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Abstract
We examine three Bayesian case influence measures including the φ-divergence, Cook's posterior
mode distance and Cook's posterior mean distance for identifying a set of influential observations
for a variety of statistical models with missing data including models for longitudinal data and
latent variable models in the absence/presence of missing data. Since it can be computationally
prohibitive to compute these Bayesian case influence measures in models with missing data, we
derive simple first-order approximations to the three Bayesian case influence measures by using
the Laplace approximation formula and examine the applications of these approximations to the
identification of influential sets. All of the computations for the first-order approximations can be
easily done using Markov chain Monte Carlo samples from the posterior distribution based on the
full data. Simulated data and an AIDS dataset are analyzed to illustrate the methodology.
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1 Introduction
One of the main goals of any statistical analysis is to assess model assumptions and model
fit. Towards this goal, it is critical to assess the influence of individual cases (or generally, a
set of observations) on an analysis and to identify influential observations (or sets of
observations) and/or outliers (Cook, 1977; Cook and Weisberg, 1982; McCulloch, 1989;
Geisser, 1975, 1993). In Bayesian analysis, considerable research has been devoted to
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developing single case influence measures for various specific statistical models including
generalized linear models, time series models, and survival models (Johnson and Geisser,
1983; Johnson, 1985; Pettit, 1986; Kass et al., 1989; Carlin and Polson, 1991; Gelfand et al.,
1992; Geisser, 1993; Blyth, 1994; Peng and Dey, 1995; Christensen, 1997; Bradlow and
Zaslavsky, 1997). The influence of an individual observation or set of observations is often
assessed by deleting the observation (or set of observations) and then comparing the the
posterior (or predictive) distribution based on the full data compared to that of posterior (or
predictive) distribution based on the deleted observation (observations).

There are four major types of Bayesian case influence measures. These are posterior
probabilities of outlying sets, posterior outlier statistics, predictive diagnostics, and posterior
diagnostics for identifying outliers and influential points (Zhu et al., 2010). Computing
posterior probabilities of outlying sets is conceptually simple (Box and Tiao, 1968), but it is
difficult to implement computationally in most models with missing data. So far, this
approach is limited to several simple regression models, such as the classical linear
regression model with conjugate priors (Abraham and Box, 1979). The posterior outlier
statistic is based on using the posterior distribution of an outlier statistic, such as the raw
residual, to define outliers and calculate the posterior probability that an observation is an
outlier. This method is computationally simple and has been further extended to generalized
linear models, survival models, latent variable models, state space models, and many others
(Chaloner, 1991; Albert and Chib, 1993; Lee, 2007). Predictive diagnostics assess the
discordance of a set of observations based on their predictive distribution (Gelfand et al.,
1992; Geisser, 1993; Gelfand and Dey, 1994). Predictive diagnostics are also conceptually
simple, but computing them can be difficult for regression models with missing data. In
contrast to predictive diagnostics, posterior diagnostics compare the posterior distributions
of the parameters given the complete data and the reduced data (Csiszár, 1967; Weiss and
Cook, 1992).

Despite the extensive literature on Bayesian diagnostics for various types of models, very
little has been done on systematically examining Bayesian case influence measures using
case deletion, namely the ϕ-divergence, Cook's posterior mode distance and Cook's posterior
mean distance, in statistical models for both dependent and independent data in the presence
of missing data. We refer the reader to a review of Bayesian diagnostics in Zhu et al. (2010)
and Peng and Dey (1995). Computationally, as shown later, it can be very difficult to
directly compute such Bayesian case influence measures for many complex models with
missing data (Molenberghs and Kenward, 2007; Molenberghs and Verbeke, 2005; Lee,
2007; Ibrahim et al., 2005; Daniels and Hogan, 2008; Little, 1992; Little and Rubin, 2002;
Ibrahim and Molenberghs, 2009; Skrondal and Rabe-Hesketh, 2004). For example, in the
real data analysis presented in Section 3.2, we present a Bayesian diagnostic analysis for a
complex Bayesian structural equations model with nonignorable missing data, for which it is
infeasible to compute the exact values of these Bayesian case influence measures. This
setting thus facilitates the need for deriving computationally feasible approximations for
these Bayesian case influence measures.

