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ABSTRACT

The advent of high throughput RNA-seq technology allows deep sampling of the tran-
scriptome, making it possible to characterize both the diversity and the abundance of
transcript isoforms. Accurate abundance estimation or transcript quantification of isoforms
is critical for downstream differential analysis (e.g., healthy vs. diseased cells) but remains a
challenging problem for several reasons. First, while various types of algorithms have been
developed for abundance estimation, short reads often do not uniquely identify the tran-
script isoforms from which they were sampled. As a result, the quantification problem may
not be identifiable, i.e., lacks a unique transcript solution even if the read maps uniquely to
the reference genome. In this article, we develop a general linear model for transcript
quantification that leverages reads spanning multiple splice junctions to ameliorate iden-
tifiability. Second, RNA-seq reads sampled from the transcriptome exhibit unknown
position-specific and sequence-specific biases. We extend our method to simultaneously learn
bias parameters during transcript quantification to improve accuracy. Third, transcript
quantification is often provided with a candidate set of isoforms, not all of which are likely to
be significantly expressed in a given tissue type or condition. By resolving the linear system
with LASSO, our approach can infer an accurate set of dominantly expressed transcripts
while existing methods tend to assign positive expression to every candidate isoform. Using
simulated RNA-seq datasets, our method demonstrated better quantification accuracy and
the inference of dominant set of transcripts than existing methods. The application of our
method on real data experimentally demonstrated that transcript quantification is effective
for differential analysis of transcriptomes.
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1. INTRODUCTION

Recent studies have estimated that as many as 95% of all multi-exon genes are alternatively spliced,

resulting in more than one transcript per gene (Pan et al., 2008; Wang et al., 2008). Transcript quan-

tification determines the steady state levels of alternative transcripts within a sample, enabling the detection
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of differences in the expression of alternative transcripts under different conditions. Its application in de-

tecting biomarkers between diseased and normal tissues can greatly impact biomedical research.

High-throughput sequencing technology (e.g., RNA-seq with Illumina, ABI Solid, etc.) provides deep

sampling of the mRNA transcriptome. It allows the parallel sequencing of a large number of mRNA

molecules, generating tens of millions of short reads with lengths up to 100 bp at one end or both ends of

mRNA fragments. Recent studies using RNA-seq have significantly expanded our knowledge on both the

variety and the abundance of alternative splicing events (Brosseau et al., 2010; Wu et al., 2011).

However, transcript quantification remains a challenging problem. First, it is commonly observed that ‘‘the

more the isoforms, the harder to predict’’ (Li et al., 2011). Intuitively, transcript isoforms from the same gene

often overlap significantly, and a short read may be mapped to more than one transcript isoform. Determining

the expression of individual transcripts from short-read alignment, therefore, can lead to an unidentifiable

model, where no unique solution exists. Secondly, transcript quantification often takes the candidate set of

transcript isoforms, either from annotation databases such as Ensembl (Flicek et al., 2012) and Refseq (Pruitt

et al., 2007), or inferred from the splice graph using programs like Scripture (Guttman et al., 2010), IsoInfer

(Feng et al., 2010), IsoLasso (Li et al., 2011), or Cufflinks (Trapnell et al., 2010). It is biologically unlikely to

expect all candidate transcripts for a given gene to be significantly expressed concurrently in a cell. However,

existing analytical approaches tend to assign positive expression values to every candidate transcript provided,

thereby creating a situation in which large errors in abundance estimation can be computationally introduced

for transcript isoforms that may, in reality, barely be expressed. An improved transcript quantification method,

therefore, would determine or logically infer the subset of expressed transcript isoforms. Finally, various

sampling biases have been observed regularly in RNA-seq datasets as a result of library preparation protocols.

These biases typically include position-specific bias (Bohnert and Rätsch, 2010; Li et al., 2010; Roberts et al.,

2011; Wu et al., 2011) such as 3’ bias and transcription start and end biases, and sequence-specific bias

(Li et al., 2010; Roberts et al., 2011; Turro et al., 2011), where the read sampling in the transcriptome favors

certain subsequences. How to compensate for these biases during transcript quantification is an open problem.

Transcript isoforms can differ not only in exons alternatively included or excluded but also where two or

more exons are connected together. In RNA-seq data, this information is typically implied by the spliced

reads, (i.e., the reads that cross one or more splice junctions). We have developed a general linear model for

transcript quantification that leverages discriminative features in spliced reads to ameliorate the issue of

identifiability and simultaneously corrects the sampling bias. Our contribution in this paper is three-fold: (1)

We explicitly identify MultiSplice, a novel structural feature consisting of a contiguous set of exons that are

expected to be spanned by the RNA-seq reads or transcript fragments of a given length. The MultiSplice,

which includes single splice junctions as a special case, is used in two ways: its presence in the sample will

infer the host transcript while its absence may reject it. MultiSplices are more powerful than single exons in

disambiguating transcript isoforms, making more transcript quantification problems identifiable with long or

paired-end reads. (2) We set up a linear system that minimizes the summed relative squared errors regarding

the ratio of the expected expression against the observed expression across all structure features along a gene

while taking into account various bias effects: (3) We develop an iterative minimization algorithm in

combination with LASSO (Tibshirani, 1996) to resolve the aforementioned linear system in order to achieve

the most accurate set of dominantly expressed transcripts while simultaneously correcting biases.

