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Abstract

Clustering methods have led to a number of important discoveries in bioinformatics and beyond. 

A major challenge in their use is determining which clusters represent important underlying 

structure, as opposed to spurious sampling artifacts. This challenge is especially serious, and very 

few methods are available, when the data are very high in dimension. Statistical Significance of 

Clustering (SigClust) is a recently developed cluster evaluation tool for high dimensional low 

sample size data. An important component of the SigClust approach is the very definition of a 

single cluster as a subset of data sampled from a multivariate Gaussian distribution. The 

implementation of SigClust requires the estimation of the eigenvalues of the covariance matrix for 

the null multivariate Gaussian distribution. We show that the original eigenvalue estimation can 

lead to a test that suffers from severe inflation of type-I error, in the important case where there are 

a few very large eigenvalues. This paper addresses this critical challenge using a novel likelihood 

based soft thresholding approach to estimate these eigenvalues, which leads to a much improved 

SigClust. Major improvements in SigClust performance are shown by both mathematical analysis, 

based on the new notion of Theoretical Cluster Index, and extensive simulation studies. 

Applications to some cancer genomic data further demonstrate the usefulness of these 

improvements.
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1 Introduction

Clustering methods have been broadly applied in many fields including biomedical and 

genetic research. They aim to find data structure by identifying groups that are similar in 

some sense. Clustering is a common step in the exploratory analysis of data. Many 

clustering algorithms have been proposed in the literature (see Duda et al. (2000); Hastie et 

al. (2009) for comprehensive reviews). Clustering is an important example of unsupervised 

learning, in the sense that there are no class labels provided for the analysis. Clustering 

algorithms can give any desired number of clusters, which on some occasions have yielded 

important scientific discoveries, but can also easily be quite spurious. This motivates some 

natural cluster evaluation questions such as:

• how can the statistical significance of a clustering result be assessed?

• are clusters really there or are they mere artifacts of sampling fluctuations?

• how can the correct number of clusters for a given data set be estimated?

Several cluster evaluation methods have been developed. McShane et al. (2002) proposed a 

cluster hypothesis test for microarray data by assuming that important cluster structure in the 

data lies in the subspace of the first three principal components, where standard low 

dimensional methods can be used. Tibshirani and Walther (2005) proposed using resampling 

techniques to evaluate the prediction strength of different clusters. Suzuki and Shimodaira 

(2006) wrote an R package for assessing the significance of hierarchical clustering. Despite 

progress in this area, evaluating significance of clustering remains a serious challenge, 

especially in High Dimensional Low Sample Size (HDLSS) situations.

Numerous works on the application of Gaussian mixture models to cluster analysis have 

appeared in the literature. Overviews can be found in Mclachlan and Peel (2000); Fraley and 

Raftery (2002). Gaussian mixture models need estimation of the full parameters of each 

component, which can be quite challenging when tackling HDLSS problems. Recently, 

some regularization-based techniques have been applied to model-based clustering of high-

dimensional data, see e.g. Pan and Shen (2007); Wang and Zhu (2008); Xie et al. (2008); 

McNicholas and Murphy (2010); Baek and McLachlan (2011). A more recent review in this 

area can be found in Bouveyron and Brunet-Saumard (2014).

Liu et al. (2008) proposed a Monte Carlo based method called Statistical Significance of 

Clustering (SigClust) which was specifically designed to assess the significance of 

clustering results for HDLSS data. An important contribution of that paper included a 

careful examination of the question of “what is a cluster?”. For this reason, with an eye 

firmly on the very challenging HDLSS case, their notion of cluster was taken to be “data 

generated from a single multivariate Gaussian distribution”. This Gaussian definition of 

“cluster” has been previously used by Sarle and Kuo (1993) and Mclachlan and Peel (2000) 

and Fraley and Raftery (2002). This was a specific choice, which made the HDLSS problem 

tractable, but entailed some important consequences. For example, none of the Cauchy, 

Uniform, nor even t distributions correspond to a single cluster in this sense. While this may 

seem to be a strong assumption, it has allowed sensible real data analysis in otherwise very 

challenging HDLSS situations, with a strong record of usefulness in bioinformatics 

Huang et al. Page 2

J Comput Graph Stat. Author manuscript; available in PMC 2016 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



applications, see e.g. Chandriani et al. (2009); Verhaak et al. (2010). From this perspective, 

SigClust formulates the problem as a hypothesis testing procedure with

H0: the data are from a single Gaussian distribution

H1: the data are not from a single Gaussian distribution.

