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Compared to the current knowledge on cancer chemotherapeutic agents, only limited information 

is available on the ability of organic compounds, such as drugs and/or natural products, to prevent 

or delay the onset of cancer. In order to evaluate chemical chemopreventive potentials and design 

novel chemopreventive agents with low to no toxicity, we developed predictive computational 

models for chemopreventive agents in this study. First, we curated a database containing over 400 

organic compounds with known chemoprevention activities. Based on this database, various 

random forest and support vector machine binary classifiers were developed. All of the resulting 

models were validated by cross validation procedures. Then, the validated models were applied to 

virtually screen a chemical library containing around 23,000 natural products and derivatives. We 

selected a list of 148 novel chemopreventive compounds based on the consensus prediction of all 

validated models. We further analyzed the predicted active compounds by their ease of organic 

synthesis. Finally, 18 compounds were synthesized and experimentally validated for their 

chemopreventive activity. The experimental validation results paralleled the cross validation 

results, demonstrating the utility of the developed models. The predictive models developed in this 

study can be applied to virtually screen other chemical libraries to identify novel lead compounds 

for the chemo-prevention of cancers.
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Introduction

Cancer is listed among the major causes of mortality in the world. In 2013, cancer was 

ranked as the second leading cause of death in the United States. A recent report from the 

American Cancer Society revealed that, statistically, the lifetime chances of developing 

cancers are as high as 1 in 3 for women and 1 in 2 for men [1]. Current strategies in cancer 

patient treatments, such as chemotherapy, have met with clinical success. However, most 

chemotherapeutic agents have severe side effects, which negatively impact a cancer patient’s 

quality of life [2]. For this reason, chemoprevention, which normally uses either natural or 

synthetic compounds with low toxicity, was employed to impede, halt, or reverse the 

carcinogenesis process before a tumor can develop [3], especially for patients at high risk. 

The different stages of chemoprevention research have been extensively reviewed [4-8].

As a relatively new area of cancer research, there is a high demand for efficient methods to 

identify novel chemoprevention agents. To date, a standardized method for identifying 

chemopreventive compounds has not been developed. But several in vitro methods have 

been used by different research groups to evaluate potential chemopreventive agents [9-11]. 

Most of these methods measure chemopreventive activity on the basis of similar general 

principles. These approaches involve measuring cellular expression of a protein in a human 

cancer cell line with and without the test compound. A positive impact is noted by a 

decrease in expression, which indicates interference with a potential cancer-inducing 

pathway [12-18]. The Epstein–Barr virus early antigen (EBV-EA) activation assay is one 

such test recognized as a primary screening method for assessing antitumor promoting 

properties, through inhibition of Protein Kinase C (PKC) activity, which serves as a major 
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receptor for 12-O-tetradecanoylphorbol-13-acetate (TPA) [19, 20]. In this test, the 

experiment is carried out in Raji cells, a human lymphoma cell line with an Epstein–Barr 

virus genome. The assay is less tumor type specific, which limits its applicability in 

mechanistic studies of chemoprevention; however, it can measure the chemopreventive 

effects of a particular agent on the promotion and progression phases of carcinogenesis, and 

usually results in parallel outcomes to in vivo animal models. It is considered to be a useful 

in vitro assay to initially screen chemopreventive agents [12, 13, 18].

Currently, only a few studies have employed computational modeling in the area of 

chemoprevention. Among them, several Quantitative structure–activity relationship (QSAR) 

studies used simple modeling approaches, such as Multiple linear regression (MLR) or 

Partial least square (PLS), to model a limited number of chemopreventive agents. For 

example, Bertosa et al. [21] used PLS to develop QSAR models for 59 amides and 

quinolones. The antitumor activities of these compounds were tested against MiaPaCa-2 

(pancreatic carcinoma) and MCF-7 (breast carcinoma) cells. In another study, Saeed et al. 

[22] used linear regression to generate models for six curcumin derivatives. In a recent 

published work, Aleksic et al. [23] reported a three-dimensional (3D) QSAR study of 

substituted heterocyclic quinolones. Nineteen compounds with similar quinolone scaffolds 

were synthesized and tested for antitumor activity against multiple cell lines in this study. 

The results were modeled with commercial modeling software. Other receptor-based 

modeling studies, which used molecular docking analysis, have focused on using known 

cancer tumor targets and their interaction with specific chemopreventive compounds. For 

example, a recent study tested the binding affinities of curcumin derivatives against several 

well-known cancer targets [24]. The results revealed a favorable correlation between the two 

test compounds and their binding affinity for cancer targets, thus, implying a functional role 

as enzyme inhibition activators. Although previous modeling studies achieved certain 

successes (e.g., molecular docking studies usually helped to explain the binding mechanisms 

of the chemopreventive agents to the relevant receptors), they have restricted predictive 

ability due to the limited number of compounds used in the studies.

In this study, we proposed to develop QSAR models based on a large set of chemopreventive 

agents tested by the EBV-EA assay and to apply the resulting models to design new lead 

agents. To this end, we curated a chemopreventive database by collecting compounds tested 

by the EBV-EA assay from published research articles [25-51]. We used an in-house tool to 

automatically generate an activity endpoint based on the original multi-dose chemo-

preventive response data. Various QSAR models were developed and validated. Then, these 

models were used to virtually screen over 23,000 natural products and their derivatives to 

identify novel chemopreventive agents. Finally, 18 lead compounds resulting from the 

prediction results were synthesized and experimentally validated using the same EBV-EA 

assay.

