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BACKGROUND. Type 1 diabetes (T1D) results from destruction of pancreatic β cells by autoreactive effector T cells. We 
hypothesized that the immunomodulatory drug alefacept would result in targeted quantitative and qualitative changes in 
effector T cells and prolonged preservation of endogenous insulin secretion by the remaining β cells in patients with newly 
diagnosed T1D.

METHODS. In a multicenter, randomized, double-blind, placebo-controlled trial, we compared alefacept (two 12-week courses 
of 15 mg/wk i.m., separated by a 12-week pause) with placebo in patients with recent onset of T1D. Endpoints were assessed 
at 24 months and included meal-stimulated C-peptide AUC, insulin use, hypoglycemic events, and immunologic responses.

RESULTS. A total of 49 patients were enrolled. At 24 months, or 15 months after the last dose of alefacept, both the 4-hour 
and the 2-hour C-peptide AUCs were significantly greater in the treatment group than in the control group (P = 0.002 and 
0.015, respectively). Exogenous insulin requirements were lower (P = 0.002) and rates of major hypoglycemic events were 
about 50% reduced (P < 0.001) in the alefacept group compared with placebo at 24 months. There was no apparent between-
group difference in glycemic control or adverse events. Alefacept treatment depleted CD4+ and CD8+ central memory T cells 
(Tcm) and effector memory T cells (Tem) (P < 0.01), preserved Tregs, increased the ratios of Treg to Tem and Tcm (P < 0.01), 
and increased the percentage of PD-1+CD4+ Tem and Tcm (P < 0.01).

CONCLUSIONS. In patients with newly diagnosed T1D, two 12-week courses of alefacept preserved C-peptide secretion, 
reduced insulin use and hypoglycemic events, and induced favorable immunologic profiles at 24 months, well over 1 year after 
cessation of therapy.

TRIAL REGISTRATION. https://clinicaltrials.gov/ NCT00965458.
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diverse metabolic assessments and effects on T cell subsets (26). 
However, the durability of these effects off therapy was unknown.

Herein, we report the 24-month clinical, metabolic, and mech-
anistic findings of the T1DAL trial, testing the hypothesis that 
specific targeting of memory T cells with alefacept will lead to sus-
tained preservation of β cell function. Our current findings demon-
strate continued beneficial effects of alefacept on key metabolic 
and immunologic outcomes 15 months after cessation of therapy.

Results
Clinical, metabolic, and safety results. As reported previously, of 73 
individuals screened, 49 were enrolled in the trial, with 33 patients 
randomly assigned to receive alefacept and 16 to receive placebo. 
Demographic and baseline characteristics of the 49 participants 
enrolled were comparable between the alefacept and placebo 
groups (26). At 12 months, 3 participants in the alefacept group 
and 4 participants in the placebo group were lost to follow-up; no 
additional participants were lost to follow-up between 12 and 24 
months (Figure 1).

Alefacept-treated participants had preservation of endoge-
nous insulin production at 24 months, compared with placebo, 
determined by both the 4- and 2-hour mixed meal tolerance test 
(MMTT) C-peptide AUC. In the 4-hour evaluation, there was 
a mean decrease in C-peptide AUC of 0.134 nmol/l (95% CI,  
0.002–0.265) in the alefacept group; that amount was less than the 
placebo group (0.368 nmol/l [95% CI, 0.259–0.476; P = 0.002]; for 
a plot of the actual C-peptide values, see Figure 2A and Supplemen-
tal Figure 1; supplemental material available online with this arti-
cle; doi:10.1172/JCI81722DS1). In the 2-hour C-peptide evaluation, 
the alefacept group had a mean decrease of 0.185 nmol/l (95% CI, 

Introduction
Type 1 diabetes (T1D), one of the most prevalent chronic dis-
eases of childhood that also presents in adults (1, 2), results from 
destruction of insulin-producing β cells by self-reactive T cells 
that have escaped central and peripheral tolerance (3). Insu-
lin therapy is lifesaving but is required daily, heightens risks for 
major hypoglycemia, and lessens but does not avert other serious 
complications, including death (4). There is a need for safe inter-
ventions to preserve β cell function, reduce hypoglycemia, and 
improve short- and long-term outcomes (5).