As noted in Liu et al. (2008), this choice of null hypothesis is more sensible than say a 

difference between subgroups in terms of means, because clustering methods will split even 

a truely Gaussian population into (mean based) statistically significant subgroups. The test 

statistic used in SigClust is the 2-means cluster index which is defined as the ratio of the 

within cluster variation to the total variation. Because this statistic is location and rotation 

invariant, it is enough to work only with a Gaussian null distribution with mean 0 and 

diagonal covariance matrix Λ. The null distribution of the test statistic can be approximated 

empirically using a direct Monte Carlo simulation procedure. The significance of a 

clustering result can be assessed by computing an appropriate p-value. Recently, Maitra et 

al. (2012) proposed a non-parametric bootstrap approach for assessing significance in the 

clustering of multidimensional datasets. They defined a cluster to be a subset of data 

sampled from a spherically symmetric, compact and unimodal distribution and a non-

parametric version of the bootstrap was used to sample the null distribution. It is important 

to note that their method has not been developed to handle HDLSS situations yet.

SigClust has given useful and reasonable answers in many high dimensional applications 

(Milano et al. (2008); Chandriani et al. (2009); Verhaak et al. (2010)). However, SigClust 

was based on some approximations and left room for improvement. In order to simulate the 

null distribution of the test statistic, SigClust uses invariance principles to reduce the 

problem to just estimating a diagonal null covariance matrix. This is the same task as finding 

the underlying eigenvalues of the covariance matrix. Therefore, a key step in SigClust is the 

effective estimation of these eigenvalues. Currently a factor analysis model is used to reduce 

the covariance matrix eigenvalue estimation problem to the problem of estimating a low 

rank component that models biological effects together with a common background noise 

level. However, the empirical studies in Section 3 show that when there are a few large 

eigenvalues this method can be dramatically improved.

Recently, many sparse methods have been introduced to improve the estimation of the high 

dimensional covariance matrix, see e.g. Meinshausen and Bühlmann (2006); Yuan and Lin 

(2007); Friedman et al. (2008); Rothman et al. (2008); Fan et al. (2009); Witten et al. 

(2009); Yuan (2010); Cai et al. (2011); Danaher et al. (2014), among many others. Let d 

denote the dimension of the feature space. Then, a critical difference between SigClust and 

these sparse approaches is that SigClust only needs estimates of the d eigenvalues instead of 

the d(d − 1)/2 parameters of the full covariance matrix. This is because, based on the 

rotation invariance of the test statistic, the null distribution of the test statistic used in 

SigClust is determined by the eigenvalues rather than the entire covariance matrix. 

Nevertheless, the sparse methods are somewhat related to the soft thresholding method 

proposed in this paper, in the sense that the latter also incorporates a type of L1 penalty.
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The contributions in this paper start by showing that, when the first eigenvalue is huge, the 

original SigClust (which in Section 2.2 is seen to be reasonably called hard thresholded) can 

be seriously anti-conservative. This behavior is studied using the novel notion of Theoretical 

Cluster Index. This also motivates an appropriate soft thresholding variation, which is seen 

to give vastly improved SigClust performance over a very wide range of settings, through 

both theoretical analysis and detailed simulations. The rest of the article is organized as 

follows. In Section 2, we first give a brief description of the SigClust procedure and the 

existing hard thresholding eigenvalue estimation approach. Then we use mathematical 

analysis, together with likelihood ideas to develop the new soft thresholding approach. To 

compare the performances of different methods, numerical studies are given in Section 3 for 

simulated and in Section 4 for real data examples. We provide some discussion in Section 5 

and collect proofs of the likelihood derivation in the supplementary material.

2 Methodology

In this section, we first briefly review the SigClust method in Section 2.1. In Section 2.2, we 

provide an alternative likelihood based derivation, based on the hard thresholding ideas, for 

the estimation of the covariance matrix eigenvalues used in the original SigClust paper. 

Then we introduce a new soft thresholding approach, based on replacing the hard L0 

constraint, with a softer L1 constraint, in Section 2.3. Insightful mathematical analysis, based 

on the new notion of Theoretical Cluster Index, which gives deep insights into the 

performance of these methods, and also suggests a reasonable tuning approach, is given in 

Section 2.4.

