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Abstract
Functional and longitudinal data are becoming more and more common in practice. This paper
focuses on sparse and irregular longitudinal data with a multicategory response. The predictor
consists of sparse and irregular observations, potentially contaminated with measurement errors,
on the predictor trajectory. To deal with this type of complicated predictors, we borrow the
strength of large margin classifiers in statistical learning for classification of sparse and irregular
longitudinal data. In particular, we propose functional robust truncated-hinge-loss support vector
machines to perform multicategory classification with the aid of functional principal component
analysis.
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1 Introduction
Recent technology advance has enriched us with lots of data involving a functional
predictor, which refers to a smooth random trajectory. The longitudinal study is a typical
example, in which data consist of repeated measurements made on each individual patient
or, more generally, subject. These measurements are typically sparse and made at irregular
time points over the time horizon of the study. In addition these sparse and irregular
measurements are possibly contaminated with measurement errors. Interested readers may
consult Diggle, Heagerty, Liang and Zeger (2002) for an introduction to longitudinal data
analysis. Through out this paper, we call this type of data sparse and irregular functional
data or, interchangeably, sparse and irregular longitudinal data. Instead of treating these
observations as a vector, we think these observations coming from a smooth trajectory over
the time horizon of the study. In this way, theoretically we are handling statistical problems
with a functional predictor instead of a vector predictor.

For regression of a continuous response on such sparse and irregular functional data, Yao,
Müller and Wang (2005b) studied the functional linear regression by using the principal
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component analysis through conditional expectation (PACE, Yao, Müller and Wang,
2005a). Along this direction, there has been a number of extensions to deal with more
complicated models such as functional additive models (Müller and Yao, 2008) and
functional quadratic regression (Yao and Müller, 2010). See references therein for other
extensions.

Different from regression, classification deals with a categorical response. Its goal is to
estimate a classification rule, which will be used to predict the categorical response. In the
traditional setting with a multivariate predictor, many methods have been proposed for
classification. They include, but are not limited to, logistic regression, linear/quadratic
discriminant analysis, classification trees, random forests, support vector machines (SVMs),
and boosting. Interested readers may consult Hastie, Tibshirani and Friedman (2009);
Cristianini and Shawe-Taylor (2000). Albeit so many methods in the traditional setting with
a multivariate predictor, most of these methods cannot be readily applied to functional data
directly and very limited techniques are available to deal with a sparse and irregular
functional predictor. James and Hastie (2001) extended linear discriminant analysis to deal
with irregularly sampled curves. Leng and Müller (2006) proposed an extension of binary
logistic regression to deal with sparse and irregular functional data and more generally
Müller and Stadtmüller (2005) considered functional generalized linear models. When the
predictor trajectory is either fully observable or sampled on a fine grid, Li and Yu (2008)
proposed functional segment discriminant analysis and Lee (2004) and Rossi and Villa
(2006) extended the SVM. Hall et al. (2001) treated signals as smooth curves and proposed a
functional data-analytic approach for signal discrimination. See references therein for other
relevant extensions.

Despite the aforementioned development in classification of functional data, more new
techniques are needed for sparse and irregular functional data. In this paper, we consider the
general problem of multicategory classification with a sparse and irregular functional
predictor and the response being the discrete class membership of multiple classes. In
particular, we borrow the strength of large margin classifiers in multivariate data for
functional data. In the machine learning literature, the binary SVM has been very popular
and enjoyed great success in a wide range of application areas (Cristianini and Shawe-
Taylor, 2000). Partially due to its great success, the binary SVM has been generalized in
several different ways to handle multicategory classification problems. Its multicategory
extensions include Weston and Watkins (1999); Bredensteiner and Bennett (1999);
Crammer and Singer (2001); Lee et al. (2004); Liu and Shen (2006); Liu and Yuan (2010),
and many others. In this paper, we extend the robust truncated-hinge-loss SVM (RSVM) due
to its robustness to outliers and nice interpretation in terms of support vectors as
demonstrated in Wu and Liu (2007). The proposed functional RSVM can maintain
robustness as the regular RSVM does. In particular, when we have mislabeled data such as a
functional curve in one class mislabeled as in another class, the RSVM can reduce the
impact of those outliers. Using the similar idea, parallel extensions to other multicategory
classification methods can be made.