We have demonstrated the efficacy of our methods on both simulated RNA-seq datasets and real RNA-seq

data: (1) We conducted the first study to investigate the question: What is the maximum read length needed in

order to disambiguate all possible transcript isoforms in transcriptomes from different species; (2) we

compared the proposed method with several state-of-the-art methods including Cufflinks, RSEM, the Poisson

model, and the ExonOnly model. Our results using simulated data from the human mRNA transcriptome

demonstrated superior performance of the proposed method in most cases. When applied to eight RNA-seq

datasets from two breast cancer cell lines (MCF-7 and SUM-102), the quantification obtained from Multi-

Splice demonstrated good consistency within technical replicates from each transcriptome-wide assessment

and substantial differences between the two biological groups (cell lines) in a small percentage of genes.

2. RELATED WORK

Various transcript quantification algorithms have been published recently. These methods can be divided

mainly into two categories: read-centric and exon-centric. The representative methods using read-centric

168 HUANG ET AL.



approaches include, but are not limited to, Cufflinks (Trapnell et al., 2010), IsoEM (Nicolae et al., 2011),

and RSEM (Li and Dewey, 2011). The central idea with read-centric approaches is to assign probability for

each fragment to one transcript by maximizing the joint likelihood of read alignments based on the

distribution of transcript fragments, and thereby estimating the transcript expression. When it is impossible

to precisely allocate a fragment to a unique transcript, Cufflinks, for example, simply disregards or ran-

domly assigns the read, causing information loss or inaccurate quantification. The second strategy, called

exon-centric, considers the read abundance on an exonic segment as the cumulative abundance of all

transcript isoforms. Methods in this category represent the transcript as a combination of exons and aim at

estimating individual transcript abundance from the observed read count or read coverage at each exon. The

representative models in this category include the Poisson model ( Jiang and Wong, 2009; Richard et al.,

2010; Srivastava and Chen, 2010) and linear regression approaches, such as rQuant (Bohnert and Rätsch,

2010), IsoLasso (Li et al., 2011), and SLIDE (Lia et al., 2011).

Transcript abundance estimations can be unidentifiable, where no unique quantification exists. Both

exon-centric and read-centric models may suffer from this problem. The article by Lacroix et al. (2008) is

one of the theoretical studies that have considered the identifiability problem of transcript quantification.

3. METHODS

In this section, we propose a method designated MultiSplice, for mRNA isoform quantification. We first

define the observed features used in the MultiSplice model and the statistics collected. Then, we derive a

general linear model to relate transcript-level estimate to the observed expression on every feature.

Preliminaries. For a gene g, we use Eg to denote the set of exonic segments ( Jiang and Wong, 2009; Li

et al., 2011) in g, which are disjoint genomic intervals on the genome that can be included in a transcript in

its entirety. We use Tg to denote the set of mRNA isoforms transcribed from g. These mRNAs can be a set

of annotated transcripts retrieved from a database such as Ensembl (Flicek et al., 2012) or Refseq (Pruitt

et al., 2007). A transcript t 2 Tg is defined by a sequence of exon segments, t = et
1et

2 � � � et
nt

, where e 2 Eg

and nt denotes the number of exonic segments in the transcript t. The length of each exonic segment e is

defined as the number of nucleotides in the exonic segment, denoted as l(e). Hence, the length for every

transcript is l(t) =
Pnt

i = 1 l(et
i).

3.1. MultiSplice

In a typical RNA-seq dataset, a significant percentage of the read alignments are spliced alignments that

connect more than one exon. With paired-end reads, the transcript fragment where its two ends are sampled

can be inferred based on the distribution of the insert size (Roberts et al., 2011). Transcript fragments are

typically between 200 bp and 300 bp, making them more likely to cross multiple exons, indicating these

exons are present together in one transcript. This information can be crucial in distinguishing alternative

transcript isoforms. However, they are often ignored in current computational approaches.

In this subsection, we consider a sequence of adjacent exons in an mRNA transcript covered by transcript

fragments. These structural features are the basis of MultiSplice. For generality, we assume that the RNA-

seq reads are sampled from transcript fragments whose lengths follow a given distribution Ffr with

probability density function ffr. For example, the fragment-length distribution Ffr is often modeled as a

normal distribution with mean and variance learned from the genomic alignment of the RNA-seq reads. We

also assume the maximum fragment length is lfr.

Definition 1. Let b = et
ie

t
i + 1 � � � et

i + nb
be a substring of a transcript sequence t = et

1et
2 � � � et

nt
, nb ‡ 1 and

i + nb £ nt. Then b is a MultiSplice in t if and only if

Xnb - 1

q = 1

l(ei + q) p lfr - 2: (1)

The condition in Equation 1 guarantees that a MultiSplice b connects nb + 1 adjacent exons with at least one

base landed on the 5’ most exon et
i and the 3’ most exon et

i + nb
. We use Bg to denote the set of all MultiSplices

in gene g. From the definition, the set of MultiSplices vary according to the fragment length lfr. The longer the

A ROBUST TRANSCRIPT QUANTIFICATION METHOD 169



fragments, the more MultiSplices are expected to function as structural features, and the higher power in

disentangling highly similar alternative isoforms.

In Figure 1, for example, assume the maximum fragment length is lfr = 300 bp with the expected

fragment length of 250 bp and the exonic segments of this gene have lengths of l(e1) = 200 bp, l(e2) =
200 bp, l(e3) = 100 bp, l(e4) = 200 bp, l(e5) = 200 bp. In reference transcript T1 = e1e3e5, b2 = e1e3e5 is a

substring of T1, and we have l(e3) = 100 bp < 300 bp = lfr, which allows a fragment to cover b2. Therefore,

b2 is a MultiSplice feature of the gene. Combining MultiSplices from all the reference transcripts, b1, b3, b5,

b6, and b7 are MultiSplices consisting of a single splice junction, b2, b4, b8, b9, and b10 are MultiSplices

consisting of two splice junctions.