2.1 Review of the Original SigClust Method

SigClust is a clustering evaluation tool which can be used to assess the significance of a 

given clustering result by providing an appropriate p-value. Suppose that the original data 

set X, of dimension d × n, has d variables and n observations, i.e. X = [x1, ⋯, xn], where 

each xi ∈ Rd. The null hypothesis of SigClust is that the data are from a single Gaussian 

distribution N(μ, Σ), where μ is a d-dimensional vector and Σ is a d × d covariance matrix. 

Given a clustering of the vectors in X, i.e. sets C1 and C2, where C1 ∪ C2 = {1, …, n} and 

C1 and C2 are disjoint, the strength of the clusters can be assessed using the two means 

cluster index (CI), which is the sum of the within class variation divided by the total 

variation. More precisely,

(1)

where x̄(k) represents the mean of the kth cluster for k = 1, 2 and x̄ represents the overall 

mean. CI can be based on either an input clustering, or can be calculated by a conventional 

k-means algorithm (MacQueen, 1967). SigClust uses CI as the test statistic which has the 

nice property of being both location and rotation invariant. This leads to a dramatic 

reduction in the number of parameters to be estimated. In particular, during simulation, the 

mean μ can be taken to be 0, because of the location invariance. In a parallel way, rotation 

invariance provides a major reduction in the parametrization of Σ to a diagonal matrix Λ = 
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diag(λ1, ⋯, λd), using the eigen-decomposition Σ = UΛUT, where U is an orthogonal matrix 

(essentially a rotation matrix). A factor analysis model is used to estimate the d eigenvalues 

which are still a relatively large number of parameters compared with the sample size n for 

HDLSS data sets. Specifically, Λ is modeled as

(2)

where the diagonal matrix Λ0 represents true underlying biology and is typically low-

dimensional, and  represents the level of background noise. This model is identifiable 

because many of the diagonal elements of Λ0 are zero. First σN is estimated as

(3)

where MAD stands for the median absolute deviation from the median, and σ̂
N is rescaled 

by MADN(0,1) = 0.6745, the theoretical MAD of the N(0,1) distribution, to be on the correct 

scale. Then Λ is estimated to be

(4)

where (λ̃
1, ⋯, λd̃) are the eigenvalues of the sample covariance matrix.

The procedure for SigClust can be briefly summarized as follows:

Step 1. Calculate the cluster index for the original data set based on the given two-

cluster assignments. The cluster assignments can be obtained from previous knowledge 

about the data or from application of a clustering algorithm such as k-means.

Step 2. Obtain estimates (λ̂
1, ⋯, λ̂

d) for the eigenvalues (λ1, ⋯, λd) of Σ.

Step 3. Simulate data Nsim times with each data set consisting of n i.i.d. observations 

from the null distribution (x1, ⋯, xd) with xj drawn independently from the N(0,λ̂
j) 

distribution. Here Nsim is some large number.

Step 4. Calculate the corresponding cluster index for each simulated data set from Step 

3 to obtain an empirical distribution of the cluster index based on the null hypothesis.

Step 5. Calculate a p-value (based on an empirical quantile) for the original data set and 

draw a conclusion based on a prespecified test level.

2.2 Likelihood Interpretation of the SigClust Method: Hard Thresholding

Now we first show that the solution (4) can also be obtained based on a more general 

likelihood consideration, which gives the SigClust method of Liu et al. (2008) a new 

interpretation. In factor models, the covariance matrix can be written as

(5)

for some low rank positive semi-definite matrix Σ0. Denote the precision matrix
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(6)

for some positive semi-definite matrix W0 with rank(Σ0)=rank(W0).

To estimate Σ, we minimize the negative log-likelihood to yield the following semi-definite 

program

(7)

(8)

where the sample covariance is denoted as Σ̃ = (1/n)(X − X̄)(X − X̄)T and A ⪰ 0 means that A 

is positive semi-definite.

In factor models, we want to encourage a small number of factors which amounts to 

encouraging a small rank for Σ0 or W0. The direct approach to enforcing low rank Σ0 or W0 

is to add an extra rank constraint:

(9)

where l is a pre-specified tuning parameter. Denote the eigen-decomposition W0 = UDUT 

and Σ̃ = ŨΛ̃ŨT, where D = diag(d1, ⋯, dd) and Λ̃ = diag(λ̃
1, ⋯, λd̃). Then 

.

Theorem 1—For a fixed , the solution to (7),(8),(9) is given by U = Ũ and

(10)

Proof of this Theorem and other proofs are given in the supplementary material. By 

Theorem 1, we get the eigenvalues of the covariance matrix which are identical to (4) with 

suitable choices of l, i.e. greater than or equal to the number of eigenvalues which are bigger 

than  given by (4). We call this estimation the hard thresholding approach, so this name 

applies to the estimation used in Liu et al. (2008) as described in Section 2.1 above.