The remaining of the paper is organized as follows. Section 2 gives a brief review on large
margin classifiers with multivariate predictors. Section 3 presents the functional linear
RSVM, the extension of the linear RSVM. The corresponding nonlinear extension,
functional nonlinear RSVM, is given in Section 4. Several implementation issues are
discussed in Section 5. Simulation studies and two real application examples are presented
in Sections 6 and 7, respectively. We conclude the paper with some discussion in Section 8.
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2 Background on large margin classifiers with multivariate predictors
In this section, we briefly review large margin classifiers in the standard setting with
multivariate predictors. Their extensions to the case with longitudinal data are presented in
Sections 3 and 4. Consider a K-class classification problem. Let {(xi, yi); i = 1, …, n} denote
a training dataset. The n pairs of observations (xi, yi)’s are assumed to be independent
realizations of a random pair (X, Y), which has an unknown probability distribution P(x, y).
Here x ∈ S ⊂ ℝd denotes an input vector and y ∈ {1, …, K} represents an output (class)
variable. We use X and Y to denote random variables and x and y to represent
corresponding observations.

Define f = (f1, …, fK), each fj being a mapping from S to ℝ, as a decision function vector.
These K functions represent K different classes with fj corresponding to class j; j = 1, …, K.
Once f is obtained from the training dataset, a classifier ŷ = argmaxj=1,…,K fj(x) is employed
to predict the class of any input vector x ∈ S. In other words, fŷ(x) is the maximum among
K values of f (x). One important goal of multicategory classification is to find a classifier
which minimizes the probability of misclassifying a new input vector X, namely the
generalization error (GE), Err(f) = P[Y ≠ argmaxj fj(X)]. Denote the multiple comparison
vector of class y versus the rest as g(f(x), y) = (fy(x) − f1(x), …, fy(x) − fy−1(x), fy(x) −
fy+1(x), …, fy(x) − fK(x)). Then f produces correct classification for (x, y) if min(g(f(x), y))
> 0. Using the notation of generalized functional margin min(g(f(x), y)), we can rewrite the

classification error rate on the training dataset as (1/n) , where
I(·) is an indicator function (Liu and Shen, 2006).

After replacing the indictor function, also known as the 0–1 loss, by a surrogate loss
function, a large margin classifier solves the following minimization problem:

(1)

where ℓ(u) is a large margin loss function. The first term  in the objective function
in (1) can be viewed as a roughness penalty of f. More information on large margin
classifiers can be found in Shen et al. (2003); Lin (2004); Bartlett et al. (2006); Liu and Shen
(2006); Liu (2007). As we will discuss in Sections 3 and 4, the key for our extension is to
convert the sparse and irregular functional predictor into multivariate predictors and then
utilize the large margin classifiers. We will focus on the RSVM by Wu and Liu (2007) using
the truncated hinge loss on the generalized functional margin min(g(f(x), y)).

3 Functional linear robust SVM
In this paper we focus on classification problems with a functional predictor. We assume
that the predictor process X(t), defined on a finite domain  is square integrable, namely
X(·) ∈ L2( , where L2(  denotes all square integrable functions defined on the domain 
As discussed in Section 2, the categorical response is denoted by Y ∈ {1, 2, ⋯, K}, where K
denotes the number of classes. Our goal is to estimate functionals f1(·), f2(·), ⋯, fK(·) and use
the argmax rule argmaxk fk(X(·)) to make future class prediction.

3.1 Karhunen-Loève expansion
Define μX(t) = EX(t) and G(s, t) = cov(X(s), X(t)) for s, t ∈ as the mean and covariance
functions, respectively. We use Xc(t) = X(t) − μX(t) to denote the centered predictor process.
Denote λm and ϕm(·); m = 1, 2, ⋯, to be the eigenvalues and eigenfunctions of the
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autocovariance operator of X, where eigenvalues are sorted in a non-increasing order
satisfying λ1 ≥ λ2 ≥ ⋯. Then the covariance function G(s, t) can be represented as

. In addition, with the aid of these eigenfunctions, the predictor
process can be represented by the Karhunen-Loève representation

(2)

for t ∈  Here the functional principal component (FPC) scores are given by ξm = ∫
Xc(t)ϕm(t)dt; m = 1, 2, ⋯, and they are uncorrelated with Eξm = 0 and var(ξm) = λm.

3.2 Functional linear classification model
As aforementioned, we are interested in estimating functionals fk : L2(  → ℝ; k = 1, 2, ⋯,
K, and they will be plugged into the argmax rule to make future class prediction. Since we
are focusing on functional linear classification in this section, we take the motivation of
functional linear regression and assume the functional fk(·) in our functional classification to
take the form of bk+∫  βk(t)Xc(t)dt, where bk ∈ ℝ and βk(·) ∈ L2(  denote the unknown
parameters, k = 1, 2, ⋯, K. Our goal of functional linear classification is to estimate b1, b2,
⋯, bK and β1(·), β2(·), ⋯, βK(·).