3.2. Expected coverage and observed coverage

Given the gene g and a transcript t 2 Tg, let ci be the number of transcript fragments covering the ith

nucleotide of t. We define the coverage on t as the averaged number of transcripts covering each base in the

transcript, C(t) = 1
l(t)

Pl(t)
i = 1 ci. Then C(t) is an estimator for the quantity of t in the sample, which provides a

direct measure for the expression level of t. In our model, C(t) is the unknown variable. The feature space

that can be observed from the given RNA-seq sample is the union of all exonic segments and MultiSplices

of the gene, Fg = Eg [ Bg. We aim at resolving the transcript expressions that minimize the difference

between the observed expression and the expected expression of every feature.

The observed coverage on an exonic segment e 2 Eg is defined as C(e) = 1
l(e)

Pl(e)
i = 1 ci, where ci is the

number of reads covering the ith nucleotide in e. The read coverage C(e) provides an estimator for the

FIG. 1. Overview of the MultiSplice model. (a) Sequenced RNA-seq short-reads are first mapped to the reference

genome using an RNA-seq read aligner such as MapSplice (Wang et al., 2010). In the presence of paired-end reads,

MapPER (Hu et al., 2010) can be applied to find PER fragment alignments for the entire transcript fragment based on

the distribution of insert size. (b) Observed coverage on each exonic segment. (c) Four transcripts originate from the

alternative start and exon-skipping events. Provided with these transcripts, abundance estimates would be unidentifiable

for methods that only use coverage on exonic segments. Both transcript profiles P1 and P2, for instance, can explain the

observed read coverage on each exon but deviate from the true transcript expression profile. (d) MultiSplices that

connect multiple exonic segments in a transcript. (e) A linear model can be set up where the expected coverage on

every exonic or MultiSplice feature approximates its observed coverage. The transcript expression is solved as the one

that minimizes the sum of squared relative error.
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number of transcript copies that flow through the exonic segment e assuming uniform sampling. For a

MultiSplice b 2 Bg, we use C(b) to denote the read coverage on b defined as the number of transcript

fragments that include b.

For every / 2 Fg and every transcript t 2 Tg, the expected coverage of feature / from t can be expressed

as a function of the transcript quantity C(t), that is, E[C(/jt)] = m(/,t)C(t), where m(/,t) contains the

probability of observing / in t assuming uniform sampling. Next, we define the expected coverage on

exonic segments and MultiSplice respectively.

For an exonic segment e in t, assuming Nt fragments were sampled from t, the number of fragments

falling in e then follows a binomial distribution with parameters Nt and p(ejt), where p(ejt) = l(e)
l(t) denotes the

probability that a fragment sampled from t originated from e. Therefore, the expected number of reads on e

from t is E[Nejt] = Ntp(ejt). Let fr1‚ fr2‚ � � � ‚ frNt
be the fragments sampled on t, the expected fragment

coverage on t is E[C(t)] = E

�PNt

i = 1
l(fri)

l(t)

�
= NtE[l(fr)]

l(t) , where E[l(fr)] is the expected fragment length. On the

other hand, the expected fragment coverage on e contributed by t is calculated as

E[C(ejt)] = E[E[C(ejt)jNejt]] = E

�
NejtE[l(fr)]

l(e)

�
= E[Nejt]E[l(fr)]

l(e) = Ntp(ejt)E[l(fr)]
l(e) . Since p(ejt) = l(e)

l(t) ‚
p(ejt)
l(e) = 1

l(t). There-

fore, we could get E[C(ejt)] = NtE[l(fr)]
l(t) , which means the expected fragment coverage on e contributed by t

equals the expected fragment coverage of t, which concludes that the probability of observing e in t is 1:

m(e, t) = 1.

For a MultiSplice b = et
ie

t
i + 1 � � � et

i + nb
, we are interested in the number of fragments containing it. Should a

transcript fragment fr cover b, fr must start no later than the 3’ end boundary of the 5’ most exonic segment

et
i and have at least one base landed on the 3’ most exonic segment et

i + nb
. Therefore, there exists a window

w(b) before the 3’ end of et
i with length l(w(b)) = l(fr) -

Pnb - 1
q = 1 l(ei + q) - 1, where b can be covered by the

transcript fragment fr. The probability that fr covers b in transcript t is hence p(bjt) =
l(fr) -

Pnb - 1

q = 1
l(ei + q) - 1

l(t) .

Equivalent to the expected number of fragments from t that contain b, the expected fragment coverage on b

from t is E[C(bjt)] = E[Nbjt] = E[Ntp(bjt)] = Nt

E[l(fr)] -
Pnb - 1

q = 1
l(ei + q) - 1

l(t) . Since E[C(bjt)] = m(b,t)C(t), the proba-

bility that the MultiSplice b is observed within transcript t is m(b‚ t) = E[C(bjt)]
C(t) . Recall that C(t) = NtE[l(fr)]

l(t) ,

therefore, m(b‚ t) =
E[l(fr)] -

Pnb - 1

q = 1
l(ei + q) - 1

E[l(fr)] . In Figure 1, for example, m(b2‚ T1) = E[l(fr)] - l(e3) - 1
E[l(fr)] = 250 - 100 - 1

250
= 0:6.