2.3 Soft Thresholding Approach

As mentioned in Liu et al. (2008), a challenge for the hard thresholding method is the 

effective estimation of the large eigenvalues in HDLSS settings. This is illustrated in Figure 

1 using a simple HDLSS example with n = 50 and d = 1000. The data are generated from a 

multivariate normal distribution with covariance matrix Λ, where Λ is diagonal with 
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elements . We consider υ = 100 and w = 10, which gives the true 

eigenvalue (solid) curve in Figure 1. In the HDLSS setting, it is well known that the sample 

estimators of the larger eigenvalues tend to grossly overestimate the corresponding true 

eigenvalues, because the total variation (both signal and noise) that is spread over the 1000 

dimensional data set is concentrated in the first 50 non-zero eigenvectors. Note that for the 

first 50 entries the hard thresholding estimates (dashed curve) are the same as the sample 

eigenvalues. The rest of the sample eigenvalues are not shown, as they are 0, which cannot 

be plotted on this log scale. For entries 11–50, the estimated eigenvalues are far too high, 

because they have been raised by the concentration of the noise energy into these terms. 

This effect is precisely quantified in Baik and Silverstein (2006). This tendency for the hard 

thresholding to overestimate the true eigenvalues can create anticonservatism in SigClust, 

which will be mathematically analyzed in Section 2.4. In this section we propose a less 

aggressive thresholding scheme which can appropriately reduce the larger estimated 

eigenvalues to avoid this source of bias towards larger eigenvalues, called soft thresholding, 

shown as the dot-dashed curve in Figure 1.

Our approach is to replace the rank constraint (9) on W0 by a smooth constraint. In 

particular, the L0 constraint (9) becomes an L1 constraint

(11)

where the signal versus noise trade-off is controlled by a tuning parameter M ≥ 0. Denote 

λmax(W0) the largest eigenvalue of W0, according to Theorem 1 of Fazel et al. (2001), 

trace(W0) ≤ λmax(W0)rank(W0). Therefore, the constraint above is a convex envelope to 

rank(W0) (in the sense of being the biggest convex function below rank(W0)) and therefore a 

convex relaxation of the constraint on rank(W0). The tuning value M = 0 results in W0 = 0, 

since W0 ⪰ 0, so by (5) this gives a pure noise model with Σ = σ2I. As M increases, the non-

noise component W0 plays a stronger role in the estimation. The constraint (11) is a nuclear 

norm constraint, which has been well-studied in the convex optimization literature, see e.g. 

Fazel (2002).

Solution of the soft thresholding optimization problem, which is determined by (7), (8) and 

(11) is given in a closed form in Theorem 2 below.

Theorem 2—For a fixed , given M, the solution to the soft thresholding optimization 

problem:

is given by U = Ũ as in Theorem 1 with soft thresholded estimated eigenvalues
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(12)

where τ is the solution of the equation

(13)

Note that the solution of this optimization problem (now using the constraint (13)) is 

essentially a constant downward shift of the estimated sample eigenvalues by the value τ, 

while still keeping them above . Because of this intuition and the relationship (13) 

between τ and M, it is useful to think of τ as a more insightful, but equivalent, version of the 

tuning parameter than M.

Figure 1 shows the improvements available in eigenvalue estimation, for that HDLSS 

example, from soft thresholding. The constant downward shift in estimated eigenvalues is 

hard to interpret because of the log scale used there. The consequences of this in terms of 

SigClust are demonstrated mathematically in Section 2.4 and through simulation in Table 1. 

A reasonable basis for choice of the tuning parameter τ will be derived from the concept of 

Theoretical Cluster Index (TCI), defined in Section 2.4.

2.4 Theoretical Gaussian 2-means Cluster Index

Once the covariance matrix eigenvalues are estimated, we can proceed with the SigClust 

analysis. Toward that end, we need to determine the null distribution of the 2-means cluster 

index. In this section, we will derive a theoretical relationship between the cluster index and 

the eigenvalues which clarifies the performance of both hard and soft thresholding, and also 

leads to a useful choice of τ in the latter case.