In recent decades, some clinical trials in new-onset T1D have 
demonstrated modest or transient preservation of β cell function 
using generalized or targeted immunomodulation (6–11), but 
most immunotherapies, as well as dietary intervention, have had 
no effect (12–17). The greatest clinical efficacy was achieved with 
a regimen of autologous nonmyeloablative hematopoietic stem 
cell transplantation. However, it was at the cost of significant 
short- and long-term morbidity (18, 19).

Alefacept — a fusion protein consisting of two LFA-3 mole-
cules bound to the Fc portion of IgG1 (20) — binds CD2, which 
is expressed most prominently on CD4+ and CD8+ effector 
memory T cells (Tem cells) (21), the cells thought to be primar-
ily responsible for β cell destruction in T1D (3). Alefacept inter-
rupts CD2-mediated T cell costimulation and depletes T cells via 
an NK cell–dependent mechanism (22, 23). Alefacept is effec-
tive in plaque psoriasis, which like T1D is considered to be a T 
cell–mediated autoimmune disease and, in some cases, induces 
long-term remission off therapy (24, 25). We recently reported 
the 12-month results of the T1DAL trial (Inducing Remission in 
New-Onset T1D with Alefacept), which showed improvements in 

Table 1. AEs in alefacept- and placebo-treated subjects

Total participants  
(n = 49)

Events Alefacept participants 
(n = 33)

Events Placebo participants 
(n = 16)

Events

Serious AEs 1 (2%) 1 1 (3%) 1 0 0
Serious AEs related to study 
drug

0 0 0 0 0 0

AEs 49 1783 33 1,076 16 707
AE related to study drug 44 (90%) 563 (32%) 29 (88%) 365 (34%) 15 (94%) 198 (28%)
AEs by severity
  Grade 1 48 (98%) 515 (29%) 32 (97%) 360 (34%) 16 (100%) 155 (22%)
  Grade 2 47 (96%) 1,165 (65%) 31 (94%) 659 (61%) 16 (100%) 506 (72%)
  Grade 3 29 (59%) 97 (5%) 20 (61%) 53 (5%) 9 (56%) 44 (6%)
  Grade 4 5 (10%) 5 (<1%) 3 (9%) 3 (<1%) 2 (13%) 2 (<1%)
  Grade 5 0 0 0 0 0 0
Injection reactions 10 (20%) 26 (2%) 6 (18%) 18 (2%) 4 (25%) 8 (1%)
Hypersensitivity reactions 1 (2%) 1 (<1%) 1 (3%) 1 (<1%) 0 0
Lymphopenia 3 (6%) 8 (<1%) 3 (9%) 8 (<1%) 0 0
Infection with EBV, 
cytomegalovirus, or tuberculosis

2 (4%) 3 (<1%) 1 (3%) 1 (<1%) 1 (6%) 2 (<1%)

Infection 42 (86%) 179 (10%) 28 (85%) 127 (12%) 14 (88%) 52 (7%)
Asymptomatic hepatic injury 19 (39%) 37 (2%) 12 (36%) 28 (3%) 7 (44%) 9 (1%)
Major hypoglycemic event 45 (92%) 1,134 (64%) 30 (91%) 609 (57%) 15 (94%) 525 (74%)
Pregnancy 1 (2%) 1 (<1%) 1 (3%) 1 (<1%) 0 0
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Over the entire study, rates of major hypoglycemia were sub-
stantially lower in the alefacept group, at 9.6 events/patient/year 
compared with 19.1 events/patient/year in the placebo group  
(P < 0.001), corresponding to a rate-ratio reduction with alefacept 
use of 2.0. These lower rates with alefacept occurred both during 
and off treatment, with rate-ratio reductions of 1.6 during weeks 
1–52, and 2.5 during weeks 53–104 (Figure 2D).