The aims of this paper are to systematically examine the above-mentioned Bayesian case
influence measures based on case deletion, to derive their first-order approximations, and to
evaluate their roles in detecting a set of influential observations for a variety of regression
models with missing data. By using a Laplace approximation (Kass et al., 1990; Tierney et
al., 1989), we show that under some mild conditions, the first-order approximations hold for
a large class of statistical models for both dependent and independent data within the
Bayesian framework. We extensively examine the accuracy of these first-order
approximations for the three Bayesian case influence measures using both theoretical results
and simulation studies. Specifically, we show that the first-order approximations are quite
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accurate and all of the computations for the first-order approximations can be easily
numerically computed using Markov chain Monte Carlo (MCMC) samples from the
posterior distribution based on the full data.

The rest of this paper is organized as follows. In Section 2, we introduce the three Bayesian
case influence measures and propose computational formulas for them. We derive two first-
order approximations to the Bayesian case influence measures. In Section 3, we illustrate the
proposed methodology for latent variable models with missing data. We conclude the paper
with some discussions in Section 4.

2 Methods
2.1 Bayesian Case Influence Measures

Let p(Y∣θ) be the probability function for a random vector , parameterized
by an unknown parameter vector θ = (θ1, …, θp)T in an open subset Θ of Rp. Moreover, the
dimension of Yi = (yi1, …, yimi)

T, denoted by mi, can vary across all i. For example, in
longitudinal studies and mixed models, mi is the number of observations in each cluster and
this may vary significantly across the clusters. Let p(θ) be the prior distribution of θ. The
posterior distribution for the full data Y is given by p(θ∣Y) ∝ p(Y∣θ)p(θ).

We are interested in assessing the influence of deleting a set of observations, denoted by S,

on posterior inferences regarding θ. Let  and NS be, respectively, the total
number of observations and the number of observations in the set S. A subscript ‘[S]’
denotes the relevant quantity with all observations in S deleted. For instance, if S = {i}, then
Y[S] is the corresponding observed data with all of Yi deleted, whereas if S = {i1, i2}, then
Y[S] is the corresponding observed data with Yi1 and Yi2 deleted. Furthermore, we may set S
= {i1, …, ik} and S = {(i1, j1), …, (ik, jk)} to allow for more complicated case deletion
schemes. Let YS denote a subsample of Y consisting of all the observations in S and let Y[S]
denote a subsample of Y with all observations in YS deleted. The posterior distribution for a
subsample of the data Y is given by p(θ∣Y[S]) ∝ p(Y[S]∣θ)p(θ).

Now, we examine three types of Bayesian case influence measures based on case deletion.
The first type is the ϕ–influence of Y[S], defined by

(1)

where R[S](θ) = p(θ∣Y[S])/p(θ∣Y) and ϕ(·) is a convex function with ϕ(1) = 0 (Weiss and
Cook, 1992; Weiss, 1996). Dϕ(S) directly measures the distance (discrepancy) between two
posterior distributions p(θ∣Y[S]) and p(θ∣Y) (Csiszár, 1967; Weiss and Cook, 1992) and a
large value of Dϕ(S) corresponds to a set of influential observations. Various forms of ϕ(·)
have been widely considered in the literature (Kass et al., 1989; Weiss and Cook, 1992;
Blyth, 1994; Peng and Dey, 1995; Weiss, 1996). For instance, ϕ(·) can be chosen to be
ϕα(u), which is defined by 4{1 − u(1+α)/2}/{1 − α2) for α ≠ ±1, u log(u) for α = 1, and −
log(u) for α = −1. In particular, ϕ1(·) and ϕ−1(·) lead to the Kullback-Leibler divergence (K-
L divergence); moreover, ϕ(u) = ϕ1(u) + ϕ−1(u) leads to the symmetric K-L divergence. The
L1–distance and the χ2–divergence correspond to ϕ(u) = 0.5|u − 1| and ϕ(u) = (u − 1)2,
respectively (Weiss, 1996).