Methods

Chemopreventive agent data set

The chemopreventive agent database was generated by collecting data from different journal 

papers published during the past decade [25-51]. All compounds in the database were tested 
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using the EBV-EA assay by the same standard methodology. The original database 

contained compounds that were reported in different papers. After removing duplicated 

compounds by harmonizing their activities, we had 405 unique compounds left in the final 

curated chemopreventive agent database.

The EBV-EA assay data were treated by the CurveP algorithm to ensure monotonicity of 

each dose–response curve and to convert it into a numeric value, LogCurveP (a log10-

transformed fingerprint), which was used as a numeric indicator of activity. This algorithm 

was developed in our laboratory in a prior study [52]. Briefly, the response at each of the 

various test concentrations was represented by two bits (00, 01, 10, 11) for coding four 

categories (0, 25, 50, and 75 %+ relative inhibition). Then, these bits were concatenated 

from lowest to highest test concentrations and resulted in an eight bit value (CurveP). If 

nonzero, the CurveP was then log10-transformed. The chosen activity threshold of 1.25 

corresponds to strong inhibition at the two highest test concentrations. Based on these 

factors, the chemopreventive agent database contained 204 “actives” categorized as class-1 

and 201 “marginal actives” categorized as class-2. All 405 compounds and their 

chemopreventive activity (both the original data and the LogCurvP results) are listed in a 

supplemental file (Supplemental Table 1).

EBV-EA assay

Raji cells (106 cells/mL) were incubated at 37 °C for 48 h in RPMI-1640 medium with 10 % 

Fetal calf serum (FCS), n-butyric acid (4 mmol), TPA (32 pmol), and test compounds. 

Smears were made from the cell suspension, and EBV-EA inducing cells were stained by an 

indirect immunofluorescence technique. In each assay, at least 500 cells were counted and 

the number of stained cells (positive cells) was recorded. The EBV-EA-inhibiting activity of 

the test compound was estimated on the basis of the percentage of the number of positive 

cells compared with that of the control without the test compound. Cell viability was 

assayed by the Trypan Blue staining method. For the determination of cytotoxicity, the cell 

viability was required to be more than 60 % [53]. Each compound was measured at four 

concentrations of 0.32, 3.2, 16, and 32 nmol, representing 10-, 100-, 500-, 1,000-fold of TPA 

(32 pmol). Each measurement was repeated three times for each test compound 

concentration and the average values of the three readout data were used.

Chemical descriptors

The chemical descriptors used in this study were obtained from Dragon version 6.0 (Talete 

SRL, Milano, Italy) and Molecular Operating Environment (MOE) version 2011. The 

Dragon descriptors include E-state values and E-state counts, constitutional descriptors, 

topological descriptors, walk and path counts, connectivity and information indices, 2D 

autocorrelations, Burden eigenvalues, molecular properties, Kappa, hydrogen bond acceptor/

donor counts, molecular distance edge, and molecular fragment counts. The MOE 

descriptors include topological indices, structural keys, E-state indices, physical properties 

(i.e., LogP, molecular weight, and molar refractivity), and topological polar surface area. 

Over 4,000 Dragon descriptors were initially generated, but most of them were redundant. 

We removed redundant Dragon descriptors by using pairwise comparisons between each of 

the two descriptor pairs. If the correlation between two descriptors of our 405 compounds 
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was high (correlation coefficient >0.95), one of them was randomly selected and removed. 

Eventually, 688 Dragon descriptors were left for this study. MOE generated 186 descriptors, 

all of which were used in the modeling process.

Modeling approaches

This study used the Random forest (RF) and Support vector machine (SVM) algorithms 

available in R.2.15.1. These two algorithms have been employed in several of our previous 

modeling studies for various biological activities [54, 55].

The entire Combinatorial QSAR (Combi-QSAR) modeling workflow is shown in Fig. 1. 

Individual models were developed using a combination of Dragon or MOE descriptors and 

RF or SVM algorithms. This technique resulted in four different models: Dragon-RF, 

Dragon-SVM, MOE-RF, and MOE-SVM. The results for each classification model were 

averaged to generate consensus predictions, which will be further referred to as a consensus 

model.

All models were validated using five-fold external cross validation. Briefly, the original 

chemopreventive dataset was randomly divided into five equal subsets. One subset was used 

as the validation set (20 % of the original set) and the other four subsets (80 % of the 

original set) were used as the training sets. The training sets were used to develop the 

models and the resulting models were used to predict the left-out validation set. This 

procedure was repeated five times, so that each compound was used for validation purposes 

once.

Robustness of QSAR models was verified using a Y-randomization (randomization of 

response) approach as described by Tropsha and coworkers [56-58]. We randomly assigned 

the activities of the modeling set compounds into class-1 or -2. Then, we developed QSAR 

models using the same protocol as for compounds with actual experimental results. The 

purpose of this procedure was to see if statistically significant QSAR models could be 

obtained for the original data, but could not be developed with randomized activities. The Y-

randomization tests for each combination of modeling approach and descriptor were 

repeated five times.

Universal criteria for model evaluation

Because various modeling approaches and different descriptors were used in the modeling 

process, universal statistical metrics were needed to evaluate the performance of the models 

developed individually. The results were harmonized by using sensitivity (percentage of 

class-1 compounds predicted correctly), specificity (percentage of class-2 compounds 

predicted correctly), and CCR (correct classification rate or balanced accuracy). These 

parameters are defined as follows:

(1)
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(2)

(3)

Synthesis of selected compounds

Eighteen compounds derived from the predicted results were designated for chemical 

synthesis. Among them, twelve compounds (1–12) resulted from the class-1 compound list 

and six compounds (13–18) were derived from the class-2 prediction set (Table 2). 