In summary, the probability that a feature / contained in a uniformly sampled transcript fragment fr is:

m(/‚ t) =

1 if / � t and / 2 EG

E[l(fr)] -
Pnb - 1

q = 1
l(ei + q) - 1

E[l(fr)] if / � t and / 2 BG

0
if / 6� t:

8>><
>>: (2)

with /� t standing for that / is contained in t.

3.3. A generalized linear model for transcript quantification

We construct a matrix M0 2 <jFgj· jT gj to represent the structure of the transcripts, whose entry on the row of

/ and the column of t corresponds to the probability of observing feature / from transcript t, M0(/, t) = m(/, t).

The linear model is set up for every feature / 2 Fg by equating the observed coverage on / to the expected

coverage from all transcripts:

C(/) =
X
t2T G

M0(/‚ t)C(t) + �/‚ for any / 2 Fg: (3)

Here C(t) ‡ 0 for every t 2 T G‚ �/ is the error term for feature / in transcript t.

Lemma 1. The MultiSplice model for transcript quantification is identifiable if the rank of M0 is no less

than the number of transcripts jTgj.

Lemma 1 directly follows the the Rouché-Capelli theorem (Horn and Johnson, 1990).
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4. BIAS CORRECTION

Under uniform sampling, the sampling probability is the same at every nucleotide of a transcript. The

observed coverage on / is unbiased for the expected coverage on t. In this case, the bias coefficient r(/, t)

is set to 1 for all transcripts and features. However, sampling bias is often introduced in RNA-seq sample

preparation protocols and has been demonstrated to have significant effects in RNA-seq analysis (Ko-

zarewa et al., 2009; Wang et al., 2009). Therefore, we discuss in the following subsections how MultiSplice

corrects various sampling bias via learning of the bias coefficients and simultaneously solves the linear

model for transcript coverage C(t) of every transcript t.

Figure 2a–e shows how various types of sampling bias alter the sampling probability and hence the

coverage. Two types of sampling bias are commonly observed in RNA-seq data, namely, the position-

specific bias and the sequence-specific bias (Bohnert and Rätsch, 2010; Olejniczak et al., 2010; Srivastava

and Chen, 2010; Roberts et al., 2011). In our model, sampling bias may affect the sampling probability of

both the exonic segments and MultiSplices. Therefore, we calculate the bias coefficient r(/,t) for every

feature / 2 Fg and every transcript t so that E[C(/jt)] = r(/, t)m(/, t)C(t). Next, we introduce each

independent bias individually.

Sequence-specific bias. The sequence-specific bias refers to the perturbation of sampling probability related

to certain sequences at the beginning or end of the transcript fragments (Li et al., 2010; Roberts et al., 2011). The

characteristic of this type of bias in the given RNA-seq sample can be learned in advance by examining the

relationship between GC content and the observed coverage on single-isoform genes. To derive the sequence-

specific bias at an arbitrary exonic position, we look into 8 bp upstream to the 5’ start to 11 bp downstream

according to Roberts et al. (2011). A Markov chain is constructed to model the effect on the sampling probability at

the position from the sequence of surrounding nucleotides. Then we use an approach based on the probabilistic

suffix tree (Bejerano, 2004) to learn the sequence-specific bias coefficient a(t, i) for ith nucleotide in transcript t.

Transcript start/end bias. Sampling near transcript start site or transcript end site is often insufficient.

The read coverage in these regions is typically lower than expected because the positions where a sampled

read can cover are restricted by the transcript boundaries. The bias coefficient for start/end bias at the ith

nucleotide in transcript t is written as:

b(t‚ i) =
i=E[l(fr)] if i < E[l(fr)]

1 if E[l(fr)]pipl(t) - E[l(fr)]

(l(t) - i)=E[l(fr)] if i > l(t) - E[l(fr)]:

8><
>:

FIG. 2. Sampling bias present in the RNA-seq data. (a) RNA-seq read coverage under uniform sampling. (b) RNA-

seq read coverage under uniform sampling with transcript start/end bias. (c) RNA-seq read coverage under uniform

sampling with sequence-specific bias. (d) RNA-seq read coverage under uniform sampling with 5’/3’ position-specific

bias. (e) RNA-seq read coverage under uniform sampling with all aforementioned types of bias. (f) Sampling bias on

gene CENPF in the breast-cancer dataset used in Section 6. Please note that the second peak in the coverage plot is not

an exon in CENPF. The observed coverage on each exon decreases almost linearly from the 3’ end to the 5’ end. The

coverage also drops at the bases near the end of the gene. The nonuniformity in the two middle large exons is likely to

be due to the sequence-specific sampling bias.
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5’/3’ position-specific bias. Position-specific bias refers to the alteration on sampling probability

according to position in the transcript. For example, nucleotides to the 3’ end of the transcript have higher

probability to be sampled in Figure 2f. Here we model the position-specific bias coefficient as a linear

function, c(t‚ i) = ct
1 � i + ct

0. The intercept ct
0 gives the bias coefficient at the 5’ transcript start site. The slope

ct
1 measures the extent of the bias: a positive ct

1 indicates that 3’ transcript end site has higher sampling

probability than the start site; a zero ct
1 indicates no positional bias in the transcript t.