As we assume that βk(·) is square integrable, we can expand the parameter function βk(t) in
terms of the eigenfunctions ϕm(·) similarly as in the Karhunen-Loève expansion, namely

assume , k = 1, 2, ⋯, K. Then the estimation of βk(·) is converted to the
estimation of βmk, m = 1, 2, ⋯, ∞, k = 1, 2, ⋯, K. Note that βmk;m = 1, 2, ⋯, ∞, is an
infinite sequence and thus it is difficult, if possible at all, to estimate all of them. To solve

this difficulty, we note that . The tail term

 in this summation does not play a very important role when M is large enough
by noting that var(ξm) = λm is a decreasing sequence. Consequently the regularization-via-
truncation technique of Yao, Müller and Wang (2005b) can be borrowed here.

3.3 Estimation
As aforementioned in the introduction, instead of observing the whole predictor trajectory
X(·), typically we only have sparse and irregular randomly-spaced repeated measurements of
the predictor trajectory in longitudinal studies. These repeated measurements are most likely
contaminated with additional random errors. In rare cases, we may have dense and
regularly-spaced repeated measurements. While presenting our proposed estimation scheme,
we focus on sparse and irregular data. However the proposed method can be applied to
dense and regular longitudinal data as well.

For the ith subject with trajectory Xi(·), a random number Ni of repeated observations are
made on Xi(·) at irregular and random time-points Tij, j = 1, 2, ⋯, Ni. The repeated
measurements are denoted by Uij = Xi(Tij) + εij; j = 1, 2, ⋯, Ni, where εij is assume to be
i.i.d. with mean zero and variance σ2. We assume that Xi(·)s are i.i.d. copies of X(·) with
mean μX(·) and covariance G(·, ·). Using the Karhunen-Loève representation, we have

(3)
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where ξim, m = 1, 2, ⋯, are the FPC scores for trajectory Xi(·). Then our data set is denoted
by {yi, (Tij, Uij), j = 1, 2, ⋯, Ni; i = 1, 2, ⋯, n}, where yi ∈ {1, 2, ⋯, K} denotes the class
membership of the ith sample.

The first step of our estimation scheme for the functional linear classification is to apply the
principal component analysis through conditional expectation (PACE, Yao, Müller and
Wang, 2005a) technique to obtain estimates of FPC scores ξim. The PACE first provides
estimates μ̂X(·) and Ĝ(s, t) of the mean and covariance functions μX(·) and G(·, ·),
respectively, using smoothing based on data {(Tij, Uij), j = 1, 2, ⋯, Ni; i = 1, 2, ⋯, n}. Then
a functional principal component analysis is applied to Ĝ(·, ·) to obtain estimates λ̂m and
ϕ̂m(·) of eigenvalues λm and eigenfunctions ϕm(·). Finally, the PACE gives estimate ξ̂im of
the FPC scores ξim by treating Uij, j = 1, 2, ⋯, Ni as joint-normally distributed from the
trajectory Xi(·) and using conditional expectation. To save space, we skip all the details.
Interested readers may read Yao et al. (2005a) for a detailed exposition.

As argued at the end of Section 3.2, it is difficult and also not necessary to estimate the
infinite sequences βmk, m = 1, 2, ⋯,∞, k = 1, 2, ⋯, K. So we borrow the regularization-via-
truncation technique of Yao et al. (2005b) while estimating functionals βk(·), k = 1, 2, ⋯, K.
More explicitly, we apply regularization by truncating the infinite sequence ξ̂im to ξ̂i1, ξ̂i2,
⋯, ξ̂iM for some large M such that the first M eigenvalues λ̂m, m = 1, 2, ⋯, M contribute a
big proportion to the sum of all eigenvalues. Denote

(4)

which then estimates Xi(t) based on sparse and irregular observations {(Tij, Uij), j = 1, 2, ⋯,
Ni}, for i = 1, 2, ⋯, n. We can proceed using X̂i(·) as the predictor for the ith observation.
Yet we want to point out that it is equivalent to use (ξ̂i1, ⋯, ξ̂iM)T as the corresponding
predictor.

To estimate bk and βmk, we treat ξ̂i1, ξ̂i2, ⋯, ξ̂iM as observations and use the linear RSVM.