As above, let x = (x1, ⋯, xd) be a d-dimensional random vector having a multivariate normal 

distribution of x ~ N(0,Σ) with mean 0 and covariance matrix Σ = UΛUT. Denote ϕ(․) the 

multivariate normal probability density function with mean 0 and variance I. Define the 

theoretical total sum of squares as

(14)

The theoretical within cluster sum of squares (WSS) is based on a theoretical analog of 

clusters, which is a partition of the entire feature space Rd into 1 and 2. Define μ1 = 

∫x∈ 1 xϕ(x)dx/ ∫x∈ 1 ϕ(x)dx and μ2 = ∫x∈ 2 xϕ(x)dx/ ∫x∈ 2 ϕ(x)dx. Then we have

(15)

These are combined to give TCI=WSS/TSS. The relationship between TCI and the 

covariance matrix eigenvalues is stated by the following theorem.
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Theorem 3—For an optimal choice of 1 and 2, i.e. the split is chosen to minimize the 

total WSS over all possible splits (this is the theoretical analog of 2-means clustering), the 

Theoretical Cluster Index is

(16)

Theorem 3 tells us that the optimal TCI is only determined by two quantities, the largest 

eigenvalue λ1 and the total sum of eigenvalues . In practice, different eigenvalue 

estimation methods give quite different estimates of these two quantities, which in turn leads 

to quite different SigClust performances.

For the sample covariance estimation method, the estimated λ1 is typically larger (i.e. biased 

upwards) than the true value, in HDLSS situations. Since the sum of the sample eigenvalues 

is a consistent estimate of the total variation, i.e. the denominator of (16), it follows that the 

resulting estimate of TCI will generally be smaller (biased downwards) than the true TCI in 

that case, giving a larger p-value and thus a conservative result.

For the hard thresholding method, it follows from (16) that the sample and hard methods 

have the same numerator but the hard thresholding method gives a larger denominator. Thus 

the hard thresholding method has larger TCI, and consequently is always more powerful 

than the sample method. However, the hard thresholding method has large potential for 

creating type-I error. Consider potential biases in the estimation of λ1 and  defined 

as δ1 and Δ respectively. Some algebra shows that the essential difference between the true 

TCI and the hard thresholding estimate is proportional to

(17)

When

(18)

i.e. when the first eigenvalue is large relative to the rest, the hard thresholding method will 

tend to be anti-conservative.

For the soft thresholding method, the large eigenvalues are subtracted by τ from the 

corresponding sample estimates. This will decrease both the numerator and denominator of 

(16) in contrast to the hard thresholding method. Our goal is to choose τ so that the type-I 

error can be controlled and at the same time the test is more powerful than the sample 

method. For this, a useful boundary is τ̃, which is energy conserving in the sense that the 

sum of the soft eigenvalues is the sum of the sample eigenvalues, i.e. τ̃ is the solution of the 

equation
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(19)

Another important endpoint of reasonable τ values, is τ = 0, which corresponds to hard 

thresholding (i.e. no reduction in eigenvalues). Note that the soft estimated version of the 

denominator of the fraction in (16) (i.e. the sum of the eigenvalues) is monotone decreasing 

in τ. At τ̃, this denominator is the same as the sample version. It follows that for τ between 0 

and τ̃, soft thresholding gives bigger TCI than the sample covariance estimate, and thus a 

more powerful test. Figure 2 displays the relationship between TCI calculated from the 

eigenvalues estimated using the soft method and tuning parameter τ for three simulated data 

sets with d = 1000, n = 100, w = 1 and υ = 100, 30, 5 respectively. In Figure 2, the range of τ 

is [0, τ̃]. Depending on the context, SigClust can be anti-conservative at either end of the 

interval [0, τ̃]. This will happen at τ = 0, when the first eigenvalue is very large relative to 

the others (as shown in the left panel of Figure 2), and at τ = τ̃ when the first is only a little 

larger than the background noise (as happens in the right panel of Figure 2). The central 

panel of Figure 2 shows a compromise situation, where both endpoints can be anti-

conservative, but there is a more reasonable choice in between. Because anti-conservatism 

can happen at either end of this interval, we recommend choosing the soft thresholded τ as 

conservative as possible, by taking τ⋆ in [0, τ̃] to minimize TCI. The examples in Figure 2 

show that, depending on the setting, τ⋆ can be either 0 (hard thresholding, left), τ̃ (energy 

preserving, right) or something in between (central panel).

3 Simulation

In this section we investigate how the estimation of the covariance matrix eigenvalue affects 

the SigClust performance using extensive simulation studies. Four SigClust p-value 

computation methods are compared using the true covariance matrix as well as estimates 

from the sample, hard and soft thresholding approaches, which are referred to using those 

names.