The second Bayesian influence measure assesses the discrepancy between the posterior
mode of θ with and without the ith case (Cook and Weisberg, 1982). We call this measure
Cook's posterior mode distance. Specifically, we define the posterior modes of θ for the full
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sample Y and a subsample Y[S] as θ̂ = argmaxθ log p(θ∣Y) and θ̂[S] = argmaxθ log p(θ∣Y[S]),
respectively. Then, Cook's posterior mode distance for comparing Y and Y[S], denoted by
CP(S), can be defined as follows:

(2)

where Gθ is chosen to be  evaluated at θ̂, where 
represents the second-order derivative with respect to θ. If we consider a uniform improper
prior for θ, then CP(S) reduces to the well-known Cook's distance for deleting a set of
observations (Cook and Weisberg, 1982). A large value of CP(S) implies more influence of
the set S on the posterior mode.

The third type of Bayesian influence measure assesses the distance between the posterior
mean of θ with and without the observations in S. We define the posterior mean of θ for the
full sample Y and a subsample Y[S] as θ̃ = ∫ θ · p(θ∣Y)dθ and θ̃[S] = ∫ θ · p(θ∣Y[S])dθ,
respectively. Cook's posterior mean distance for deleting the observations in the set S,
denoted by CM(S), can then be defined as follows:

(3)

where Wθ is chosen to be the inverse of the full-data posterior covariance matrix of θ. A
large value of CM(S) corresponds to an influential set S regarding the posterior mean.

Although all three Bayesian case influence measures assess the influence of a set of
observations, there is a conceptual difference among those measures. Dϕ(S) quantifies the
effects of deleting a set of observations on the overall posterior distribution, whereas CP(S)
and CM(S) quantify the effects of deleting a set of observations on the posterior mode and
the posterior mean of θ, respectively. Since Dϕ(S) measures the overall difference between
p(θ∣Y) and p(θ∣Y[S]), and such a difference may include shape, mode, mean etc., Dϕ(S) can
be more sensitive to some changes of the posterior distributions other than the posterior
mean or posterior mode due to the deletion of the observations in S compared with CP(S)
and CM(S). However, compared with Dϕ(S), CP(S) and CM(S) may be more sensitive to a
change in the posterior mean or posterior mode.

2.2 Computational Formula and its Difficulties
When p(Y∣θ) is relatively easy to compute, all three Bayesian case influence measures can
be computed using only MCMC samples from the full posterior distribution, p(θ∣Y). We
define pS(θ), the ratio of likelihoods with and without the observations in S as

(4)

which is the conditional distribution of YS given Y[S]. Then, we have

Thus, following Weiss (1996), the computational formula for Dϕ(S) can be obtained as
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(5)

where Eθ∣Y denotes the expectation taken with respect to the posterior distribution p(θ∣Y).
Specifically, for the K-L divergence (ϕ(u) = − log(u)), the computational formula is given by
Dϕ(S) = log Eθ∣Y{[pS(θ)]−1} + Eθ∣Y{log[pS(θ)]}. It is well recognized that the accuracy of
approximating Dϕ(S) depends heavily on the variability of pS(θ) (Epifani et al., 2008;
Peruggia, 1997).

To compute CP(S), we need to evaluate θ̂ and θ̂S. In general, the posterior mode of θ does
not have a closed analytic form, thus we have to rely on iterative methods such as Newton-
Raphson to obtain θ̂ and θ̂[S]. However, this can be computationally intensive for most
models, such as state space models. Gθ in CP(S) can be analytically obtained by evaluating

 at θ̂.

Since we can write θ̃ = Eθ∣Y(θ) and

(6)

we can easily compute CM(S) using MCMC samples from the full posterior distribution,
p(θ∣Y). Specifically, the posterior mean of θ, denoted θ̃, can be obtained directly by
averaging the MCMC samples and Wθ can be analytically obtained by evaluating JN(θ) at
θ̃. Furthermore, Gθ can be approximated by the inverse of the posterior covariance matrix,
obtained from the MCMC samples. Based on the above discussion, computing (5) and (6)
strongly depends on the the computation of pS(θ) = p(YS∣Y[S], θ).