Denote ξ̂i = (ξ̂i1, ξ̂i2, ⋯, ξ̂iM)T, βk = (β1k, β2k, ⋯, βMk)T, and . Denote h(ξ̂i)
= (h1(ξ̂i), h2(ξ̂i), ⋯, hK(ξ̂i))T. There are several different types of multicategory extensions
of binary large-margin classification methods. In this paper, we will adopt the extension
studied by Liu and Shen (2006) and define comparison vector g(h(ξ̂i), yi) = (h1(ξ̂i) − hyi(ξ̂i),
⋯, hyi−1(ξ̂i) − hyi(ξ̂i), hyi+1(ξ̂i) − hyi(ξ̂i), ⋯, hK(ξ̂i) − hyi(ξ̂i))T accordingly. The ith sample is
misclassified if min g(h(ξ̂i), yi) ≤ 0 as we are using the argmax rule. By replacing the 0–1
loss with the truncated hinge loss HTs(·), we can estimate βmk by solving

(5)

where  and constrains are used to ensure identifiability. Here we choose to
use the truncated hinge loss HTs(u) = min(H1(s), H1(u)) due to its nice performance as
demonstrated in Wu and Liu (2007), where H1(u) = max(1 − u, 0) is the hinge loss used in
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the standard SVM. In particular, the truncated hinge loss is Fisher-consistent for

multicategory classification as long as the truncation location s satisfies  and
they recommended to use the least truncation of s = −1/(K − 1). Through out this paper, we
will follow their recommendation and set truncation location s = −1/(K − 1).

As discussed above, truncating the hinge loss helps to achieve Fisher-consistency. However
this truncation leads (5) to be a non-convex optimization problem, which is challenging to
solve. Note that the truncated hinge loss can be decomposed as the difference of two convex
functions, namely HTs(u) = H1(u) − Hs(u) as shown in Figure 1, where Hs(u) = max(s − u,
0). Based on this decomposition, Wu and Liu (2007) proposed to use the difference convex
algorithm (DCA) (An and Tao, 1997) to optimize (5). See Wu and Liu (2007) for more
details on the corresponding algorithmic development. Denote the optimizer of (5) by b̂k and
β̂mk, m = 1, 2, ⋯, M, k = 1, 2, ⋯, K. Then our estimated parameter function is given by

. Correspondingly the estimated functional is given by f̂k(X(·)) = b̂k +
∫  (X(t) − μ̂X(t)) β̂k(t)dt and class membership can be predicted by argmaxk f̂k(X(·)) for
any X(·) ∈ L( .

3.4 Class prediction
The above estimated functional linear classification rule is defined for the case that the
whole predictor trajectory X(·) is fully observed. However our focus of the current paper is
on sparse and irregular longitudinal data. Thus it is necessary to discuss the prediction for
this case as well. Suppose instead of observing the whole trajectory X(·) while making
prediction, we make sparse and irregular measurements Uj, potentially contaminated with
measurement errors, on X(·) at Tj for j = 1, 2, ⋯, N and a random number N. More explicitly
Uj = X(Tj) + εj, for j = 1, 2, ⋯, N. We can use the PACE to estimate FPC scores ξm of X(·)
based on estimates μ̂X(·), λ̂m, and ϕ̂m(·). Denote the estimated FPC scores by ξ̂m for m = 1,

2, ⋯, M and the estimated trajectory by . Then the corresponding
class membership prediction is given by argmaxk f ̂k(X̂ (·)).

4 Functional nonlinear RSVM
In the previous section, we focus on functional linear classification, in which we assume the
functional fk(·) to be parametric. In general this parametric assumption may be restrictive in
some situations and functional nonparametric classification can be consequently desirable.
For classification with a multivariate predictor, there are many existing techniques for
nonparametric classification such as basis expansion. They may be extended to deal with
classification with a functional predictor. In the literature, there are some previous
applications of kernel methods for functional data analysis. For example, Canu et al. (2002)
studied some general properties of kernel learning, Preda (2007) applied kernel learning for
functional data with a binary response using logistic regression. In this section, we choose
the approach of using reproducing kernel Hilbert space (RKHS) due to its great flexibility
and propose RKHS-based functional nonlinear RSVM.

In functional nonlinear classification, we do not make any parametric assumption on the
functionals fk(·), k = 1, 2, ⋯, K. We assume for the moment that our data are given by the
complete trajectory Xi(t) and the categorical response yi, i = 1, 2, ⋯, n. The discussion on
how to deal with sparse and irregular functional data when trajectories Xi(·) are not fully
observable will be presented shortly. Denote f (X(·)) = (f1(X(·)), f2(X(·)), ⋯, fK(X(·)))T.

Using the RSVM, we then need to solve

Wu and Liu Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6)

where J(fk(·)) denotes some roughness penalty of the functional fk(·) and ℱ denotes some
functional space. For a normed space ℱ, one example of J(fk(·)) is the norm of fk(·). More
details on the estimation are given in Section 4.1. Here a similar sum-to-zero constraint is
included to ensure identifiability.

