chains. SEC

elution profile in TSKgel G2000SW column showed separation of leptin–P85 conjugates

from unmodified leptin. (B) SDS-PAGE and (C) MALDI-TOF spectra further characterized

the collected fractions at 8.8 min and 9.5 min as leptin conjugates modified with multiple

P85 chains (Lep(ss)–P85(H)) and single P85 chain (Lep(ss)–P85(L)), respectively.
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Fig. 4.
(A) CD spectra of native leptin and Lep(ss)–P85 before and after reduction of disul-fide

bonds with 6 mM reduced L-glutathione. (B) Immunoassays of leptin–pluronic conjugates

using antibody against PEG. Concentration-dependent ELISA signal was present in Lep(ss)–

P85, but not in free P85, native leptin or Lep(ss)–P85(L). A PEGylated protein (PEG-SOD1)

was also assayed as a positive control showing that AGP 4 and 3.3-biotin antibody were able

to recognize PEG containing species.
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Fig. 5.
Disulfide bond stability in Lep(ss)–P85 conjugate upon its exposure to serum. Western blot

analysis shows that leptin or Lep(ss)–P85 remained stable after incubating with serum for up

to 24 hr.
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Fig. 6.
(A) Representative association and dissociation SPR sensorgrams of leptin–pluronic

conjugate at various concentrations flowing on the sensor chip coupled by leptin receptor.

(B) Binding curves of leptin–pluronic conjugates with BaF3 mouse pro-B cells transfected

with human leptin receptor.

Yi et al. Page 30

J Control Release. Author manuscript; available in PMC 2015 October 10.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 7.
Serum clearance of leptin–pluronic conjugates during shorter (A and B) and longer time

periods of study (C and D). The two lines in panels A and B were significantly different (p <

0.05). Both 125I-Lep(ss)–P85(L) and 125I-Lep(ss)–P85(H) showed significantly longer

circulation time than that of co-injected 131I-leptin. The serum disappearance (T1/2) was

40.75 min for 125I-Lep(ss)–P85(L) (r = 0.75, p < 0.001; n = 1 ~ 2 mice/time point), 75.80

min for 125I-Lep(ss)–P85(H) (r = 0.73, p < 0.0005; n = 1 ~ 2 mice/time point) and 11.98 min

for 131I-Lep (r = 0.64, p p < 0.005; n = 1 ~ 2 mice/time point). The vascular volume

distribution (Vi), as shown by the y intercept was not significantly different. Panels C and D

further showed that initial serum clearance was a linear distribution for both of leptin

analogs followed by a plateau phase.
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Fig. 8.
Multiple-time regression analysis of leptin–pluronic conjugate transport across the BBB.

Leptin–P85 conjugates were labeled by 125I and co-injected with 131I-lep (A and B)

or 131IAlb (C and D). (A and B) The two lines in each figure were statistically different (p <

0.0001). Both Lep(ss)–P85(L) and Lep(ss)–P85(H) showed a slower entry rate compared to

that that of leptin. The brain volume distribution (Vi), however, was not significantly

different. The Ki for Lep(ss)–P85(L) and Lep(ss)–P85(H) was 0.038 ± 0.008 μL/g · min (r =

0.71, p < 0.0.005; n = 1 ~ 2 mice/time point) and 0.020 ± 0.007 μL/g · min (r = 0.40, p <

0.05; n = 1 ~ 2 mice/time point), respectively. The Vi for Lep(ss)–P85(L) and Lep(ss)–

P85(H) was 16.62 ± 0.94 μL/g and 14.70 ± 1.48 μL/g, respectively. For native leptin co-

injected with Lep(ss)–P85(L), the Ki was 0.236 ± 0.017 μL/g · min and Vi was 17.17 ± 1.19

μL/g (r = 0.96, p < 0.0001); for leptin co-injected with Lep(ss)–P85(H), the Ki was 0.129 ±