It can be computationally quite cumbersome to approximate pS(θ) in the presence of missing
data, which therefore makes the computation of the three Bayesian case influence measures

infeasible. To see this fact, denote the missing data by  and the

complete data by , in which Yi,com = (Yi,mis, Yi) for i = 1, …, n.
Let p(Ycom∣θ) be the probability function for Ycom. We define Ycom,[S] = (Y[S], Ymis) as the
complete data after deleting all observations in YS and p(Ycom,[S]∣θ) is the probability
function for Ycom,[S] such that ∫ p(Ycom,[S]∣θ)dYmis = p(Y[S]∣θ). This kind of model structure
is very general and subsumes most commonly used models, such as GLMs with missing
responses and/or covariates and random-effects models (Ibrahim et al., 2005, 2010; Zhu et
al., 2001; Molenberghs and Kenward, 2007; Molenberghs and Verbeke, 2005; Lee, 2007;
Ibrahim et al., 2005; Daniels and Hogan, 2008; Little, 1992; Little and Rubin, 2002; Ibrahim
and Molenberghs, 2009; Skrondal and Rabe-Hesketh, 2004). With missing data, the primary
computational challenge lies in the computation of pS(θ), because

(7)

typically involves high-dimensional integrals.

Example 1—To illustrate the methodological development, we consider n independent
observations {Yi,com = (xi, zi, ri, yi), i = 1, …, N}, where yi is the response variable, xi is a p1
× 1 vector of completely observed covariates, and zi is a p2 × 1 vector of partially observed

Zhu et al. Page 5

J Comput Graph Stat. Author manuscript; available in PMC 2013 February 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



covariates. Moreover, let zmis,i and zobs,i denote the missing and observed components of zi,
respectively. Let ri be a p2 × 1 vector, whose jth component, rij, equals 1 if zij is observed,
and 0 if zij is missing. We assume that p(xi, zi, ri, yi∣θ) = p(yi∣xi, zi, θ)p(xi, zi∣θ) p(ri∣yi, xi, zi,
θ), where θ denotes the vector of unknown parameters.

We assume a generalized linear model for p(yi∣xi, zi, β, τ) given by

(8)

for i = 1, …, n, where ai(·), b(·) and c(·, ·) are known functions, ηi = η(μi) and ,
in which g(·) is a known link function, β = (β1, …, βp)′ and p = p1 + p2. We assume that

(9)

Similarly, we model the missing-data mechanism p(ri∣yi, xi, zi, ξ) as

(10)

Here, θ = (β, τ, α, ξ). To carry out a Bayesian analysis, we need to specify a prior for θ.
Following Huang, Chen and Ibrahim (2005), we specify a prior of θ such that p(θ) =
p(τ)p(β)p(ξ)p(α).

Now we consider the deletion of the i–th observation (xi, zi, ri, yi), that is S = {i}. With some
calculations, we get

(11)

which may involve intractable integrals when the dimension of zmis,i is relatively large.
Although one may be able to use some numerical methods (e.g., the trapezoidal rule) to
approximate pS(θ), the accuracy of such approximations can be impossible to assess when
the integrals are high dimensional. This setting thus requires the derivation of
computationally simple approximations to these Bayesian case influence measures.

2.3 First-order Approximations
For diagnostic purposes, it is desirable to derive computationally feasible approximations to
these case influence measures. We obtain the following theorems, whose detailed proofs can
be found in the the supplementary document.