Inspection of the plots in Figure 2A suggests that the treatment 
arms may continue to diverge in year 2 (from week 52–104). There 
was a mean decrease from month 12–24 in the 4-hour C-peptide 
AUC of 0.148 nmol/l (95% CI, 0.045–0.252) in the alefacept group, 
which was less than the change from month 12–24 in the placebo 
group (0.217 nmol/l [95% CI, 0.107–0.328]), although this did not 
reach statistical significance (P = 0.11). In a post hoc analysis, we 
divided alefacept-treated subjects into responders and nonrespond-
ers using an approach similar to that reported for the AbATE trial (8). 
As shown in Figure 3, we plotted the percent change from baseline 
in the 4-hour C-peptide AUC at 2 years for each subject in the alefa-

0.065–0.305), whereas the placebo group had a mean decrease of 
0.334 nmol/l (95% CI, 0.216–0.453; P = 0.015; not shown). Results 
of sensitivity analyses were consistent with these findings; sensitiv-
ity analyses included fitting an ANCOVA model with covariates for 
sex, age, baseline insulin use, and baseline HbA1c, in addition to 
baseline AUC, for the 4-hour C-peptide (P = 0.010) and the 2-hour 
C-peptide (P = 0.077), and analyzing observed data only for the 
4-hour C-peptide (n = 42, P = 0.011) and for the 2-hour C-peptide 
(n = 42, P = 0.058; data not shown).

Both groups achieved good glycemic control, with mean HbA1c 
levels at 24 months of approximately 7.4%–7.5% in both groups  
(P = 0.942; Figure 2B). At 24 months, participants who received 
alefacept had lower mean insulin requirements (0.43 U/kg/d) 
versus controls (0.60 U/kg/d; P = 0.002; Figure 2C), equal to an 
almost 3-fold greater increase in insulin use from baseline in the 
placebo group (+0.28 U/kg/d) compared with the alefacept group 
(+0.10 U/kg/d). Alefacept-treated participants had substantially 
less major hypoglycemia (blood glucose < 55 mg/dl; Figure 2D). 

Figure 1. CONSORT diagram showing allocation and disposition of study subjects in the T1DAL trial. 
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(Table 1). There was one serious AE in the alefacept group, which 
was considered unlikely related to the study drug, and 4 participants 
in the alefacept group had transient, asymptomatic declines in CD4 
counts of <250 cells/μl. There were no deaths, opportunistic infec-
tions, or cytokine release syndrome (CRS) in either group.

Mechanistic results. Throughout the study, total white blood 
counts remained unchanged in both groups, but total lympho-
cytes and CD4+ and CD8+ T cells showed modest declines during 
the first and second course of treatment in the alefacept group, 
which rebounded by 78 weeks (Figure 4, A and B). At baseline, 
CD2 expression was highest on CD4+ Tem, intermediate on CD8+ 
Tem and central memory T cells (Tcm cells) and CD4+ Tcm, and 
lowest on naive T cells (Tn cells) and Tregs (Figure 5A). During 
therapy, the percentage of CD4+ and CD8+ Tn cells increased 
from baseline in the alefacept group, and CD4+ Tn remained 
elevated following therapy discontinuation (Figure 5, B and C). 
Alefacept treatment did not alter the frequency of Tregs during 
the entire study period (Figure 5D). In contrast, CD4+ and CD8+ 
Tcm cells decreased by approximately 25%–50% in the alefacept 
group and, although recovering in year 2, remained lower than 
in placebo patients at all time points (P < 0.01 for both, Figure 6, 
A and B). CD4+ and CD8+ Tem cells decreased even more in the 
alefacept group, approximately 40%–60% at week 35 (P < 0.01 
for both), and then recovered in year 2, although CD4+ Tem (but 
not CD8+ Tem) remained lower compared with the placebo group 

cept and placebo groups. We set 2 thresholds for response: complete 
preservation of baseline 4-hour C-peptide AUC values (>0%) at 2 
years (complete responders) and preservation of 50% or more of 
baseline 4-hour C-peptide AUC values at 2 years (partial respond-
ers). In the alefacept group, 87% (26 of 30 subjects) were partial 
responders versus 33% (4 of 12) in the placebo group (P = 0.001); 
30% (9 of 30) in the alefacept group were complete responders ver-
sus 8% (1 of 12) in the placebo group (P = 0.23; data not shown). Of 
the 9 alefacept-treated subjects who were complete responders at 
24 months, 8 were also responders at 12 months (i.e., the 4-hour 
C-peptide AUC values at 12 months were equal to or greater than 
the baseline values; not shown), suggesting that response occurred 
early after alefacept treatment and was not a late phenomenon.