Compound selection from more than 100 predicted leads was based on the chemical 

capability of producing the molecules through basic organic synthesis and the availability of 

chemical reagents for making the compound. Compound 12 was purchased from Aldrich. 

All final compounds were structurally confirmed by mass spectrometry (Shimadzu 

LCMS-2010 ESI–MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) 

[Varian 400 MHz with tetramethylsilane (TMS) as the internal standard]. Melting points 

were determined on a Fisher-John melting point apparatus and are uncorrected. 

CombiFlash® chromatographic system (Isco Companion) with a Grace silica gel cartridge 

was used for general separation and purification. Preparative thin layer chromatography 

(PTLC) on silica gel plates (Kieselgel 60, F254, 1.50 mm) was also used for separation and 

purification. Precoated silica gel plates (Kieselgel 60, F254, 0.25 mm) were used for Thin 

layer chromatography (TLC) analysis. All reagents and solvents were purchased from 

Aldrich, Fisher, VWR, and other vendors. Some chemicals were used after purification, and 

others were used as purchased.

Results and discussions

The overview of our chemopreventive agent database

We analyzed the structural similarities between the compounds in the dataset by performing 

a Principal component analysis (PCA) on the chemical descriptors. After generating the 

principal components using the 186 MOE descriptors for all of the compounds in the 

database, we selected the top three most important components to create a 3D plot (Fig. 2) 

for all 405 compounds. Considering the 186 MOE descriptors that we used, these three 

principal components captured around 30 % of the variance in our database. In this way, we 

could visualize the chemical similarity between modeling set compounds in this 3D plot 

(Fig. 2). According to this analysis, not surprisingly, many compounds were chemically 

similar, since they are derivatives of several known chemopreventive agents (e.g., curcumin). 

But there were several structural outliers that were dissimilar to the majority of the 

compounds. Some previous studies showed that removing structural outliers before the 

modeling process was beneficial to the results of the QSAR models [55, 59, 60]. However, 

in our study, we kept these outliers, since they were only a small portion (~1 %) of the whole 
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dataset. Furthermore, removing the outliers did not improve the resulting models (data not 

shown).

Chemopreventive activity endpoint

All 405 compounds were tested in the EBV-EA assay at four different doses (10, 100, 500 

and 1,000 times the TPA dose) and the chemopreventive activity reported as relative 

percentage induction of TPA-mediated EBV-EA activation (Fig. 3a). Most of the compounds 

showed significant activity at high dose levels, but half of the compounds exhibited no 

activity at the lowest dose. We next applied a method previously developed in our laboratory 

and successfully applied in prior studies in which the multi-dose response data for each 

compound was converted into a meaningful endpoint that could be used for modeling 

purposes [52]. Figure 3b shows the transformed Log-CurveP results based on the original 

four dose induction response data from Fig. 3a. Noticeably, a clear threshold (LogCurveP = 

1.25) was present (see middle of Fig. 3b), which could be used to distinguish “actives” and 

“marginal actives”. It should be emphasized that the definition of these two categories is 

somewhat arbitrary, since most of the compounds showed significant activity in the high 

dose testing. However, this strategy gave us a criterion to differentiate the compounds that 

are likely to have high efficacy from the remaining compounds. On this basis, the actual 

chemopreventive agent modeling database contained 204 “actives” and 201 “marginal 

actives”.

Modeling results

We developed four individual and one consensus model for the 405 compounds (204 actives 

and 201 marginal actives). The fivefold external cross validation results for all of the models 

are shown in Table 1. The sensitivity, specificity, and CCR metrics for the four individual 

models ranged from 57 to 75, 61 to 74, and 59 to 74 %, respectively. The SVM-MOE model 

had the lowest predictivity (CCR = 59 %), and the RF-DRG model had the highest 

predictivity (CCR = 74 %). The consensus model showed equivalent statistics with 

sensitivity, specificity, and CCR all equal to 69 %.

Y-randomization tests were also performed for the modeling set. After five time random 

assignments of class-1 or -2 to the 405 compounds, we developed four individual QSAR 

models. The average CCR values obtained from five-fold cross validation for all four 

individual models with randomized classes were around 0.5, indicating that randomization 

of the classifications did not result in meaningful models. In addition, we used Pearson’s Chi 

squared test to calculate the χ2 and p values for the prediction results obtained using actual 

and randomized classes [61]. The improvement achieved by our real QSAR models, 

compared with those obtained by randomized classes, was statistically significant (χ2 >30 

and p < 0.0001).

Figure 4 shows the Receiver Operating Characteristic (ROC) of all four individual models. 

The Area under the curve (AUC) is another metric to evaluate the performance of each 

model. The RF models (AUC = 0.83 and 0.80), either with Dragon and MOE descriptors, 

were superior to the SVM models (AUC = 0.72 and 0.68).
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Furthermore, we applied Consensus prediction thresholds (CPT), as cited in one of our 

previous studies [62], to the prediction results. Since all of the prediction values from the 

individual models ranged from 0 to 1, we initially used the 0.5 value as a single threshold to 

distinguish compounds predicted as class-1 (CPT ≥0.5) or class-2 (CPT <0.5). However, as 

shown in Fig. 4, the use of more restrictive thresholds improved the predictivities of all 

models. Consequently, compounds with CPT values around 0.5 should be considered 

“inconclusive”. Based on the results in Fig. 4, we removed these inconclusive predictions by 

using two arbitrary, but reasonable, CPT thresholds to classify compounds as actives (CPT 

>0.7) and marginal actives (CPT <0.3).