We have performed simulations in both low and high dimensional situations. Here we focus 

on high dimensional results, because our main contribution is in HDLSS settings. Three 

types of examples are generated here including situations under both null and alternative 

hypotheses. The sample size is n = 100, dimension is d = 1000, and the number of data sets 

generated for each run is Nsim = 1000. Empirical quantiles, as discussed in Section 2.1, were 

used in each case. We evaluate different methods based on the criterion of whether or not 

they can maximize the power while controlling the type-I error. In Section 3.1, we consider 

examples of data under the null hypothesis, i.e., having only one cluster generated by a 

single Gaussian distribution. In each example we check the type-I error of each version of 

SigClust, for a wide variety of Gaussian null distributions, by studying how often it 

incorrectly rejects the null hypothesis H0. In Sections 3.2 and 3.3, we explore the power of 

the different versions of SigClust, by considering data from a collection of mixtures of two 

Gaussian distributions with different signal sizes counting how often it correctly rejects the 

null hypothesis. We give combined discussion of the simulation results in Section 3.4.
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3.1 Level of the Test

In order to evaluate the Type I error rates for different methods, data were generated under 

the null hypothesis, i.e. from a single multivariate Gaussian distribution with d = 1000 

dimensional covariance matrix Λ which is diagonal with elements . We 

consider 31 combinations of υ and w with υ = 1, ⋯, 1000, and the corresponding w = 1, ⋯, 

100, as shown in Table 1. The simulation procedure was repeated 100 times for each setting.

Table 1 summarizes the mean and the number of the p-values which are less than 0.05 (N5) 

and 0.1 (N10) based on different methods under the various parameter settings. 

Theoretically the p-value follows the uniform [0, 1] distribution since the data are generated 

from a single Gaussian distribution. As expected, the empirical distributions of p-values 

using the true method are relatively close to the uniform distribution. The sample method 

results in p-values whose means are always bigger than the expected ones. This is consistent 

with the theoretical results shown in Section 2.4. The N5 and N10 are almost all 0, so we 

conclude that the sample method is conservative in all of these settings. For settings of υ ≥ 

30, i.e. for populations with a generally large first few eigenvalues (e.g. a strongly elongated 

distribution), with the exception of (υ, w) = (40, 25), results based on the hard thresholding 

method exhibits more small p-values than expected under the uniform distribution which 

implies that this approach is anti-conservative in that situation. On the other hand, the hard 

thresholding method tends to be quite conservative, for relatively small values of υ, e.g. for 

approximately more spherical Gaussian distributions. This also is a consequence of equation 

(17), because λ1 = υ is small.

For the soft method, the results of Table 1 show conservative results in all settings. Like the 

sample method, the soft method effectively controls type-I error under the null hypothesis. 

But more importantly it can dramatically increase the power over the sample method under 

important alternative hypotheses as shown in the next section.

The means of the p-value populations give additional insights, and the results are mostly 

consistent with those from the quantiles. In particular, the means of the p-value from 

SigClust using the true eigenvalues are generally close to the desired value of 0.5, the means 

from the sample method tend to be larger, and the hard, soft fluctuate in a way that 

corresponds to their quantile behavior. An important point is that means from the soft 

method are generally substantially closer to 0.5 than is true for either the sample or the hard 

methods.

3.2 Power of Test for Signal in One Coordinate Direction

In this section, we compare the power properties of these various SigClust hypothesis tests. 

This is based on a mean mixture of two normal distributions, .5N(0, Λ)+.5N(μ, Λ), where μ = 

(a, 0, ⋯, 0) with a = 0, 30, 40 and as above  a diagonal matrix. 

Here we focus on a similar setting as in the middle panel of Figure 2 with υ = 30 and w = 1. 

When a = 0, the distribution reduces to a single Gaussian distribution. The larger the a, the 

stronger the signal. The theoretical null distribution is N(0, Λ*), where Λ* = diag(λ1 + 
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0.25a2, λ2, ⋯, λd). The empirical distributions of p-values based on 100 replications are 

shown in Figure 3. As expected, the true method (upper left) is very powerful under the 

alternative hypothesis and meanwhile can control the type-I error well under the null 

hypothesis (a = 0). The hard method (lower left) is grossly anti-conservative, since the solid 

curve bends far above the diagonal. The sample method (upper right) is too conservative, 

since the solid curve bends way below, and even for a = 30, is very low. The soft method 

(lower right) is close to the diagonal at a = 0, and is more powerful than the sample, in terms 

of bending upwards when there is signal in the data.