In the responder analysis, we also evaluated the effect of age 
by dividing subjects into 2 age cohorts: a younger cohort (12–21 
years) and an older cohort (22–35 years) (Figure 3). In the alefa-
cept group, the proportion of complete responders did not differ 
significantly compared with placebo in either age cohort. In con-
trast, 89% (17 of 19) of alefacept-treated subjects in the younger 
cohort were partial responders versus 29% (2 of 7) in the pla-
cebo group (P = 0.006); in the older cohort, 82% (9 of 11) were 
partial responders in the alefacept group versus 40% (2 of 5)  
in the placebo group (P = 0.24; data not shown).

Over the entirety of the study, the proportion of patients who had 
at least one adverse event (AE) was similar in the 2 treatment groups 

Figure 2. Clinical responses from baseline to 24 months in participants assigned to alefacept and placebo in the ITT sample. (A) Change in 4-hour C-peptide 
AUC. *P = 0.019, **P = 0.002. (B) Change in HbA1c. (C) Change in exogenous insulin requirements. *P = 0.020, **P = 0.002. Data were analyzed by fitting 
ANCOVA models with adjustment for baseline levels and plotted as unadjusted means ± 95% CI. P-values are 2-sided. (D) Rate of major hypoglycemic events. 
Event rates between the 2 groups were compared using Poisson regression. *P < 0.001. For all analyses, the number of evaluable subjects (n) at each time 
point is shown in Figure 1. C1 and C2 denote the two 12-week treatment courses. For additional details, see https://www.itntrialshare.org/T1DAL_fig2.url.
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therapy–induced β cell sparing in preclinical models of T1D. At 
baseline, proportions of cells expressing PD-1 were highest (as 
percent of cells) in the CD4+ and CD8+ Tem subsets, interme-
diate in Tcms, and lowest in Tns and Tregs (Figure 8, A–D, and 
Figure 9, A–C). There was a striking increase in the percentage 
of CD4+ Tem expressing PD-1 in the alefacept group at week 
11, and this remained high through most of year 2 (Figure 9A). 
A more modest increase was also observed in CD4+ Tcm cells 
in the alefacept group (Figure 8C). There were no changes in 
PD-1 expression in other T cell subpopulations in either group 
(Figures 8 and 9). Expression of CD2 was similar between 
PD-1+CD4+ and PD-1–CD4+ Tcm and Tem cells at baseline (Fig-
ure 9D). In the alefacept group, proportions of PD-1+CD4+ Tcms 
and Tems did not differ between complete responders and all 
others or between complete responders and the 9 subjects with 
the greatest loss of C-peptide from baseline (Figure 3) (analyses 
not shown).

at weeks 78 and 104 (Figure 6, C and D). In the alefacept group, 
there were no differences in peripheral T cell subsets between 
complete responders (n = 9) and all others or between complete 
responders and the 9 subjects with the greatest loss of C-peptide 
from baseline (see Figure 3) (analyses not shown).

Changes in T cell subsets were reflected in the ratios of Treg to 
memory cells. Alefacept treatment resulted in increases in Treg/
Tem and Treg/Tcm ratios in both CD4+ and CD8+ cells, which 
peaked at week 35 and remained elevated at most points through-
out the study (P < 0.01 for overall difference for all 4 ratios; Figure 
7, A–D). The most substantial increase was in the Treg/CD4+ Tem 
ratio, followed by similar increases in the Treg/CD8+ Tem and 
Treg/CD4+ Tcm ratios.