4.1 Estimation
Let ·, ·) be a bi-variate kernel function which maps L2(  × L2(  to ℝ. One example is
the Gaussian kernel

.
Let ℱ  be the reproducing kernel Hilbert space generated by kernel ·, ·) and the
corresponding norm by ‖·‖ℱ . According to the representer theorem (Kimeldorf and
Wahba, 1971; Wahba, 1990), the solution of (6) with ℱ = ℱ  and J(·) = ‖·‖ℱ  takes the

form  and the corresponding roughness penalty is given

by . Next we may plug

 into (6)
and solve it to get optimizers čik, i = 0, 1, ⋯, n, k = 1, 2, ⋯, K. While doing so, the sum-to-

zero constraint in (6) can be replaced by  for i = 0, 1, ⋯, n. The estimated RKHS-
based functional nonlinear classification rule is given by argmaxk f̌k(X(·)), where

.

The above presentation of the RKHS-based functional nonlinear RSVM relies on the
assumption that the functional predictor X(·) is fully observed. Recall for sparse and
irregular functional data, we do not observe the complete trajectory Xi(·) and instead only
have sparse and irregular observations (Tij, Uij), j = 1, 2, ⋯, Ni. To deal with a sparse and
irregular functional predictor, we first apply the PACE as in the functional linear
classification and define a natural estimate X ̂i(·) for Xi(·) as in (4). Consequently we may use
X̂i(·) to replace Xi(·) in (6). This completes our whole estimation scheme for RKHS-based
functional nonlinear RSVM.

4.2 Class prediction
The corresponding prediction for a trajectory with sparse and irregular observations (Tj, Uj),
j = 1, 2, ⋯, N can be defined as well. As in Section 3.4, we may use the PACE to estimate
FPC scores and define the estimated trajectory X̂ (·) for X(·) based on sparse and irregular
observations (Tj, Uj), j = 1, 2, ⋯, N. The corresponding class membership can be predicted
by argmaxk f̌k(X̂ (·)).

The proposed RKHS-based functional nonlinear RSVM is very flexible. In general, one may
choose different bi-variate kernels ·, ·) to get different classifiers. In particular if one uses
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the linear kernel Xi(·), Xj(·)) = ∫  Xi(t)Xj(t)dt, the above RKHS-based functional
nonlinear RSVM reduces to the functional linear RSVM of Section 3.

5 Implementation issues
Note that there are two layers of regularization in our whole estimation schemes for
proposed functional linear or nonlinear RSVMs. The first one is to choose an M to truncate
the functional principal component representation in the Karhunen-Loève expansion and the
other one is controlled by the regularization parameter λ in (5) or (6). In the finite sample
case, we need to select M and λ appropriately to deliver satisfactory classification
performance.

For the truncation regularization, Yao et al. (2005a) proposed to apply either AIC or BIC
criterion to all the data to select M. However as one referee pointed out, the AIC or BIC was
aiming for regression and may be suboptimal for classification. Here we propose to tune M
and λ jointly. For each M = 1, 2, ⋯, the PACE returns the estimated FPC scores ξ̂im for i =
1, 2, ⋯, n and m = 1, 2, ⋯, M. Then our proposed functional linear RSVM or RKHS-based
functional nonlinear RSVM can be coupled with a D-fold cross validation to select an
optimal pair of regularization parameters λ and M in (5) or (6). Alternatively we may use an
independent tuning set. Here we detail the method of using cross validation for illustration.
We use the misclassification error I(yi ≠ ŷi) as the selection criterion where I(·) is the
indicator function and the predicted class membership ŷi is given by either argmaxk f̂k({(Uij,
Tij), j = 1, 2, ⋯, Ni}) for the functional linear RSVM or argmaxk f̌k({(Uij, Tij), j = 1, 2, ⋯,
Ni}) for the RKHS-based functional nonlinear RSVM. In the D-fold cross validation, we
randomly split the data into D folds as {1, 2, ⋯, n} = F1 ∪ F2 ∪ ⋯ ∪ FD, where Fj ∩ Fd = ∅
when 1 ≤ d ≠ j ≤ D. Denote  to be the complement of Fd in {1, 2, ⋯, n}.

For each d, we use all data points with indices in  and train the proposed functional linear
RSVM or RKHS-based functional nonlinear RSVM to obtain an estimate

 with the regularization parameters λ and M. Our tuning method is to

use .
We select an optimal pair of λ and M by minimizing Error1(λ, M) (resp. Error2(λ, M)) via a
grid search over λ and M for the functional linear RSVM (resp. KHS-based functional
nonlinear RSVM).