Combined bias model. Assuming the above three types of bias have independent effect on read sam-

pling, we derive the bias coefficient at ith nucleotide in transcript t as r(t, i) = a(t, i) $ b(t, i) $ c(t, i). The bias

coefficient of an exonic segment e 2 Eg is then the averaged bias coefficient on all positions in the exonic

segment e, and the bias coefficient of a MultiSplice b 2 Bg is the averaged bias coefficient on all positions in

its sampling window w(b). In summary, the bias coefficient for a MultiSplice feature / 2 Fg in transcript t is

r(/‚ t) =

P
i2/ r(t‚ i)

l(/) if / � t and / 2 EgP
i2w/

r(t‚ i)

E[l(w(/))] if / � t and / 2 Bg

0 if / 6� t:

8>>>><
>>>>:

(4)

5. SOLVING THE GENERAL LINEAR MODELS WITH BIAS CORRECTION

Conventionally, we are interested in the set of transcript expressions that minimize the sum of squared

errors, the absolute residuals between the expected coverage and the observed coverage. This solution is

relatively sensitive to unexpected sampling noise that often occurs in real RNA-seq samples and may lead

to a highly unstable extrapolation when the expression of the alternative splicing events discriminating the

transcripts is notably lower than the average level of gene expression. Therefore, we define the sum of

squared relative errors (SSRE), which measures the relative residual regarding the ratio of the expected

coverage against the observed coverage.

SSRE =
X
/2Fg

P
t2T g

r(/‚ t)M0(/‚ t)C(t)

C(/)
- 1

 !2

: (5)

Bias parameter estimates. Among all the bias parameters, the sequence-specific bias is learned in

advance while the start and end bias is a function of transcript fragment length. The only bias parameters

unknown related to the 3’ bias are defined by the intercept ct
0 and slope ct

1 for every transcript t 2 Tg.

Therefore, we use an iterative-minimization strategy and search for a set of bias coefficients ct
0’s and ct

1’s

that better fit the RNA-seq sample than the uniform sampling model. We start with the transcript coverage

C(t)’s that are solved from the uniform sampling model (with ct
0 = 1 and ct

1 = 0 as initial condition).

Analogous to the hill-climbing algorithm (Russell and Norvig, 2003), we then iteratively probe a locally

optimal set of transcript coverage together with the bias coefficients around the uniform solution through

minimizing the SSRE. In each iteration, a candidate solution is obtained through sequentially setting the

partial derivatives to 0 with respect to every unknown parameter ct
0‚ ct

1‚ C(t), and for every transcript

t 2 T g. If the candidate solution results in a smaller SSRE, the candidate solution is taken and the iteration

continues. For details of the step to estimate the bias parameters, please refer to the Appendix section.

Solving the linear model with LASSO regularization. Lastly, we solve for the level of individual

transcript expression with additional regularization, based on the bias coefficients from the previous step. One

common problem in transcript quantification is that the set of expressed transcripts are not known a priori.

Hence it becomes crucially important to identify the set of truly expressed transcripts provided in a candidate set.

Therefore, we further apply the L1 regularization (known as LASSO) for its proven effectiveness in irrelevance

removal and solve for the set of transcript expression C(Tg) that minimizes the following loss function

L = SSRE + L1 penalty =
X
/2Fg

P
t2T g

r(/‚ t)M0(/‚ t)C(t)

C(/)
- 1

 !2

+ kjjC(T g)jj1‚ (6)

where k ‡ 0 denotes the weight of the L1 shrinkage and C(t) ‡ 0 for every t 2 T g.
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6. EXPERIMENTAL RESULTS

To evaluate the performance of the MultiSplice model, we compared it with four other approaches. The

ExonOnly model, where only exonic segments are used to represent transcript composition as proposed in

SLIDE (Lia et al., 2011), was implemented using a linear regression approach with LASSO. The ExonOnly

model provided the baseline comparison for MultiSplice. The Poisson model, which was originally pro-

posed by Richard et al. (2010), was implemented in C. Two read-centric models are analyzed: Cufflinks

(Trapnell et al., 2010), which uses the reads aligned to the reference genome, and RSEM (Li and Dewey,

2011), which uses the reads aligned to the set of reference transcript sequences. Cufflinks 1.1.0 was

downloaded from its website in September 2011. RSEM 1.1.13 was downloaded in November 2011.

These algorithms were run on both simulated datasets and real datasets. Reads were first mapped by

MapSplice 1.15.1 (Wang et al., 2010) to the reference genome. If the read was paired-end, MapPER (Hu

et al., 2010) was applied to infer the alignment of the entire transcript fragment.

6.1. Transcriptome identifiability with increasing read length

We first study how the increase in read length may alleviate the lack of identifiability issues in transcript

quantification using MultiSplice. We downloaded University of California, Santa Cruz (UCSC) gene

models in human (track UCSC Genes:GRCh37/hg19), mouse (track UCSC Genes:NCBI37/mm9), worm

(track WormBase Genes:WS190/ce6), and fly (track FlyBase Genes:BDGP R5/dm3). We computed the

feature matrix used in MultiSplice given variable read length and determined its rank. The transcript

isoforms of a gene is identifiable if the rank of the feature matrix is no less than the number of transcripts.

Figure 3 plots the additional number of genes that become identifiable as the read length increases from

50 bp assuming single-end read RNA-seq data. For all four species, as the read length increases, Multi-

Splice is capable of resolving the transcript quantification issues of more genes. With 500 bp reads, about

98% genes in both human and mouse become identifiable. Surprisingly, for worm and fly, 500 bp reads do

not gain significant improvement over 50 bp reads. This is mostly due to the fact that the exon lengths of fly

and worm are comparably much longer (Kristi et al., 2005) than human and mouse, making it difficult for

reads of moderate size to take effect. With current short-read technology, where read length is typically

100 bp or less, paired-end reads with the size of transcript fragments around 500 bp may be the most

economical and effective for transcription quantification for genes with identifiability issues. This is under

the assumption that it is possible to infer the transcript fragment from paired-end reads based on the tightly

controlled distribution of insert size.