We also conducted exploratory analyses of the programmed 
death-1 (PD-1) receptor expression to determine if alefacept 
influences additional immunoregulatory mechanisms. PD-1 is a 
negative regulator of T cell activity and is involved in immune 

Figure 3. Responder analysis based on thresholds of preservation of baseline C-peptide secretion at 2 years. The % change in 4-hour C-peptide AUC 
from baseline to 2 years was plotted for each subject as a function of age (blue, younger subjects; red, older subjects); top, alefacept arm; bottom, placebo 
arm. Subjects to the right of the dotted line (>0% change) are denoted complete responders; subjects to the right of the broken line (<50% decrease from 
baseline) are partial responders. In the alefacept arm, subjects to the left of the solid line (>40% decrease) are classified as worst responders (n = 9) for 
comparison with complete responders (n = 9). For additional details, see https://www.itntrialshare.org/T1DAL_fig3.url.
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Discussion
Therapeutic options in T1D have changed little since the discovery 
of insulin in 1921, and even with excellent glycemic control (HbA1c 
≤ 6.9%), mortality in those with T1D is twice that of matched con-
trols (4). Hence, there is an urgent need for approaches to stabilize 
or reverse β cell destruction in T1D. Patients with newly diagnosed 
T1D have residual β cell function, providing a window of opportu-
nity for a targeted intervention that can preserve islet function for 
years or decades after diagnosis (3). To this end, immune thera-
pies that may be considered reasonable approaches in the primar-
ily pediatric T1D population (such as anti-CD3 mAbs, abatacept, 
and rituximab) have been tested but generally have shown only 
modest success in preserving islet function, and with some, there 
are concerns of significant side effects, including CRS, EBV reac-
tivation, and progressive multifocal leukoencephalopathy (8–10, 
27, 28). A study that reported substantial efficacy was based on 
a regimen of autologous nonmyeloablative hematopoietic stem 
cell transplantation, but this was a small (n = 23) open-label trial, 
and the results were tempered by significant short- and long-term 
morbidity (18, 19).

The 24-month results of the T1DAL trial provide the most 
promising proof of concept to date that a brief course of a targeted, 
well-tolerated immune intervention in the new-onset period can 
produce lasting clinical and metabolic benefits, long after ces-
sation of therapy. Alefacept significantly preserved endogenous 
insulin production, reduced exogenous insulin requirements, and, 
remarkably, reduced the risk of major hypoglycemic events by 50% 
over the 2-year study period. Severe iatrogenic hypoglycemia is the 
most concerning risk of intensive management and leads to sub-
stantial morbidity and mortality in T1D (4, 29, 30). The ability of a 
therapy to decrease the rate of major hypoglycemia while achiev-
ing good glycemic control with intensive diabetes management 
may be the most important goal of therapeutic progress in T1D.

A similar magnitude of C-peptide preservation was also 
observed after longer-term follow-up in patients treated with anti-
CD3 mAbs (teplizumab and otelixizumab) (31). However, this effi-
cacy came at the cost of CRS during drug administration and EBV 
reactivation or EBV-related disease in a significant proportion of 
treated patients (32). These AEs prompted exploration of a lower 

dose in larger trials, which resulted in better tolerability but loss of 
efficacy (33, 34).

The results of the T1DAL trial also provide mechanistic 
insights with respect to targeting the number and function of 
pathogenic T cells responsible for T1D. In the absence of broad 
immune suppression or ablation, depletion of Tem cells has not 
previously been achieved in T1D trials. In the START trial (antithy-
mocyte globulin in new-onset T1D), in which there was no treat-
ment benefit, Tem cells were unaffected despite robust depletion 
of all other T cell subsets, including Tregs (13). In sharp contrast 
to what we observed in T1DAL, antithymocyte globulin led to 
a significant decrease in Treg/Tem ratios. Interestingly, results 
from a recently reported pilot study (n = 25) of the combination 
of antithymocyte globulin and G-CSF in patients with established 
T1D suggested a treatment benefit and revealed the preservation 
of Tregs (35). These results suggest that higher Treg/Tem ratios 
may be an important biomarker of treatment benefit, a hypothesis 
that needs validation in larger trials and with other agents. It is also 
unknown whether the alefacept-mediated depletion of Tcm and 
Tem cells included islet antigen–specific cells, a point that requires 
further investigation.