3.3 Power of Test for Signal in All Coordinate Directions

In the previous subsection, the signal is only in the first coordinate direction. Now we 

consider power using another example with the signal in all coordinate directions. Similarly, 

we generate data from a mixture of two Gaussian distributions, .5N(0, Λ) + .5N(μ, Λ), where 

μ = (a, a, ⋯, a) with a = 0, 0.3, 0.5 and  with υ = 30 and w = 1 

which is similar to the setting in the previous section. This signal is very small in each 

direction, but can be large when all directions are combined together. The empirical 

distributions of p-values calculated from the 100 simulated datasets based on different 

methods are displayed in Figure 4. For a = 0 the results are identical to the single cluster 

situation in Sections 3.1 and 3.2 with (υ, w) = (30, 1). The hard thresholding method always 

yields smaller p-values than expected and thus is strongly anti-conservative under the null 

hypothesis meaning it may not be trusted. In contrast, the soft method is conservative under 

the null but becomes powerful as the signal increases. When the signal is big enough, e.g. a 

= 0.5, all methods can identify the significant clusters. For small signal situations, e.g. a = 

0.3, the soft method is much more powerful than the sample method.

3.4 Simulation Summary

In summary, the sample method is strongly conservative and the hard thresholding method 

can be anti-conservative in certain situations. The soft thresholding method is in-between. 

Simulation results shown in Section 3.1 suggest that, under the null hypothesis, the 

performances of the hard thresholding method vary from strongly conservative to strongly 

anti-conservative depending on the situations which are mainly characterized by the 

quantity, υ. The soft method yields conservative results in all settings studied here. 

Simulation results from Sections 3.2 and 3.3 suggest that, under the alternative hypothesis, 

the hard thresholding method often has the largest power and the sample method has the 

smallest power. The soft method is appropriately in-between. If the signals are large enough, 

all methods can identify the significant clusters. However, in situations with relatively small 

signal, the sample method cannot distinguish the significant clusters. In practice, we 

recommend the soft method, i.e., small p-values from the soft method reliably indicate the 

existence of distinct clusters.

4 Real Data

In this section, we apply our methods to some real cancer data sets. As mentioned in 

Verhaak et al. (2010), GlioBlastoma Multiforme (GBM) is one of the most common forms 
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of malignant brain cancer in adults. For the purposes of the current analysis, we considered a 

cohort of patients from The Cancer Genome Atlas Research Network (TCGA, 2010) with 

GBM cancer whose brain samples were assayed. Four clinically relevant subtypes were 

identified using integrated genomic analysis in Verhaak et al. (2010), they are Proneural, 

Neural, Classical, and Mesenchymal. As in Liu et al. (2008), we filter the genes using the 

ratio of the sample standard deviation and sample mean of each gene. After gene filtering, 

the data set contained 383 patients with 2727 genes. Among the 383 samples, there are 117 

Mesenchymal samples, 69 Neural samples, 96 Proneural samples, and 101 Classical 

samples.

We applied SigClust to every possible pair-wise combination of subclasses and calculated 

the p-value based on the three different methods. Here the cluster-index is computed based 

on the given class label. Let MES stand for Mesenchymal samples and CL stand for 

Classical samples. Except the MES and CL pair, the p-values from all three methods were 

significant for each of the five other pairs which is consistent with the widely accepted fact 

that these are distinct clusters. For the MES and CL pair, the p-value was non-significant 

using the sample method (0.93) while it was significant both for hard (< 0.001) and soft 

(0.04) methods. This suggests that the sample was too conservative to find this important 

effect. Furthermore the hard method appears to give too strong a significance, consistent 

with its occasional theoretically predicted anti-conservatism.

The second real example we considered is a breast cancer data set (BRCA) also from The 

Cancer Genome Atlas Research Network which include four subtypes: LumA, LumB, Her2 

and Basal and have been extensively studied by microarray and hierarchical clustering 

analysis (Fan et al., 2006). The sample size is 343 and the number of genes used in the 

analysis after filtering is 4000. Among 343 samples, there are 154 LumA, 81 LumB, 42 

Her2 and 66 Basal.