The application of CPT to define the prediction results together with the removal of 

“inconclusive” compounds clearly enhanced the predictivity of all models, including the 

consensus model (Table 1). For example, the sensitivity, specificity, and CCR metrics of the 

consensus model increased to 83, 82, and 82 %, respectively (Table 1). However, the 

tradeoff was to decrease the coverage of this model from 100 to 46 %. In addition, the 

coverage of the individual models ranged from 45 to 58 % after applying CPT and excluding 

inconclusive compounds. Since we expect that the models developed in this project will be 

used to screen large chemical libraries and prioritize a small portion of “hits” for 

experimental validation, we feel that it is reasonable to sacrifice prediction coverage to 

increase predictivity.

Virtual screening

Once we developed and validated our predictive QSAR models, they could then be used to 

screen new compounds for chemopreventive activity. Since chemopreventive agents usually 

must be administrated for a long period of time, low toxicity and fewer side effects are 

essential factors in the design of new agents. Therefore, we used the ZINC natural 

derivatives (ZND) library that contains over 23,000 natural product molecules and their 

derivatives for screening purposes [63]. The original ZND database was curated to remove 

duplicates, including compounds that overlapped with our existing dataset as well as 

compounds that could not be handled by our program. This process resulted in a total of 

over 23,385 unique compounds available for virtual screening. Next, we evaluated these 

compounds with all four individual models to prioritize and choose hits. We prioritized those 

compounds that were calculated as “active” and excluded those compounds that were 

predicted as “inconclusive” (prediction values between 0.3 and 0.7) based on the consensus 

predictions of all four individual models. As another selection criterion, we produced a 

combined score by summation of all individual model prediction values. By applying both 

selection criteria, we ultimately selected 148 compounds from the ZND library. These 

compounds were predicted to be active hits by all four models (individual prediction values 

were all above 0.7), as well as had the highest combined scores based on summations of all 

four predictions. For comparison purposes, we intentionally selected 45 compounds that 

were predicted to be “marginal active” by all models using the same strategy as for the 

active hits.
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Chemical synthesis and experimental validation by in vitro EBV-EA inhibition

From the 148 class-1 structures and 45 class-2 structures predicted by virtual screening, we 

selected 12 compounds from the active lead set and 6 compounds from the marginal active 

set. Our selection rationale included chemical synthesis capability and availability, as well as 

the SAR (structure–activity relationship) profile from previously reported literature on 

chemopreventive agents. For instance, favored structural groups in most of the active 

predictions from our virtual screening included phenolic groups and a biphenyl moiety with 

a conjugated carbonyl system and/or a 4H-chromen-4-one. These chemical structures are 

common features of some known chemopreventive agents, such as curcumin derivatives and 

flavonoids [64-66]. Selected “active” compounds 1–4 are structural mimics of curcuminoids, 

while compounds 6 and 8–10 belong to the flavonoid chemical class.

We next synthesized the 18 chosen compounds. Compounds 1, 3, and 13–16 were prepared 

by reaction of an appropriately substituted benzoic acid (compound 16) or cinnamic acid 

(compounds 1, 3, and 13–15) with an appropriate amine in the presence of the coupling 

reagent EDCI hydrochloride and the catalyst DAMP (Scheme 1). Compounds 2 and 4 were 

obtained by subsequent demethylation of 1 and 3 with BBr3 at low temperature. Compound 

5 was synthesized by reaction of 1-(2-hydroxy-5-methoxyphenyl)ethanone with 2,3-

dimethoxybenzaldehyde. Treatment of 5 with sodium acetate in aqueous ethanol and heating 

to reflux gave cyclized compound 5a, which underwent demethylation with BBr3 in 

methylene chloride yielding compound 6 (Scheme 2). Unexpectedly, the ring-opened 

product 7 was also obtained during the demethylation process, probably due to the 

instability of the 2H-pyran-4(3H)-one moiety under the reaction conditions (Scheme 2). 

Compound 17 was prepared by reaction of naphthalen-1-ol with methyl 2-chloroacetate in 

the presence of potassium carbonate. Compound 18 was afforded by demethylation of 17 
with trimethylstannanol (Scheme 3). Compounds 8-11 were synthesized by heating 1-(2-

hydroxy-5-methoxyphenyl)ethanone and 3,4-dim-ethoxybenzoyl chloride in pyridine 

(Scheme 4). After treatment of the resulting compound with potassium hydroxide followed 

by acidification, the cyclized compound 8 was obtained. Selective demethylation of 

compound 8 afforded compounds 9–11.

All 18 synthesized compounds were evaluated for chemoprevention activities measured as 

inhibition of TPA-induced EBV-EA expression in Raji cells. These 18 compounds and their 

relevant response data are shown in Table 2. The value corresponding to each compound 

indicates a relative ratio to the positive control TPA on activation of EBV-EA expression in 

Raji cells. Unsurprisingly, compounds derived from the predicted class-1 set (compounds 1–
12), especially compounds 8–12 with a flavonoid structural scaffold, generally showed more 

potent inhibition of EBV-EA expression than those derived from the class-2 set (13–18). 

Based on our definition of class-1 and -2 as mentioned above, all predicted “marginal active” 

compounds (compounds 13–18) were experimentally proved to be correctly predicted. 