Theorem 1—If Assumptions C1-C5 in the supplementary document hold and NS is
bounded by a fixed constant, then we have the following results:

a. Dϕ(S) can be approximated by

(12)

where .

b. The one-step approximation for θ̂[S] is given by

Zhu et al. Page 6

J Comput Graph Stat. Author manuscript; available in PMC 2013 February 06.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(13)

c. The one-step approximation for θ̃[S] is given by

(14)

d. 2Dϕ(S)/ϕ̈(1), CP(S), and CM(S) are asymptotically equivalent, that is,

(15)

Theorem 1 has several important implications. Theorem 1 (a) provides a theoretical and
computational approximation of Dϕ(S) as a quadratic form in ∂θ log pS(θ̂). Theorem 1 (b)
and (c) provide the one-step approximations of θ̂[S] and θ̃[S], which reduce the burden of
computing θ̂[S] and θ̃[S] for each S. Moreover, to the best of our knowledge, Theorem 1 (d)
is the first result that establishes a direct connection between Dϕ(S), CP(S) and CM(S) for
any ϕ(·) within the Bayesian framework. In particular, for ϕα(u) = − log(u), it can be shown

that , which leads to Dϕα(S) = 0.5CP(S) + Op(N−2) = 0.5CM(S) + Op(N−2) for
all α. Furthermore, for the χ2–divergence and the symmetric K-L divergence, we have

, which gives Dϕ(S) = CP(S) + Op(N−2) = CM(S) + Op(N−2). However, for ϕ(u)
= 0.5|u − 1|, because ϕ̈(1) = 0 and ϕ(u) is not differentiable at u = 1, the conditions of
Theorem 1 are not valid. Thus, the approximation given in Theorem 1 (a) and the
equivalence among the three diagnostic measures do not hold for the L1–distance.

Practically, these approximations lead to computationally efficient formulas for
approximating these Bayesian case influence measures. Because the first-order
approximations hold for a large class of statistical models for both dependent and
independent data, and in the presence of missing data within the Bayesian framework, they
are reminiscent of the first-order approximations for various specific models within the
frequentist framework (Christensen et al., 1992; Cook and Weisberg, 1982; Wei, 1998). For
influential points, even though the accuracy of the first-order approximation may be
relatively low, the first-order approximated measure can easily pick out these influential
points. Thus, for diagnostic purposes, the first-order approximation may be more effective at
identifying influential clusters compared with the three Bayesian case influence measures.
We conduct simulation studies to investigate the performance of these first-order
approximations relative to the exact formula in Section 3. See numerical comparisons in
Table 4.

According to Theorem 1, to approximate these case influence measures, we only need to
compute the posterior mean θ̃, the observed-data information matrix JN(θ̃), ∂θ log pS(θ)
evaluated at θ̃, and

(16)

In particular, θ̃ and JN(θ̃) can be easily computed from the MCMC samples based on the
full data. Specifically, JN(θ̃) can be approximated by using the Louis' formula (Louis, 1982).
For most statistical models, the computation of ∂θ log pS(θ) = ∂θ log p(Y∣θ) − ∂θ log
p(Y[S]∣θ) is relatively straightforward. Specifically, we have
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(17)

(18)

Here, we use the fact that the posterior mean and posterior mode are asymptotically
equivalent under suitable regularity conditions which are satisfied for the models considered
here.

Example 1 (continued): Let's consider deletion of the i–th observation (xi, zi, ri, yi). It can
be shown that

Note that in most models with missing data, it is relatively easy to compute the first-order
derivative of the complete-data log-likelihood function. Moreover, compared to the
computation of the observed-data log-likelihood function, it is numerically much more
stable to calculate the first-order derivative of the complete-data log-likelihood function.
This is the key advantage of using (17) and (18) to approximate AP1({i}; θ̃).

We now present the four key steps in computing AP1(S; θ̃) in (16).

Step 1: Using the full data Y, we obtain the MCMC sample θ(j) for j = 1, …, J from p(Y∣θ)

and estimate .

Step 2: We use MCMC methods to draw samples  from p(Ymis∣Y, θ̃) given
θ̃ and Y.

Step 3: For each set S, we approximate JN(θ̃) using Louis' formula and approximate ∂θ log
p(Y∣θ̃) and ∂θ log p(Y[S]∣θ̃) by

(19)

(20)

Step 4: Approximate AP1(S; θ̃) using equation (16) for each set S.