As a remark, in our numerical examples we use the above joint tuning. However the joint
tuning is more time consuming than an alternative tuning of using BIC or AIC to select M
first. According to our limited numerical experience, the BIC-based tuning works fairly well
but does slightly worse than the joint tuning. Thus the BIC-based tuning can be used in
practice when the computational time is a concern.

For given M and λ, functional RSVMs need to solve (5) or (6). As discussed earlier, the
corresponding optimization problem is nonconvex. We can use the DC algorithm as in Wu
and Liu (2007) to implement it via solving iterative convex optimization problems.

6 Monte Carlo simulation

Predictor trajectories in our simulation examples are generated as 
for t ∈ = [0, 10]. The mean predictor trajectory is μX(t) = t + sin(t). The three
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eigenfunctions are

 and the

corresponding FPC scores are independently distributed as ξ1 ~ N(0, 22), , and
ξ3 ~ N(0, 12). Instead of observing the complete predictor trajectory, we make sparse and
irregular contaminated observations. For each trajectory, the random number N of
observations is uniformly generated from the discrete set {5, 6, ⋯, 10}. Given N, we
generate the observation times Tj; j = 1, 2, ⋯, N, from the uniform distribution over = [0,
10]. Next these sparse and irregular data are generated by contaminating a random
measurement error, namely Uj = X(Tj) + εj, where εj ~ N(0, σ2); j = 1, 2, ⋯, N, are
independent and σ2 will be specified later for each example.

We consider the following two examples: one with a true functional linear classification rule
and the other with a true functional nonlinear classification rule. For both examples, we use
the joint tuning proposed in the previous section to select λ and M. To reduce the
computational load, we generate an independent tuning set, of the same size as the training
set, to select the regularization parameters by minimizing the classification error over the
tuning set. In order to evaluate the classification performance of each method, we use the
classification error over an additional independent test set. We compare our proposed
methods with the functional linear discriminant analysis of James and Hastie (2001). The
average of testing errors over 100 repetitions and the corresponding standard deviations are
reported for each method. As we consider more general multicategory classification and
Leng and Müller (2006) can only handle a binary response, we do not compare with their
method even though it can be coupled with the one-versus-the-rest technique to deal with a
multicategory response.

Example 6.1 True functional linear classification rule
In this example the independent contamination error is generated from N(0, 0.52).
Conditional on the true curve X(t) with ξ1, ξ2, and ξ3, the categorical response is generated

by , where εk ~ N(0, 1), k = 1, 2, 3, are
independent of X(·). In this way, the functional linear classification leads to a correct model
specification. Written in the function form, given predictor X(·), the response is generated by

where  for k = 1, 2, 3. Thus the corresponding

Bayes classification rule is given by  since εk ~ N(0, 1); k =
1, 2, 3, are independent of each other. The sample sizes of the training, tuning, and testing
sets are 200, 200, and 1000, respectively.

As a remark, we note that the Bayes error with both the leading two FPCs ξ1 and ξ2 given is
18.08% for this simulation setting. However on each predictor curve, we only make sparse,
irregular and measurement error contaminated observations which contain far less
information. With sparseness, irregularity, and measurement error taken into account, we
calculate the modified Bayes error using a model based method as follows. Note that each
curve is represented by sparse and irregular observations {(Ti, Ui) : i = 1, 2, ⋯, N}. From the
data generation setting, we know that (ξ1, ξ2, ξ3)T is multivariate normal and (U1, U2, ⋯,
UN)T is also multivariate normal conditional on (ξ1, ξ2, ξ3)T and T1, T2, ⋯, TN. Thus we
can calculate E(ξj |{(Ti, Ui) : i = 1, 2, ⋯, N}) for j = 1, 2, 3 using a joint normal model.
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Plugging E(ξjs|{(Ti, Ui) : i = 1, 2, ⋯, N}), j = 1, 2, 3 into the Bayes rule, we can make a
prediction denoted by Ŷ ({(Ti, Ui) : i = 1, 2, ⋯, N}), which is given by

Then the modified Bayes error is given by , where the expectation is
taken with respect to the randomness of sparse and irregular observations {(Ti, Ui) : i = 1, 2,
⋯, N}. As N is a random variable, it is difficult to calculate the expectation with respect to
{(Ti, Ui) : i = 1, 2, ⋯, N} directly. To solve this problem, we generate an independent
sample of size 100000 and calculate the modified Bayes error using the empirical
distribution of this sample. This leads to a modified Bayes error of 25.03%, which is larger
than the original Bayes error of 18.08% without taking into account of sparseness,
irregularity, and measurement errors, as expected.