Among all actives (compounds 1–12), compounds 5–12 were True positives (TP); however, 

compounds 1–4 were False positives (FP). Structurally, compounds 1–4 are derived from 

curcuminoids. However, in comparison with curcumin, compounds 1–4 were weaker 

inhibitors in the validation assay, especially at the higher concentration levels (Table 2). 

Thus, the high activity of curcumin derivatives in our modeling set was the major reason for 
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these FP predictions. This result also provided us with important information on revising/

optimizing curcumin derivatives as chemoprevention agents. In summary, the experimental 

validation showed 67 % sensitivity, 100 % specificity, and 83 % CCR. Although the number 

of experimentally tested compounds was not great, the experimentally validated results 

clearly demonstrate that the newly developed cheminformatics models can be used to screen 

new chemical libraries and prioritize novel hits for future development.

Further Structure–Activity Relationship profiles resulting from this study indicated that 

phenolic substitution in the molecule enhanced the EBV-EA inhibition ability. Flavonoids 9–
12 with multiple phenolic hydroxyl groups displayed 100 % inhibition at the highest tested 

concentration and 24–28 % inhibition even at 1 × 102 mol ratio to TPA (32 pmol). 

Compound 9 was the most potent analog among the tested compounds showing significant 

inhibition even at concentrations as low as 1 × 10 mol ratio to TPA. Interestingly, compound 

7, a ring-opened analog bearing four phenolic hydroxy groups, was less potent than its ring-

closed analog 9 against EBV-EA activation. These results suggested that the flavonoid 

skeleton is essential for the inhibition activity and phenolic groups enhance the inhibition 

potency.

To evaluate the novelty of the 18 new compounds, we analyzed the major chemical features 

of the compounds and compared them to those existing in the modeling set. To this end, 

chemical scaffolds were generated and compared for the 18 new compounds against the 408-

compound dataset. All compounds were reduced to core fragments (or “scaffolds”) based on 

the method reported in a previous study [67]. Eight unique scaffolds were generated out of 

the 18 compounds (Fig. 5), and 167 unique scaffolds out of the 408 compounds. By 

comparison, 50 % of the prior scaffolds (4 out of 8) were novel and did not exist in the 408-

compound dataset (Fig. 5).

In summary, we employed a Combi-QSAR workflow to develop predictive models for a 

database consisting of 405 chemopreventive agents, which were all tested by EBV-EA assay. 

We used our in-house tool to define a chemoprevention activity endpoint that was suitable 

for modeling purposes. The resulting four individual models were validated by a five-fold 

cross validation procedure. The consensus prediction showed superior performance 

compared with that of the individual models. For this reason, we used all four individual 

models to virtually screen a large chemical library. Eighteen “hits”, 12 from a class-1 

“active” set and 6 from a class-2 “marginal active” set, were finally selected, synthesized, 

and then validated by the same EBV-EA assay. The validation results indicated that the 

compounds derived from the “active” prediction were more potent EBV-EA activation 

inhibitors than the compounds derived from the “marginal active” prediction. Both the cross 

validation and experimental validation results showed that our developed models are suitable 

for designing novel chemopreventive agents by prioritizing novel molecules for 

experimental testing and further development.
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Experiments

Chemical synthesis

General synthesis procedures for compounds 1–4 and 13–16—Substituted 

cinnamic acid (1 eq., for compounds 1,3, 13–15,) or benzoic acid (1 eq., for compound 16) 

was dissolved in DMF. EDCI hydrochloride (1.5 eq.) and 10 % (mol ratio) of DMAP were 

added. After being stirred at r.t. for 30 min. an appropriate amine (1.5 eq.) was added. The 

resulting mixture was stirred at r.t. overnight. The solid was removed by filtration and the 

filtrate was concentrated under vacuum. The residue was partitioned in EtOAc and water, 

and the organic portion was washed twice with water. After drying over Na2SO4, the crude 

product was purified by column chromatograph through a combiflash system with hexanes/

EtOAc as eluent.

(E)-3-(3-hydroxyphenyl)-N-(3-methoxybenzyl)-N-methylacrylamide (1)—White 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.75 (d, J = 15.6 Hz, 1H), 7.29–7.02 (m, 

aromatic H, 4H), 6.92–6.73 (m, 4H), 6.55 (d, J = 17.2 Hz, 1H), 4.66 (d, J = 16.0 Hz, 

PhCH2N–, 2H), 3.82 (s, OCH3, 3H), 3.07 (s, NCH3, 3H); ESI MS m/z 298.20 (M + H)+.

(E)-N-(3-hydroxybenzyl)-3-(3-hydroxyphenyl)-N-methylacrylamide (2)—White 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.65 (d, J = 15.6 Hz, 1H), 7.24–6.69 (m, 

aromatic H, 7H), 6.02 (d, J = 17.2 Hz, 1H), 5.82 (d, J = 17.2 Hz, 1H), 4.62 (d, J = 13.6 Hz, 

PhCH2N–, 2H), 3.02 (s, NCH3, 3H); ESI MS m/z 283.91 (M + H)+.

(E)-N-(3-methoxybenzyl)-3-(3-methoxyphenyl)acrylamide (3)—White crystalline 

solid. 1H NMR (400 MHz, CDCl3): δ 7.61 (d, J = 15.6 Hz, 1H), 7.27–7.22 (m, aromatic-H, 

2H), 7.07 (d, J = 7.6 Hz, 1H), 6.99 (s, aromatic-H, 1H), 6.99–6.79 (m, aromatic-H, 4H), 6.38 

(d, J = 15.6 Hz, 1H), 5.96 (s, br, –NH–, 1H), 4.52 (d, J = 6.0 Hz, PhCH2N–, 2H), 3.79, 3.78 

(s, OCH3 × 2, 3H each); ESI MS m/z 298.20 (M + H)+.