The results of applying SigClust to each pair of subclasses are shown in Table 2. For pairs 

including Basal, the p-values from all three methods are significant which implies that the 

Basal cluster is well separated from the rest. For the LumA and LumB pair, all methods 

report very high p-values, which suggests that they are actually one subtype. This is 

consistent with the findings of Parker et al. (2009), which suggest that these are essentially a 

stretched Gaussian distribution (thus not flagged by SigClust), with an important clinical 

division within that distribution. For the Her2 and LumB pair, all three methods give a non-

significant p-value although not as big as for the LumA and LumB pair, so there is no strong 

evidence for them to be separated (although hard thresholding appears to be close to a 

spuriously significant result). For the Her2 and LumA pair, the hard method gives a very 

significant p-value, the soft method gives a nearly significant p-value, whereas the sample 

method fails to find the clusters. Thus the cluster difference for this pair is not as large as for 

the Her2 and LumB pair. Note that the p-values listed in Table 2 are consistent with the 

scatter plot in Figure 5 where the projections of the data points onto the first four principal 

component (PC) directions are displayed. Clearly, Basal is well separated from the 

remaining data. LumA and LumB are close together and LumB and Her2 are closer than 

LumA and Her2. These results are again consistent with our theoretical results that sample is 
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often conservative, hard can occasionally be anti-conservative, and soft is an appropriate 

balance of these effects.

5 Discussion

In this paper, we developed a soft thresholding approach and examined its application to the 

SigClust method. We found that both the newly proposed soft thresholding and the hard 

thresholding proposed in the original SigClust paper can be derived under a likelihood based 

framework and usefully compared in terms of penalties in their respective regularizations 

(L0 regularization for hard and L1 for soft). Differences in performance were analyzed using 

the notion of Theoretical Cluster Index, which also indicated how the soft method should be 

tuned. Through extensive simulation, we compared the performance of the SigClust method 

based on different approaches in a wide variety of settings. As theoretically predicted, we 

found that the hard thresholding method would sometimes incorrectly reject the null while 

the sample and soft methods are always conservative. The soft approach was seen to have 

much better power properties than using the simple sample covariance estimation. We 

recommend that our newly proposed soft method be used in practice because it has been 

shown to control the type-I error as well as the sample method under the null hypothesis, 

while gaining much more power under the alternative hypothesis.

An important point is that our definition of clusters assumes a null Gaussian distribution. 

Thus SigClust may have limited use in categorical situations. However, in very high 

dimensional contexts, it may be possible to develop a limiting distribution theory by which 

most SigClust ideas still work. Another interesting open problem is finding a non-simulation 

calculation of the SigClust p-values.

This paper treats the case of 2 clusters, using a statistic based on k-means clustering. 

Interesting extensions include more than 2 clusters, and other clustering criteria, such as 

those underlying hierarchical clustering. The incorporation of alternate eigenvalue 

estimation methods is another interesting open problem.

In terms of software, the R package for the current version of SigClust can be freely 

downloaded on the CRAN website: http://CRAN.R-project.org/package=sigclust. 

Computation time depends on the number of simulated replications, and the size of the input 

data. In all cases here, we used Nsim = 1000 and a computer with RAM 16GB and processor 

3.5GHz, and it took around 1 minute for each simulated data set described in Section 3 and 

10 minutes for both the GBM data and the BRCA data described in Section 4.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
True and estimated covariance matrix eigenvalues based on the hard- and soft-thresholding 

methods for a simulated data set with d = 1000 and n = 50. This shows that some 

eigenvalues are highly over-estimated by the hard thresholding method. The soft 

thresholding method gives major improvement for this example.

Huang et al. Page 17

J Comput Graph Stat. Author manuscript; available in PMC 2016 June 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Relationships between TCI and tuning parameter τ for three different settings (solid line). 

Dotted lines represent the TCI calculated from true eigenvalues. Shows situations where 

hard thresholding is anti-conservative (left panel), where energy preserving soft thresholding 

is anti-conservative (right panel), and where τ⋆ is strictly between the two (central panel).
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Figure 3. 
Empirical distributions of SigClust p-values for Simulation 3.2. This shows sample is too 

conservative, hard is anti-conservative, while soft strikes a nice balance in overall 

performance.
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Figure 4. 
Empirical distributions of SigClust p-values for Simulation 3.3. The results indicate that 

hard is strongly anti-conservative, while sample is too conservative. Overall best is the soft 

method.
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Figure 5. 
PCA projection scatter plot view of the BRCA data, showing 1D (diagonal) and 2D 

projections of the data onto PC directions. Groupings of colors and symbols indicate 

biological subtypes. Shows Basals are quite distinct from the others, and there is no strong 

evidence showing that LumA and LumB do not come from a single Gaussian distribution.
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