An important caveat is that the relationship between changes 
in peripheral blood T cell subsets and clinical response remains 
unclear. We performed a post hoc responder analysis based on 
thresholds of preservation of baseline C-peptide secretion at 2 
years (Figure 3). In the alefacept group, complete responders 
(C-peptide AUC values at 2 years equal to or greater than baseline 
values) did not differ in terms of frequencies of Tcm, Tem, or Tregs 
in the periphery when compared with all subjects who did not meet 
the complete response criterion or when compared only to sub-
jects with the worst response. This finding is consistent with the 
experience in psoriasis, where treatment with alefacept resulted 
in a clinical response rate of 40%–60%, but response was poorly 
correlated with changes in the number of memory CD4+ T cells in 
the peripheral circulation (36). In contrast, the clinical and histo-
logic response to alefacept in psoriasis was highly correlated with 
changes in T cells infiltrating the epidermis and dermis (36). Inter-
estingly, psoriasis nonresponders had quantitatively more T cells in 
skin lesions (36). It is unknown whether the response to alefacept in 

Figure 4. Changes in lymphocyte absolute cell counts from baseline to 24 months. (A) Total CD4+ T cells. (B) Total CD8+ T cells. Data are mean val-
ues ± 95% CI. For all analyses, the number of evaluable subjects (N) at each time point is shown in Figure 1. For additional details, see https://www.
itntrialshare.org/T1DAL_fig4.url.
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T1D was dictated by quantitative or qualitative differences in lym-
phocytic infiltrates in the islets, but it may be worth exploring the 
use of larger doses of alefacept or treatment for longer periods in 
future trials to overcome a theoretical tissue resistance. In contrast 
to our results with alefacept, a recent report showed that preserva-
tion of C-peptide in new-onset T1D subjects treated with abatacept 
correlated with a reduction in the proportion of CD4+ Tcm in the 
peripheral blood collected at the preceding study visit (37).

An interesting finding was that clinical response to alefacept 
(C-peptide preservation) appeared to be dependent on age. We 
divided subjects in the alefacept and placebo groups into a younger 
(age 12–21 years) and older (22–35 years) cohort (Figure 3), based 
on the results of a recent analysis suggesting that this cut-off 
demarcates distinct rates of C-peptide decline in the first 2 years 
after diagnosis (38). We found that in the younger cohort, partial 
response was significantly (P < 0.006) more frequent in the ale-
facept group than in the placebo group, while in the older cohort, 
the difference was not significant. This is consistent with the expe-
rience with the anti-CD3 mAb otelixizumab, where response was 
more pronounced in younger subjects (32), and a similar trend was 
observed with rituximab (9). The biological basis for the effect of 
age is unclear but warrants further study.

The ability of alefacept to downmodulate T cell activity 
may also be important. We observed an increase in the percent-
age of CD4+ Tem and Tcm expressing PD-1 during and after 
treatment. PD-1 is one of a growing list of immune checkpoint 
inhibitors that control immune responses and contribute to 
peripheral tolerance (39). PD-1 is of particular interest because 
it is upregulated following T cell activation and mediates down-
regulation of effector functions after binding to cognate ligands 
(40), thereby suppressing islet infiltration by CD4+ T cells in the 
nonobese diabetic (NOD) mouse model of T1D (40–43). In a 
recent study, targeted expression of the PD-1 ligand PD-L1 in 
neo-islets in diabetic NOD mice led to decreased proliferation 
and increased apoptosis of infiltrating CD4+ T cells with robust 
reversal of hyperglycemia, suggesting the PD-1/PD-L1 pathway 
is strongly tolerogenic in this model (44). Our study is the first 
report in humans demonstrating an increase in PD-1–expressing 
CD4+ memory cells with alefacept, or any agent showing bene-
fit in an autoimmune condition. Additional studies are under-
way to better understand the mechanism of this observation. 
There was no difference in the intensity of CD2 on PD-1+ and 
PD-1– T cells at baseline, and thus one hypothesis is that PD-1 
was induced in CD4+ memory cells by alefacept, possibly by an  