(E)-N-(3-hydroxybenzyl)-3-(3-hydroxyphenyl)acrylamide (4)—Off-white crystalline 

solid; 1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 15.6 Hz, 1H), 7.19–7.10 (m, aromatic-H, 

2H), 7.01 (d, J = 7.2 Hz, 1H), 6.95 (s, aromatic-H, 1H), 6.78–6.73 (m, aromatic-H, 3H), 

6.66–6.64 (m, aromatic-H, 1H), 6.57 (d, J = 15.6 Hz, 1H), 4.40 (s, PhCH2N–, 2H); ESI MS 

m/z 270.21 (M + H)+.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3,4-dimethoxyphenethyl)acrylamide (13)—
Off-white crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.50 (d, J = 15.2 Hz, 1H), 6.95 

(s, aromatic H, 1H), 6.93 (d, J = 1.6 Hz, aromatic H, 1H), 6.80–6.71 (m, aromatic H, 4H), 

6.11 (d, J = 15.2 Hz, 1H), 5.96 (s, methylene H, 2H), 5.52 (br. NH, 1H), 3.84 (s, OCH3, 6H), 

3.60 (q, NHCH2–, 2H), 2.78 (t, J = 7.2 Hz, 2H); ESI MS m/z 356.20 (M + H)+.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(4-chlorophenethyl)acrylamide (14)—White 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.50 (d, J = 15.2 Hz, 1H), 7.25 (d, J = 8.4 

Hz, aromatic H, 2H), 7.12 (d, J = 8.4 Hz, aromatic H, 2H), 6.95 (s, aromatic H, 1H), 6.93 (d, 

J = 2.0 Hz, aromatic H, 1H), 6.76 (dd, J = 1.2, 7.6 Hz, aromatic H, 1H), 6.11 (d, J = 15.2 Hz, 
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1H), 5.95 (s, methylene H, 2H), 5.52 (br. NH, 1H), 3.60 (q, J = 6.8 Hz, NHCH2–, 2H), 2.83 

(t, J = 7.2 Hz, 2H); ESI MS m/z 330.15 (M + H)+.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3-phenylpropyl)acrylamide (15)—White 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.47 (d, J = 15.6 Hz, 1H), 7.28–7.23 (m, 

aromatic H, 2H), 7.18–7.16 (m, aromatic H, 3H), 6.95 (d, J = 0.8 Hz, aromatic H, 1H), 6.93 

(d, J = 1.2 Hz, aromatic H, 1H), 6.76 (d, J = 8.4 Hz, aromatic H, 1H), 6.11 (d, J = 15.6 Hz, 

1H), 5.96 (s, methylene H, 2H), 5.52 (br. NH, 1H), 3.39 (q, J = 6.8 Hz, NHCH2–, 2H), 2.70 

(t, J = 7.6 Hz, 2H), 1.88 (pent, J = 7.2 Hz, 2H); ESI MS m/z 310.21 (M + H)+.

(E)-3-(benzo[d] [1, 3] dioxol-5-yl)-N-(3-(dimethylamino)propyl)acrylamide (16)
—Light yellow solid. 1H NMR (400 MHz, CDCl3): δ 8.83 (br. NH, 1H), 6.93 (dd, J = 2.0, 

9.2 Hz, aromatic H, 1H), 6.88 (s, aromatic H, 1H), 6.81 (dd, J = 2.0, 9.2 Hz, aromatic H, 

1H), 5.99 (s, methylene H, 2H), 3.33 (q, J = 6.8 Hz, NHCH2–, 2H), 2.42 (t, J = 7.6 Hz, 2H), 

2.27 (s, N(CH3)2, 6H), 1.75 (pent, J = 7.2 Hz, 2H); ESI MS m/z 251.24 (M + H)+.

Syntheses of compounds 5–7—To a solution of 1-(2-hydroxy-5-

methoxyphenyl)ethanone (3 mmol) in 10 mL of EtOH was added 2,3-

dimethoxybenzaldehyde (1.05 eq.). 20 % KOH (5 mL aq.) was added dropwise. The 

resulting red mixture was stirred at r.t for 5 h with TLC monitoring, and then was poured 

into ice water, acidified with 2 N HCl to pH 2, and extracted with EtOAc. After purification 

through a combiflash column chromatography system, compound 5 was obtained. 

Compound 5 (0.6 mmol) was dissolved in 5 mL of EtOH and NaOAc (10 eq.) was added. 

The mixture was heated to reflux until the reaction was complete (approximately 24 h). The 

reaction mixture was poured into ice water and extracted with EtOAc. The crude product 

was purified by column chromatography on a combiflash system with hexanes/EtOAc as 

eluent to yield 5a. Compound 5a (0.545 mmol) was dissolved in 20 mL of anhydrous 

methylene chloride (CH2Cl2) and cooled to –78 °C. BBr3 (1 M in CH2Cl2, 4.5 eq.) was 

added slowly. The resulting mixture was stirred at –78 °C for 10 min, 0 °C for 10 min, and 

r.t. for 3 h with TLC monitoring. The reaction mixture cooled in an ice-bath then pured into 

ice water with stirring. The mixture was extracted with ethyl ether (Et2O) three times and 

dried over Na2SO4. The desired products 5 and 6 were obtained after purification over a 

combiflash system with CH2Cl2/MeOH as eluent.