The average test error over 100 repetitions is 27.52% with a standard deviation of 0.96% for
the proposed functional linear truncated-hinge-loss SVM. The corresponding average test
error over 100 repetitions using the functional LDA of James and Hastie (2001) is 29.66%
with a standard deviation of 1.32%. The average test errors are quite similar to each other.
This shows that the proposed functional linear RSVM performs comparably with the
functional LDA when the true classification rule is functional linear. For our functional
linear truncated-hinge-loss SVM, 50, 15, 14, 5, 5, 7, 2, 1, and 1 repetitions out of the total
100 repetitions select M to be 2, 3, 4, 5, 6, 7, 8, 9, and 10, respectively. Note that the
classification rule only depends on ξ1 and ξ2. Thus M for the Bayes classification rule is 2
and it is correctly selected by 50 repetitions out of 100 in our simulation.

Example 6.2 True functional nonlinear classification rule
The second example is devoted to the case when the true classification rule is a functional
nonlinear one. Conditional on the true curve X(t) with ξ1, ξ2, and ξ3, the categorical
response is given by

. In this
way, the true classification rule is not functional linear any more. While generating the
sparse and irregular contaminated observations, the independent contamination error is
generated from N(0, 0.22). Our proposed RKHS-based functional nonlinear RSVM is

implemented with the Gaussian kernel .
Borrowing the idea of Brown et al. (2000), the data width parameter ρ is selected as the
median pairwise L2 distance between classes defined as the median of {‖ X̂i(·) − X̂j(·) ‖2: yi
≠ yj}, where yi denotes the categorical response of the ith sample and X̂i(·) denotes the
corresponding estimate for Xi(·) based on the sparse and irregular contaminated observations
using the PACE as in (4). The sizes of the training, tuning, and testing sets are 150, 150, and
1000, respectively.

Note that the Bayes error for this simulation setting is 0% when both the leading two FPCs
ξ1 and ξ2 are given. As noted in the previous example, with sparseness, irregularity and
measurement error considered, the modified Bayes error is expected to be much higher than
0%. Using a similar calculation scheme as in the previous example, we get the modified
Bayes error of 14.26% for this example. Compared with the linear example, this nonlinear
example is much more challenging even though the modified Bayes error is relatively small.

Our proposed RKHS-based functional nonlinear RSVM gives an average testing error of
25.05% with a standard deviation of 2.51% among 100 repetitions. The corresponding
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average testing error and standard deviation for James and Hastie (2001)’s functional linear
discriminant analysis are 65.43% and 0.022%, respectively. This shows a great
improvement. Yet we would like to point out that the functional linear discriminant of James
and Hastie (2001) corresponds to a major model misspecification in the current example
setting since their method is a functional linear method. Thus it is not fair to compare our
functional nonlinear classification with theirs. The functional quadratic discriminant
analysis, if available, may perform better. However to our limited knowledge, there is no
existing software available for functional quadratic discriminant analysis although the idea
of the corresponding extension was discussed in their paper.

As defined above, the Bayes classification rule only depends on ξ1 and ξ2. Its corresponding
M is 2, which is correctly selected by the joint tuning of the RKHS-based functional
nonlinear RSVM for 48 repetitions out of the total 100 repetitions. In the other 52
repetitions, 25, 19, 7, and 1 repetitions select M to be 3, 4, 5, and 6, respectively.

To further demonstrate how the proposed methods work, we plot the sparse and irregular
predictor data in Figure 2 for one random repetition of Example 6.1. The corresponding
estimated mean curve and first two eigen functions are given in the left and right panels,
respectively, of Figure 3 in comparison to the corresponding true functions. Here we only
plot the first two eigen functions because the true classifier only depends on the leading two.

7 Real data
In this section, we apply our new functional RSVMs to two real data sets: the spinal bone
mineral density data and spectral data.

7.1 Spinal bone mineral density data
First we consider the spinal bone mineral density data studied in James and Hastie (2001).
The data set consists of sparse and irregular measurements of spinal bone mineral density
for 280 individuals. There are 2–4 measurements available for each individual. In addition,
the ethnicity of each individual is also available and we will use it as the categorical
response. Each individual belongs to one and only one group of Asian, Black, Hispanic or
White in terms of ethnicity. Among these 280 individuals, 153 are females and 127 are
males. We only consider the classification problem of these 153 females. The sparse and
irregular measurements of these 153 females are illustrated in Figure 4.

As presented above, the first step is to apply the PACE to the sparse and irregular spinal
bone mineral density measurements to estimate the mean curve and eigen functions. The
estimated mean curve is given in the left panel of Figure 5. The first three estimated eigen
functions are plotted in the right panel of Figure 5.