Although we have systematically examined the deletion of a relatively small number of
observations, it is common to delete relatively large numbers of observations for clustered
data. Specifically, unbalanced clustered data are commonly collected from familial and
longitudinal studies and we may be interested in deleting all the observations in a cluster,
whose number may be comparable with the total number of observations N (Wang et al.,
1999). We now obtain the following theorem for large cluster sizes.
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Theorem 2—If Assumptions C1, C2, C3, C4′ and C5 in the supplementary document hold
and NS → ∞ and NS/N → γ ∈ [0, 1), then we have the following results:

a. The one-step approximation for θ̂[S] is given by

(21)

where . Ifγ = 0, then

(22)

b. The one-step approximation for θ̃[S] is given by

c. CP(S) and CM(S) can be approximated by

Ifγ = 0, then

(23)

d. Dϕ(S) can be approximated by

(24)

where AS = σ × p(Y[S]∣θ̂)p(θ̂)/[σ[S] × p(Y[S]∣θ̂[S])p(θ̂S)], σ2 = |JN(θ̂)/N|−1 and

.

Theorem 2 has several important implications. Theorem 2 (a) and (b) provide the one-step
approximations of θ̂[S] and θ̃[S], which reduce the burden of computing θ̂[S] and θ̃[S] for
each S. Theorem 2 (c) provides the theoretical approximations of CP(S) and CM(S). If NS/N

→ 0, such as , then CP(S) and CM(S) can be well approximated by AP2(S; θ̃).
Theorem 2 (d) shows that when NS → ∞, Dϕ(S), which can be approximated by ϕ(AS), is
not asymptotically equivalent to AP2(S; θ̃) in any case. Therefore, we cannot use AP2(S; θ̃)
to characterize the asymptotic behavior of Dϕ(S). Since calculating CM(S), CP(S), Dϕ(S)
and p(Y[S]∣θ) can be computationally tedious for models with missing data, we generally
suggest using their first-order approximations AP1(S; θ̃) and AP2(S; θ̃) for identifying
influential observations. Moreover, we can easily develop a similar procedure for computing
AP2(S; θ̃).

3 Illustrative Examples
In this section, we illustrate our methodology with simulated data and a real dataset.
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3.1 Simulated Data
The goal of our simulations was to evaluate the accuracy of the first-order approximations of
the three Bayesian case influence measures in small and moderate sample sizes. We
generated 100 data sets from a Binomial mixed model, which has been extensively studied
in the literature (Molenberghs and Verbeke, 2005). Specifically, each data set contains n
clusters. For each cluster, the random effect bi, which can be regarded as “missing data”,
was first independently generated from a N(0, σ2) distribution and then, given bi, the
observations yij (j = 1, 2, 3; i = 1, …, n) were independently generated from a Binomial

random generator such that yij ∼ B(nij, pij) with pij satisfying , in
which the nij were randomly drawn from {1, …, 5}. Moreover, the covariates xij were set as
(1, uij − 0.5)T, and the uij were independently generated from a U[0, 1] distribution. For all
100 data sets, both the responses and covariates were repeatedly generated, while the true
value of (βT, σ2) was fixed at (0.5, 0.5, 0.5). The sample size n was set at 10 and 50,
respectively, to represent small and moderate sample sizes.

For each simulated data set, we created two types of influential observations in order to
compare the accuracy of the first-order approximations and their capability in the
identification of these influential clusters. For the first type, we deleted all the observations
in clusters n − 1 and n and then reset {ni,j = 3 : j = 1, 2, 3; i = n − 1, n} and (bn−1, bn) = (4,
−4) to generate yi,j for i = n − 1, n and j = 1, 2, 3 according to the above binomial random
effects model. Thus, the new (n − 1)th and nth clusters can be regarded as influential clusters
due to the extreme values of bn−1 and bn. Moreover, the number of observations in these two
clusters is relatively small compared to the total number of observations.