(E)-3-(2,3-dimethoxyphenyl)-1-(2-hydroxy-5-methoxyphenyl)prop-2-en-1-one 
(5)—Yellow crystalline solid. 1H NMR (400 MHz, CDCl3): δ 8.15 (d, J = 16.0 Hz, 1H), 

7.68 (d, J = 16.0 Hz, 1H), 7.33 (d, J = 2.8 Hz, aromatic H, 1H), 7.24 (d, J = 8.0 Hz, aromatic 

H, 1H), 7.13–7.07 (m, aromatic H, 2H), 6.98–6.94 (m, aromatic H, 2H), 3.89 (s, OCH3, 3H), 

3.88 (s, OCH3, 3H), 3.80 (s, OCH3, 3H); ESI MS m/z 315.21 (M + H)+.

2-(2,3-dihydroxyphenyl)-6-methoxychroman-4-one (6)—Light yellow solid. 1H 

NMR (400 MHz, CDCl3): δ 7.30 (d, J = 3.2 Hz, aromatic H, 1H), 7.14 (dd, J = 3.2, 8.0 Hz, 

aromatic H, 1H), 6.99 (d, J = 8.0 Hz, aromatic H, 1H), 6.97 (d, J = 5.6 Hz, aromatic H, 1H), 

6.74 (td, J = 2.0, 8.0 Hz, aromatic H, 1H), 6.70 (t, J = 8.0 Hz,aromatic H, 1H), 5.73 (dd, J = 

3.2, 12.0 Hz, 1H), 3.77 (s, OCH3, 3H), 2.97 (dd, J = 12.8, 30.0 Hz, 1H), 2.84 (dd, J = 3.2, 

20.0 Hz, 1H); ESI MS m/z 285.21 (M + H)+.
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(E)-3-(2,3-dihydroxyphenyl)-1-(2,5-dihydroxyphenyl)prop-2-en-1-one (7)—
Yellow crystalline solid. 1H NMR (400 MHz, CDCl3): δ 8.14 (d, J = 15.6 Hz, 1H), 7.84 (d, 

J = 15.6 Hz, 1H), 7.36 (d, J = 2.8 Hz, aromatic H, 1H), 7.11 (dd, J = 1.2, 8.0 Hz, aromatic H, 

1H), 6.99 (dd, J = 2.8, 8.0 Hz, aromatic H, 1H), 6.83 (dd, J = 1.6, 8.0 Hz, aromatic H, 1H), 

6.79 (d, J = 8.8 Hz, aromatic H, 1H), 6.70 (t, J = 8.0 Hz, aromatic H, 1H); ESI MS m/z 
273.21 (M + H)+.

Syntheses of compounds 8–10—To a solution of 1-(2-hydroxy-5-

methoxyphenyl)ethanone (1.84 mmol) in pyridine (3 mL) was added 3,4-dimethoxybenzoyl 

chloride (3 eq.). The resulting mixture was heated to reflux for 1 h. After cooling to r.t., the 

reaction mixture was pured into ice water with stirring, and solids started to precipitate. 

After storage in a refrigerater overnight, the off-white solid product (2-acetyl-4-methoxy-

phenyl 3,4-dimethoxybenzoate) was collected by filtration and dried in vacuo (0.4 g). The 

resulting compound (0.9 mmol) was further dissolved in 1 mL of pyridine, and 86 mg of 

KOH powder was added with stirring. The mixture was then heated at 50 °C for 1 h, then 

poured into 10 % H2SO4 (8 mL). A light brown solid precipitated. The solid was filtered and 

dissolved in 1.5 mL of EtOH containing 0.1 mL of H2SO4. The solution was heated to reflux 

for 1 h followed by alkalinization to pH 10 with 20 % NaOH and refluxed for another 15 

min. After cooling, the solution was neutralized with 10 % H2SO4 to give a solid, which was 

recrystallied from MeOH to afford compound 8 (0.121 g) as a dark gray crystalline solid. 

Compound 8 (0.096 mmol) was dissolved in 5 mL of anhydrous CH2Cl2 and cooled to –

78 °C. Then, BBr3 (1 M in CH2Cl2, 4.5 eq.) was added slowly. The resulting mixture was 

stirred at −78 °C for 10 min, 0 °C for 10 min, and r.t. for 2 h with TLC monitoring. The 

reaction mixture then was cooled in an ice-bath and poured into ice water. After stirring for 

0.5 h, the mixture was extracted with Et2O and dried over Na2SO4. The desired products 9–
11 were obtained after column chromatography over a combiflash system with CH2Cl2/

MeOH as eluent.

2-(3,4-dimethoxyphenyl)-6-methoxy-4H-chromen-4-one (8)—Yellow–brown 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.67-7.64 (m, aromatic-H 2H), 7.54–7.52 

(m, aromatic-H 2H), 7.37 (dd, J = 3.2, 9.2 Hz, aromatic H, 1H), 7.11 (d, J = 8.4 Hz, aromatic 

H, 1H), 6.82 (s, 1H), 3.92, 3.89, 3.88 (s, OCH3 × 3, 3H each); ESI MS m/z 313.23 (M + 

H)+.

2-(3,4-dihydroxyphenyl)-6-hydroxy-4H-chromen-4-one (9)—Yellow–brown 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.53 (d, J = 8.8 Hz, aromatic-H 1H), 

7.41-7.37 (m, aromatic-H, 3H), 7.23 (dd, J = 2.8, 8.8 Hz, aromatic H, 1H), 6.88 (d, J = 8.8 

Hz, aromatic H, 1H), 6.65 (s, 1H); ESI MS m/z 270.21 (M + H)+.