We consider both the proposed functional linear and functional nonlinear RSVMs. As there
is no independent tuning data set available, we use a 5-fold cross validation to select λ and
M as discussed in Section 5. Once an optimal pair of λ and M is identified, we use it in the
functional linear and functional nonlinear RSVMs with data from all 153 females. We
compare the number of correct classification with that of James and Hastie (2001).

The numbers of correct classification are 63 and 71 for the functional linear and the RKHS-
based functional nonlinear RSVMs, respectively. The corresponding number of correct
classification is 66 for the functional linear discriminant analysis (James and Hastie, 2001).
These numbers show that the functional RSVMs give similar performances as the functional
linear discriminant analysis. The RKHS-based functional nonlinear RSVM performs slightly
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better than the functional linear discriminant analysis while the functional linear RSVM
does a little bit worse for this data set.

To compare the performance of the RKHS-based functional nonlinear RSVM further with
that of the functional linear discriminant analysis, we report the confusion matrix of
classification for the four ethnicities in Table 1 as in the same format of Table 1 of James
and Hastie (2001). A direct comparison of these two confusion matrices shows that the
RKHS-based functional nonlinear RSVM gives more correctly classified samples for the
Black and White ethnicity groups while less correctly classified samples for the other two.
Especially for the White group, the percentage of correct classification increases from
18.8% to 35.42%.

As a remark, the joint tuning selects M to be 3 and 2 for function linear RSVM and RKHS-
based functional nonlinear RSVM, respectively.

7.2 Spectral data
Next we consider the spectral data reported in Borggaard and Thodberg (1992). The
predictor is the absorbance trajectory recorded on a Tecator Infratec Food and Feed
Analyzer which works in the wavelength range of 850–1050 nm. The response is the fat
content of meat, which is a scalar response. The original task is to predict the fat content of
meat based on absorbance spectrum. The data set is available online at http://
lib.stat.cmu.edu/datasets/tecator. Interested readers may find more revelent background
information there.

The scalar response, the fat content, ranges between 0.9 and 49.1. To fit into the
classification framework, we consider the prediction of whether the fat content is larger than
20, which leads to a binary classification problem. The total sample size is 215. As one
referee pointed out that the previous example reports an in-sample performance, here we
randomly split the data into training and testing sets of size 155 and 60, respectively. A 5-
fold cross validation is applied to the training set to select λ and M using the joint tuning
method of Section 5. The classification accuracy over the test data we set aside is reported
for different methods. The functional linear discriminant analysis gives an accuracy of
52/60. The functional linear RSVM and RKHS-based functional nonlinear RSVM lead to
classification accuracy of 59/60 and 58/60, respectively. The joint tuning selects the optimal
M to be 4 for both methods. Improvement over the functional linear discriminant analysis is
observed for this data. To save space, we skip plotting the original data and estimated mean
and eigen functions.

8 Conclusion
In this work, we propose functional linear and nonlinear RSVMs. Motivated by longitudinal
data, we focused on sparse and irregular functional data even though it works for densely
observed functional data as well. The new methods are based on estimating functional
principal component scores first using the PACE (Yao, Müller and Wang, 2005a). Once the
FPC scores are estimated, functional linear and nonlinear RSVMs are simplified to the
corresponding counterparts with a multivariate predictor. In this paper we choose the
multicategory RSVM for demonstration. The same idea can be applied to other
multicategory classification methods such as the multicategory ψ-learning (Liu and Shen,
2006) and the multicategory SVM (Liu and Yuan, 2010).

In some applications, one may also be interested in estimating the conditional probability of
each curve belonging to each class in addition to predicting the class membership. For the
case with a multivariate predictor, new methods (Wang et al., 2008; Wu et al., 2010) have

Wu and Liu Page 12

J Comput Graph Stat. Author manuscript; available in PMC 2014 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://lib.stat.cmu.edu/datasets/tecator
http://lib.stat.cmu.edu/datasets/tecator


been recently devised to estimate the conditional class probabilities using large-margin
classifiers with the aid of assigning different weights to different classes. These new
methods may be extended to the case of sparse and irregular functional predictors.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Plots of H1(u), Hs(u), and HTs(u) (from left to right).
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Figure 2.
Sparse and irregular functional data for one random repetition of Example 6.1.
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Figure 3.
The estimated mean curve and first two eigenfunctions given by the PACE for one random
repetition of Example 6.1.
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Figure 4.
Sparse and irregular functional data for the spinal bone mineral density data.
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Figure 5.
The estimated mean curve and first three eigenfunctions given by the PACE for the spinal
bone mineral density data.
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