For the second type of influential observations, we deleted the observations from the n-th
cluster and then reset {ni,j = 10 : j = 1, 2, 3; i = n} and then generated {ynj : j = 1, 2} with bn
= 0 and yi3 with bn = −6 from the same model. Since different bn values were used to
generate different observations in the n–th cluster, the n-th cluster can be treated as an
“outlier”. Moreover, the number of observations in the last cluster is relatively large
compared to the total number of observations when n = 10.

For each data set, we deleted each cluster one at a time and then calculated the differences
between the three Bayesian diagnostic measures and their first-order approximations for
each cluster. Since bi is one-dimensional, we used a standard numerical method to compute
pS(θ) = p(YS∣Y[S], θ) and to approximate the exact values of the three Bayesian diagnostic
measures based on (5) and (6). Moreover, for the true ‘good’ and influential clusters, we
computed the average biases and standard errors of these differences (Tables 1-3). For the
true ‘good’ clusters, the use of AP2(S; θ̃) leads to smaller average biases and comparable
standard errors to CP(S) and CW(S) compared with AP1(S; θ̃). Increasing the sample size
decreases the average bias and standard error of the first-order approximations. Compared
with AP2(S; θ̃), AP1(S; θ̃) is a better approximation to Dϕ(S).

We also computed the frequency of correctly ranking the true influential/outlying clusters as
the top four clusters based on the 100 simulated data sets for each scenario (Table 4). Due to
the randomness introduced by random number generator, it is possible that few ‘good’
observations may appear as influential observations. Among all three case influence
measures, Dϕ(S) is more sensitive for detecting influential/outlying clusters compared to
CP(S) and CW(S). Although AP1(S; θ̃) and AP2(S; θ̃) are not very accurate approximations
to the three Bayesian case influence measures (Tables 1-3), they consistently selected the
influential clusters as the top four clusters. Furthermore, the results in Table 4 actually
indicate that compared with all three Bayesian case influence measures, AP1(S; θ̃) and
AP2(S; θ̃) may be more effective in detecting influential/outlying clusters in all scenarios.
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Thus, for the purpose of detecting influential/outlying clusters, the performance of the first-
order approximations AP1(S; θ̃) and AP2(S; θ̃) are quite satisfactory.

Finally, we generated a data set by using the same Binomial mixed model. We deleted all
observations of the 38-th cluster with the smallest leverage (Figure 1) and then regenerated
{y38,j : j = 1, 2, 3} by using the same model except that x38,j,2 was changed into x38,j,2 + 5.0.
However, when we fitted the same Binomial mixed model, we used the original x38,j. Thus,
the 38-th cluster can be regarded as an ‘outlying’ cluster since different x38,j values were
used to generate observations. Index plots of CM(i) and Dϕ(i) (Figure 2) indicate that CM(i)
seems to be more sensitive to outliers with low leverage covariates.

3.2 AIDS Data
We considered a small portion of a real dataset from a study of the relationship between
acquired immune deficiency syndrome (AIDS) and the use of condoms (Morisky et al.,
1998). This data set contained 11 items on knowledge about AIDS and beliefs, behaviors
and attitudes towards condoms use collected from n = 1116 subjects. Nine of them were
taken as responses in yi = (yi1, …, yi9)T and a continuous item xi1 (item 37) and an ordered
categorical item xi2 (item 21, which was treated as continuous) were taken as covariates.
The definitions of the nine items are given in the Appendix. In this dataset, the variables yi1,
yi2, yi3, yi7, yi8 and yi9 were measured via a 5-point scale and hence were treated as
continuous; the variables yi4, yi5 and yi6 were continuous. The responses and covariates are
missing at least once for 361 subjects (32%), while the covariate xi2 is completely observed.
The missing data patterns for the response variables are given in Table 4 of Lee and Tang
(2006).