FIG. 3. Changes in mRNA identifiability as a function of transcript fragment/read length. Starting from levels

achieved with 50-bp single-end reads, the left side of the y-axis shows the additional number of genes that become

identifiable using MultiSplice as the read length increases. The y-axis on the right side shows the total percentage of

genes for which mRNA transcript structures are resolved. The UCSC annotated transcript sets of four species: human,

mouse, fly, and worm were used for this analysis.
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6.2. Simulated human RNA-seq experiment

Data simulation. Due to the lack of the ground truth within real datasets, simulated data has become

an important resource for the evaluation of transcript quantification algorithms (Bohnert and Rätsch, 2010;

Li et al., 2010; Nicolae et al., 2011). We developed an in-house simulator to generate RNA-seq datasets of a

given sampling depth using UCSC human hg19 annotation. The simulation process consists of three steps:

(1) Randomly assign relative proportions to all the transcripts within a gene and set this as the true profile;

(2) calculate the number of reads to be sampled from each transcript; and (3) sample transcript fragments of

a given length along the transcripts according to the per-base coefficient r(t‚ i) = kia(t‚ i)b(t‚ i)
l(t) + 1 for the ith

base on transcript t, where a(t, i) and b(t, i) are the sequence-specific bias and the transcript start/end bias as

defined in Section 4, and k is the slope of the position-specific bias. Paired-end reads will be generated by

taking the two ends of the transcript fragment. Please note the sequence bias per base has been learned from

a real dataset, a technical replicate of MCF-7 data that will be introduced in the next section.

Accuracy measurement. Due to inconsistencies in the normalization scheme used by different soft-

ware, the estimated abundance may not be comparable among different approaches. Hence, we computed

relative proportions of transcript isoforms for each method. The similarity between the estimated result and

the ground truth is measured by both Pearson correlation and Euclidean distance. Pearson correlation is the

accuracy measurement used in rQuant (Bohnert and Rätsch, 2010). Let X denote the vector of real isoform

proportions of a gene and X̂ denote the estimated proportions. The formula of the correlation is:

r(X‚ X̂) = cov(X‚ X̂)=(rX � rX̂). A value close to 1 means that our estimation is highly accurate and vice

versa. Below, we adopt a boxplot to illustrate the performance of each method. The box is constructed by

the first quartile, the median, and the third quartile. The ends of the upper and lower whisker are given by

the third quartile +1.5 · IQR(inner quartile range) and first quartile - 1.5 · IQR, respectively. Due to the

space limit, we present the result of correlation measurement in the main manuscript. Results measured by

Euclidian distance can be found in the Appendix section.

Varying read lengths. On the premise of the same sequencing depth, we would like to find out

whether or not the read length will affect the estimation results. Forty million RNA-seq fragments were

simulated from the human transcriptome; 2x50-bp paired-end reads (insert size around 150-bp) were

generated from these fragments. A 50-bp single-end read set was constructed by simply throwing out the

second read of each pair and the 100-bp single reads were obtained by taking the 100-bp prefix of the

transcript fragments. This configuration allows a fair evaluation about the effect of varying read lengths by

eliminating difference from random read sampling.

As shown in Figure 4, the performance of MultiSplice, RSEM, and ExonOnly method improves as the

read-length increases. Accuracy of the Poisson model does not change much with varying read lengths. It is

surprising to see that Cufflinks achieves better correlation with 100-bp single-end reads than both 2x50-bp

paired-end reads and 50-bp single-end reads. This is probably because the transcript fragment inference

FIG. 4. Boxplots of the correlation between estimated transcript proportions and the ground truth under varying read

length. (a), (b), and (c) correspond to the estimation results on 40M 50-bp single-end reads, 40M 100-bp single-end

reads, and 40M 2x50-bp paired-end reads, respectively.
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from paired-end reads may not be accurate for Cufflinks. Both MultiSplice and RSEM show higher median

correlation and lower variance compared with other methods under different read lengths, which indicates

that MultiSplice and RSEM are capable of leveraging longer reads for more accurate estimation as RNA-

seq technologies improve.

Varying sampling depth. Next we evaluate how the sequencing depth may affect the accuracy of

transcript abundance estimation. Four groups of 2x50-bp paired-end synthetic data were generated on the

whole human transcriptome with increasing number of reads: 5 million, 10 million, 20 million, and 40

million. Since the exonic regions of different genes may overlap, we quantify isoforms within a genomic

locus (Trapnell et al., 2010); 13,364 genomic loci with multiple isoforms are selected for analysis. The loci

were divided into three subsets: (1) 12,413 loci to which identifiability holds for all methods; (2) 498 loci to

which identifiability holds for MultiSplice; and (3) 453 loci to which identifiability does not hold for all

methods.

For each subplot in Figure 5a–c, the estimation accuracy for all methods generally improves as more

reads are sampled. For the loci whose identifiability conditions are satisfied for all methods, the estimated

transcript proportion is highly similar with the ground truth, with a median correlation close to 0.9 for all

methods. In the second category, when the genes are still identifiable with MultiSplice, the estimation

accuracy of MultiSplice and RSEM remain high, with a median correlation above 0.8 while others slip

below 0.7. For the category when identifiability is not satisfied for all methods, the estimation accuracy is

degraded even more. However, MultiSplice still consistently gives better estimation results indicating that

the inclusion of MultiSplice features make transcript quantification more stable than other methods.