2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-4-one (10)—Yellow 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.62 (d, J = 9.2 Hz, aromatic-H 1H), 7.52 

(dd, J = 2.4, 8.4 Hz, aromatic-H, 2H), 7.43 (d, J = 2.4 Hz, aromatic H, 1H), 6.88 (dd, J = 2.8, 

8.8 Hz, aromatic-H, 1H), 7.06 (d, J = 8.8 Hz, aromatic-H, 1H), 6.74 (s, 1H), 3.91, 3.88 (s, 

OCH3 9 2, 3H each); ESI MS m/z 299.21 (M + H)+.
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2-(3,4-dihydroxyphenyl)-6-methoxy-4H-chromen-4-one (11)—Yellow–brown 

crystalline solid. 1H NMR (400 MHz, CDCl3): δ 7.59 (d, J = 9.2 Hz, aromatic-H, 1H), 7.50 

(d, J = 2.8 Hz, aromatic-H, 1H), 7.41 (t, J = 2.4 Hz, aromatic-H, 1H), 7.39 (s, aromatic-H, 

1H), 7.35 (dd, J = 3.2, 9.2 Hz, aromatic-H, 1H), 6.88 (dd, J = 1.2, 7.6 Hz, aromatic H, 1H), 

6.69 (s, 1H), 3.87 (s, OCH3, 3H); ESI MS m/z 285.19 (M + H)+.

Syntheses of compounds 17–18—To a solution of naphthalen-1-ol (1 mmol) in 

acetone (10 mL) was added K2CO3 (3 eq.) followed by methyl 2-chloroacetate (1.5 eq.). The 

resulting mixture was heated to reflux for 20 h with TLC monitoring. The solid was filtered 

and the filtrate was concentrated to dryness. The residue was diluted with EtOAc and 

washed twice with brine. The organic portion was dried over Na2SO4, filtered, and 

concentrated. The crude product was purified through a combiflash chromatography system 

with hexanes/EtOAc as eluent to afford the desired product 17. Compound 18 was obtained 

by treatment of 17 (0.1 mmol) with trimethylstannanol (10 eq.) in dichloroethane (1.5 mL). 

The resulting mixture was heated at 80 °C for 3 h with TLC monitoring. Upon completion, 

the solvent was evaporated and the residue was diluted with EtOAc and washed with 5 % 

HCl followed by brine three times. After drying ove Na2SO4, the crude product was purified 

through a combiflash chromatography system with hexanes/EtOAc as eluent. The desired 

product 18 was obtained as a off-white solid.

Methyl 2-(naphthalen-1-yloxy)acetate (17)—White crystalline solid. 1H NMR (400 

MHz, CDCl3): δ 8.36-8.33 (m, aromatic-H 1H), 7.80–7.77 (m, aromatic-H, 1H), 7.50–7.45 

(m, aromatic H, 3H), 7.32 (t, J = 7.6 Hz, aromatic-H, 1H), 6.68 (d, J = 7.6 Hz, aromatic-H, 

1H) 3.80 (s, OCH3, 3H); ESI MS m/z 217.21 (M + H)+.

2-(naphthalen-1-yloxy)acetic acid (18)—White crystalline solid. 1H NMR (400 MHz, 

CDCl3): δ 8.30–8.27 (m, aromatic-H 1H), 7.77–7.75 (m, aromatic-H, 1H), 7.46–7.41 (m, 

aromatic H, 3H), 7.32 (t, J = 7.6 Hz, aromatic-H, 1H), 6.79 (d, J = 7.6 Hz, aromatic-H, 1H) 

3.80 (s, OCH3, 3H); ESI MS m/z 203.19 (M + H)+.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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PLS Partial least square

PTLC Preparative thin layer chromatography

QSAR Quantitative structure–activity relationship

RF Random forest

SVM Support vector machines

TLC Thin layer chromatography

TMS Tetramethylsilane

TPA 12-O-tetradecanoylphorbol-13-acetate

ZND ZINC natural derivative

Sprague et al. Page 19

J Comput Aided Mol Des. Author manuscript; available in PMC 2017 September 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
The Combi-QSAR modeling workflow of this study
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Fig. 2. 
Chemical structure space of chemopreventive agent database (n = 405) using top 3 principal 

components of MOE descriptors
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Fig. 3. 
The chemopreventive data obtained from the EBV-EA assays: a the original data shown as 

the distribution of relative induction of TPA-mediated EBV-EA activations at four different 

doses [10 (blue), 100 (green), 500 (purple) and 1,000 (red) mol ratio per 32 pmol TPA]; b 
the transformed LogCurveP results based on the four dose testing data (red line shows the 

active/marginally active threshold at LogCurvP = 1.25)
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Fig. 4. 
ROC curves obtained as a result of five-fold cross validation: a two models using Dragon 

descriptors; b two models using MOE descriptors
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Fig. 5. 
The major chemical scaffolds within the 18 new compounds. The four red ones are new 

scaffolds and the four black ones are within the scaffolds of the modeling set compounds
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Scheme 1. 
Synthesis of acrylamide substituted compounds 1–4 and 13–16
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Scheme 2. 
Synthesis of flavonone 6 and its open rings compounds 5 and 7
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Scheme 3. 
Synthesis of naphthalen-1-yloxyl compounds 17 and 18
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Scheme 4. 
Synthesis of flavones 9–11
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