To fit the AIDS data, we considered a complex structural equations modeling in the
presence of not missing at random (NMAR) responses and missing at random (MAR)
covariates. The responses (yi1, yi2, yi3) are related to a latent variable, ηi, which can be
interpreted as the ‘threat of AIDS’, while the responses (yi4, yi5, yi6) and (yi7, yi8, yi9) are
respectively related to the latent variables ξi1 and ξi2, which can be respectively interpreted
as ‘aggressiveness of the sex worker’ and ‘worry of contracting AIDS’. Specifically, to
identify the relationship between the responses yi and the latent variables ωi = (ηi, ξi1, ξi2)T,
we consider the following measurement equation:

(25)

where μ = (μ1, …, μ9)T is a vector of intercepts, (ξi1, ξi2) is independent of the
measurement error vector εi, and (ξi1, ξi2) ∼ N(0, Φ) and εi ∼ N(0, Ψ), in which Ψ =
diag(ψ1, …, ψ9) and Φ = (ϕij) is a 2 × 2 covariance matrix. We also assume the following
structure for Λ:

(26)

where 0.0* and 1.0* are regarded as fixed values to identify the scale of the latent factor. To
study the relationship between η and (x1, x2, ξ1, ξ2), we consider the following nonlinear
structural equations model:

(27)
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where δi ∼ N(0, ψδ). We let ryij = 1 if yij is missing and ryij = 0 if yij is observed; rxi1 = 1 if
xi1 is missing and rxi1 = 0 if xi1 is observed. Based on the missingness patterns, we assume
that the missing data for the responses is NMAR whilst the missing data for the covariates is
MAR. In particular, we consider the following missing data mechanism for yij:

(28)

where φ = (φ0, φ1, …, φ9)T. Since xi1 may be missing, we have to specify a distribution for
it. For simplicity, we assume that xi1 ∼ N(0, ψx). Posterior inference for the structural
parameters is obtained via Markov chain Monte Carlo methods as introduced in (Lee and
Tang, 2006).

Due to the computational complexity in calculating the exact values of the three Bayesian
influence measures, we only calculated the case influence measures AP1({i}) and AP2({i})
(Figure 1). Both case influence measures identify subjects 14, 25, 28, 137, 168, 175, 274,
408, 492, and 985 as influential cases (Figs. 3 and 4). Among them, cases 14 and 985 stand
out as the most influential cases. Inspecting Table 5 reveals that case 14 has the largest
number of vaginal sex (y4) in the last 7 days and case 985 has the largest number of blow
jobs (y5) in the last 7 days (Fig. 4 (a) and (c)). Cases 25, 28, 137, and 408 have the largest
numbers of hand jobs (y6) given in the last 7 days, cases 168, 175, and 274 have relatively
large numbers of blow jobs compared with other subjects, and case 492 has the second
largest number of vaginal sex in the last 7 days (Table 5).

Furthermore, following the classical linear model, we also calculated 
for all of the fully observed xi's, where Σk sums over all fully observed covariates. Among
all 10 influential observations, only subject 14 has a high leverage point with h14 = 0.0155.
Inspecting all leverage values reveals that the 93rd subject, who has an extremely high
leverage point, has the longest period as a prostitute among all subjects, whereas this subject
is not an influential subject.

We further computed the posterior means and standard deviations of all the parameters with
and without these 10 influential observations. We observed some effects of deleting these 10
influential observations on the parameters associated with y4, y5, and y6 (Table 6). For
instance, after deleting the influential observations, λ62 was changed from 0.855 to 1.296
and φ5 was changed from -0.413 to -0.297. This indicates that it is important to identify
influential observations and assess their effects on the statistical inference in complex
statistical models with missing data.

4 Discussion
We have derived two first-order approximations to three Bayesian case influence measures
under the deletion of a small (or large) number of observations. We have shown that the
first-order approximation measures are useful tools for detecting influential observations in
the presence of missing data for a large class of statistical models.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Index plot of leverage values in simulation study.
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Figure 2.
Index plots of CM(i), Dϕ(i), AP1(i) and AP2(i) in simulation study.
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Figure 3.
AIDS data: index plots of diagnostic measures (a) AP1(i) and (b) AP2(i).
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Figure 4.
AIDS data: scatter plots of (a) (yi4, yi5), (b) (yi4, yi6), (c) (yi5, yi6), and (d) (yi4, yi5, yi6).
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