Cufflinks demonstrated the worst performance in this category with largest variance as shown in Figure 9c

in the Appendix section, mainly because the unidentifiability conditions make it difficult to assign these

reads to a transcript. Instead, it throws out most of the multi-mapped reads. Apparently, increasing sam-

pling depth cannot alleviate the issue of unidentifiability.

Bias correction. To study the effect of the bias correction, we have simulated data with uniform

sampling, sampling with only positional bias, sampling with only sequence bias, and sampling with the

combined positional and sequence bias. Here, we set the slope of the position-specific bias k to 2 with 40

million 2x50-bp paired-end reads sampled from the whole transcriptome for each case. All the approaches

achieve the best results when the sampling process is uniform. As positional or sequence bias is introduced,

their performance tapers down. The presence of both positional and sequence biases has the largest impact

in all methods. Meanwhile, because MultiSplice and Cufflinks correct both sequence and positional bias,

and RSEM could adjust positional bias, these three methods are more robust and outperform the ExonOnly

and the Poisson methods.

Inference of expressed transcripts. Quantification of mRNAs usually relies on a set of candidate

transcript structures as input. It is unknown in a priori whether each transcript is present in a sample or not.

Therefore, accurate quantification methods should be able to infer the transcripts that are expressed as well

as those that are not. To assess the capability of the various methods to infer expressed transcripts, we

generated 40 million simulated 2x50-bp paired-end reads from human genes with at least three transcripts.

We randomly chose two transcripts from one gene and simulated reads only from these transcripts. The

remaining transcripts were not sampled. We used the false-positive rate to measure the accuracy of the

inference. Nonexpressed transcripts that were estimated with a positive abundance above a given threshold

were counted as the false positives. As shown in Figure 6a–c, MultiSplice and RSEM demonstrated best

estimation accuracy and further more MultiSplice demonstrated the lower false-positive rate in the iden-

tification of dominant transcripts in Figure 6d–f. Poisson and Cufflinks tended to assign positive expression

to every transcript including those that are not expressed. MultiSplice, in general, outperformed the others

in identifying the correct set of expressed transcripts.

6.3. Real human RNA-seq experiment

We applied the set of transcript quantification methods to a dataset that was originally used by Singh

et al. (2011) to study differential transcription. In this study, two groups of RNA-seq datasets were

generated from SUM-102 and MCF-7, two breast cancer cell lines. Each group contains four samples as

technical replicates. The RNA-seq data were generated from Illumina HISEQ2000. Each sample had

approximately 80 million 100-bp single-end reads. About 60 million reads can be aligned to the reference
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genome by MapSplice. The UCSC human hg19 annotated transcripts were fed into each software for

transcript quantification.

Since ground-truth expression profiles do not exist for the real datasets, we investigated whether the

different methods provided a consistent estimation within samples of technical replicates, which only vary

by random sampling. In contrast, a significant number of genes between MCF-7 and SUM-102 were

expected to be differentially expressed (Singh et al., 2011). To evaluate this, we computed Jensen-Shannon

divergence ( JSD), used in Cuffdiff (Trapnell et al., 2010) to measure the dissimilarity between two samples

and calculated the within-group and between-group differences. As detailed in Figure 7a, MultiSplice,

Cufflinks, and RSEM had smaller average within-group difference than the average between-group dif-

ference, while the other two methods do not show clear difference. MultiSplice demonstrated higher

between-group difference than both Cufflinks and RSEM, but also had relatively higher within-group

differences as well. Most of these, however, were well below a JSD of 0.2 and considered to be insig-

nificant. A closer look at a number of cases showed that occasionally MultiSplice and Cufflinks may

overestimate or underestimate the between-group difference respectively. Figure 7b shows a gene where

Cufflinks underestimated the difference between the two groups. (The complete figure with eight samples can

be found in appendix Figure 11a.) The second isoform of the gene AIM1 has a unique first exon

(chr6:106989461-106989496). Clear difference in the read coverage on this exon can be observed between

the two groups, indicating strong differential levels of expression (i.e., the second isoform is barely expressed

in MCF-7 while almost comparable to the first isoform in SUM-102 cells). The between-group square root of

JSD is 0.21 by Cufflinks, lower than 0.39 by RSEM, and much lower than 0.50 by MultiSplice.

The exon-skipping event found in gene CD46 is also differentially expressed (appendix Fig. 11b). The

estimation of transcript quantification with MultiSplice was consistent with the observation in the qRT-

PCR data showing that steady state levels of transcripts with the skipped exon were present in amounts

more than two-fold higher expression in SUM-102 than in MCF-7 cells. An additional example can be

found in the Appendix section.

Computational performance. We also compared the running time and memory usage of the proposed

method with Cufflinks and RSEM. In order to make a fair comparison, we only measured the computational

performance of transcript quantification for each software. One sample with 76 million reads from MCF-7 was used

for analysis. The reads are aligned to the reference transcript set by Bowtie (Langmead et al., 2009) for RSEM and

to the reference genome by MapSplice (Wang et al., 2010) for MultiSplice and Cufflinks. The results presented here

were run on Intel Xeon X5650 (Westmere) 12-core 2.66 GHz Linux server with 32GB of RAM and single-thread

enabled. Table 1 summarizes the comparison results of MultiSplice, Cufflinks, and RSEM.