0.011 μL/g · min and Vi was 16.16 ± 1.49 μL/g (r = 0.94, p < 0.0001). Both leptin results

were similar to those reported previously. (C and D) Results were corrected for vascular

space as measured by 131I-Alb. Both leptin analogs showed residual uptake rates after this

correction, suggesting that they had significantly higher entry rates than that of albumin. The

Ki for Lep(ss)–P85(L) was 0.011 ± 0.003 μL/g · min; the Vi was 3.034 ± 0.298 μL/g (r =

0.45, p < 0.01; n = 1 ~ 2 mice/time point). The corrected Ki for Lep(ss)–P85(H) was 0.018 ±

0.004 μL/g · min; Vi was 3.391 ± 0.35 μL/g (r = 0.48, p < 0.001; n = 1 ~ 2 mice/time point).
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Fig. 9.
Brain uptake of intact leptin analogs at 240 min after i.v. injection. The brain uptake of 125I-

Lep(ss)–P85(L) or 125I-Lep(ss)–P85(H) was significantly higher than that of co-

injected 131I-Lep (*p < 0.05, n = 2 ~ 3/group, by t-test). The brain uptake was expressed as

%inj/g using Eq. (3) and then corrected for the stability of the brain samples (in washout

brain) as assessed by TCA precipitation.
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Fig. 10.
Transport mechanisms of leptin analogs. (A) Nonradioactive leptin (10 μg/mouse) inhibited

the brain/serum ratio of both 125I-Lep(ss)–P85(L) and 131I-Lep at 30 min after intravenous

injections (*p < 0.05; **p < 0.001, n = 10/group), suggesting a transporter dependent

mechanism across the BBB. (B) The brain/serum ratio of 125I-Lep(ss)–P85(H) at 30 min

after intravenous injections did not alter with or without excess of leptin (10 μg/ mouse) (*p

< 0.05, n = 10/group).
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Table 1

Binding affinity and in vitro IC50 of leptin–pluronic conjugates.

Samples Binding affinity
a

In vitro activity
b

kD [10–10 M] χ 2 IC50 [ng/mL] R 2

Leptin 1.0 ± 0.03 0.1–0.4 0.08 0.99

Leptin + P85 3.37 ± 0.08 0.3–0.5 ND ND

Lep(ss)–P85 571 ± 91.50 0.2–0.6 0.448 0.99

Lep(s ≠ s)–P85 164 ± 15.50 0.2–0.3 ND ND

Lep(ss)–P85(H) ND ND 1.472 0.99

Lep(ss)–P85(L) 12.1 ± 5.14 0.8–1.5 1.102 0.99

a
Binding affinity was measured by SPR in Biacore 3000 and analyzed in BIA evaluation software 3 using χ2 analysis. The lower χ2, the better the

fitting is.

b
IC50 was measured by CPA using BaF3 mouse pro-B cells transfected with human leptin receptor and calculated by four parameter fitting with

R2 of 0.99 for all curves.

J Control Release. Author manuscript; available in PMC 2015 October 10.



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Yi et al. Page 36

Table 2

Acid precipitation of radioactively labeled leptin or its analogs in brain and serum.

Time (min) Leptin Lep(ss)–P85(L) Lep(ss)–P85(H)

Serum (%) Brain (%) Serum (%) Brain (%) Serum (%) Brain (%)

15 94.4 ± 3.6 100.0 ± 3.9 104.0 ± 0.7 99.1 ± 1.6 100.3 ± 6.5 98.8 ± 5.6

60 76.2 ± 8.5 73.0 ± 13.7 93.3 ± 1.1 73.9 ± 1.6 96.1 ± 0.4 81.9 ± 0.4

240 52.8 ± 8.7 27.7 ± 9.5 71.0 ± 2.7 49.7 ± 3.3 86.0 ± 3.4 61.5 ± 3.3

240
a 35.7 ± 10.9 17.6 ± 16.1 74.0 ± 1.1 34.3 ± 3.3 87.0 ± 1.01 51.2 ± 8.2

a
Brain was collected in mice with a brain washout.
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