FIG. 7. (a) Boxplots of the within-MCF-7, within-SUM-102, and between-group square root of JSD of all genes for

all methods. (b) A case where Cufflinks underestimated the difference between the two groups. The second isoform of

Gene AIM1 has a unique first exon, whose read coverage differs significantly between the two groups. A detailed plot

with all eight samples can be found in Appendix Figure 11a.
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7. CONCLUSION

In this article, we propose a general linear framework for the accurate quantification of alternative

transcript isoforms with RNA-seq data. We introduce a set of new structural features, namely MultiSplice,

to ameliorate the issue of identifiability. With MultiSplice features, 98% of UCSC gene transcript models in

humans and mice become identifiable with 500-bp reads (or paired-end reads with 500-bp transcript

fragments), an 8% increase from 50 bp. Therefore, longer reads or paired-end reads with longer insert sizes

rather than further increases in sequencing depths can be crucial for the accurate quantification of mRNA

isoforms with complex alternative transcription, even though a majority of the genes have relatively simple

transcript variants. The results also demonstrate the robustness of the MultiSplice method under various

sampling biases, consistently outperforming three other methods: Cufflinks, Poisson, and ExonOnly, and

comparable to RSEM. The application of our approach to real RNA-seq datasets for transcriptional pro-

filing successfully identified a number of isoforms whose proportion changes differed significantly between

two distinct breast-cancer cell lines. In the near future, we will continue to experiment our algorithms with

more complex gene models, including those from Ensembl database and those transcripts that are directly

assembled from RNA-seq.

8. APPENDIX

8.1. Iterative-minimization algorithm

In Section 5, we use an iterative-minimization strategy to search for a set of bias coefficients ct
0’s and ct

1’s

for every transcript t 2 Tg that better fit the RNA-seq sample than the uniform sampling model. We initiate

the iterations with the transcript coverage C(t)’s solved from the uniform sampling model and the bias

coefficients ct
0 = 1 and ct

1 = 0. In each iteration, for transcript t we set:

1:
qSSRE

qC(t)
= 0; 2:

qSSRE

qct
1

= 0; 3:
qSSRE

qct
0

= 0:

qSSRE

qC(t)
= 0

0
X
/2Fg

2(C(/) -
X
s2T g

r(/‚ s)M0(/‚ s)C(s)) � r(/‚ t)M0(/‚ t) = 0

0
X
s2T g

C(s)

 X
/2Fg

r(/‚ s)M0(/‚ s)r(/‚ t)M0(/‚ t)

!
=
X
/2Fg

C(/)r(/‚ t)M0(/‚ t)

0C(t) =

P
/2Fg

C(/)r(/‚ t)M0(/‚ t) -
P

s2T g‚ s 6¼t C(s)

 P
/2Fg

r(/‚ s)M0(/‚ s)r(/‚ t)M0(/‚ t)

!
P

/2Fg
r(/‚ t)M0(/‚ t)r(/‚ t)M0(/‚ t)

:

r(/,t) is the only function related to ct
1 and ct

0.

Table 1. Computational Performance Comparison

Method type MultiSplice Cufflinks RSEM

Quantification time 40 min 74 min 23 h

Memory usage < 1G 2G 7G
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qSSRE

qct
1

= 0

0
X
/2Fg

2(C(/) -
X
s2T g

r(/‚ s)M0(/‚ s)C(s)) � qr(/‚ t)

qct
1

M0(/‚ t)C(t) = 0

0C(t)
X
/2Fg

r(/‚ t)M0(/‚ t)
qr(/‚ t)

qct
1

M0(/‚ t)

=
X
/2Fg

C(/)
qr(/‚ t)

qct
1

M0(/‚ t) -
X

s2T g‚ s6¼t

C(s)

 X
/2Fg

r(/‚ s)M0(/‚ s)
qr(/‚ t)

qct
1

M0(/‚ t)

!
:

Similarly,

qSSRE

qct
0

= 0

0
X
/2Fg

2(C(/) -
X
s2T g

r(/‚ s)M0(/‚ s)C(s)) � qr(/‚ t)

qct
0

M0(/‚ t)C(t) = 0

0C(t)
X
/2Fg

r(/‚ t)M0(/‚ t)
qr(/‚ t)

qct
0

M0(/‚ t)

=
X
/2Fg

C(/)
qr(/‚ t)

qct
0

M0(/‚ t) -
X

s2T g‚ s6¼t

C(s)
X
/2Fg

r(/‚ s)M0(/‚ s)
qr(/‚ t)

qct
0

M0(/‚ t)

0
@

1
A:

Because r(/, t) is a linear combination of ct
1 and ct

0, and hence
P

/2Fg
r(/‚ t)M0/‚ t is also the linear

combination of ct
1 and ct

0. Then we can directly calculate qr(/‚ t)
qct

1

and qr(/‚ t)
qct

0

.

FIG. 8. Boxplots of the Euclidean distance between estimated transcript proportions and the ground truth under

varying read length Panels (a), (b), and (c) correspond to the estimation results on 40M 50-bp single-end reads, 40M

100-bp single-end reads, and 40M 2x50-bp paired-end reads, respectively.
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FIG. 10. Boxplots of the Euclidean distance between estimated transcript proportions and the ground truth for

inference of dominant transcripts. Panels (a), (b) and (c) correspond to the loci set that is identifiable with the basic

exon structure, identifiable with additional MultiSplice features, and unidentifiable, respectively.
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