Figure 5. Baseline CD2 expression and changes in lymphocyte populations from baseline to 24 months in participants assigned to alefacept and placebo. 
(A) CD2 expression (mean fluorescence intensity, MFI) at baseline on studied T cell subpopulations. (B) CD4+ Tn cells (CD4+ CD127+ FoxP3– CD45RA+ CD45RO– 
CCR7+). (C) CD8+ Tn cells (CD8+ CD45RA+ CD45RO– CCR7+). (D) CD4+ Tregs (CD4+ CD127–/lo FoxP3+). Flow cytometry data were log-transformed and analyzed by 
repeated measures ANOVA, and P values were calculated to compare the differences of least square means between treatment groups at every visit. Data 
are mean values ± SD. Percent change from baseline is presented for T cell subsets as % of CD4+ non-Treg or CD8+ T cells in B–D. *P < 0.01. For all analyses, 
the number of evaluable subjects (n) at each time point is shown in Figure 1. C1 and C2 denote the two 12-week treatment courses. For additional details, see 
https://www.itntrialshare.org/T1DAL_fig5.url.
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AUC at 12 months (26). We found that the 4-hour C-peptide AUC 
generated more robust results at both 12 and 24 months, which 
may reflect the ability of the 4-hour test to provide more com-
plete data on the insulin response after a mixed meal, allowing 
for better discrimination between treatment groups (26). In an 
analysis of data from recent ITN T1D trials, we found that the  
2- and 4-hour tests were highly correlated but that the 4-hour test 
had lower variability (K. Boyle, unpublished observations). The 
T1DAL C-peptide results from the 4-hour MMTT are consistent 
with significant treatment effects measured for a range of pre-
specified metabolic and mechanistic endpoints. Although the trial 
was too small to detect uncommon AEs, alefacept has been widely 
used in psoriasis for over a decade with a strong safety record; 
importantly, alefacept does not blunt immune responses to novel 
and recall antigens and, based on a 2007 review of available 
safety data, does not increase susceptibility to infectious disease 
or malignancy (45). These data suggest that the drug has a profile 
that would be acceptable for use as an adjunctive therapy in T1D, 
even in children.

In conclusion, administration of two 3-month courses of ale-
facept over a 9-month period in patients with new-onset T1D pro-
duced extended preservation of endogenous insulin production, 
reduced insulin requirements, and, importantly, decreased the 
rate of major hypoglycemia, all coincident with salutary immuno-
logic changes over a period of 2 years, well over a year following 

agonist effect (23). Alternatively, PD-1+CD4+ Tems may be 
selectively resistant to alefacept-mediated depletion. As noted 
for other T cell subsets, the change in PD-1+CD4+ Tems did not 
differ by responder status, which, as speculated above, may 
relate to differences in the effects of alefacept in peripheral 
blood versus at the site of pathology.

Although the duration of alefacept therapy was relatively 
brief (two 12-week courses over 36 weeks), clinical and immuno-
logic benefits continued 15 months following discontinuation of 
therapy. Thus, it may be possible to restore peripheral tolerance 
and induce an indefinite off-therapy remission with preserved 
islet function in T1D. At 12 months, the C-peptide responses in 
alefacept-treated participants were similar to those at baseline 
but began to wane in the second year of the study. Coincident 
with this, the Treg/Teff ratios, reduction of Tems, and increase 
in PD-1–expressing CD4+ Tcms and Tems also began to decline 
(compare Figure 2A with Figures 6–9). To maintain longer- 
lasting immunologic and clinical effects, and to increase the pro-
portion of responders, administration of additional courses of 
alefacept, higher doses, or combining alefacept with other ther-
apies (e.g., antiinflammatory agents, antigen-specific therapies, 
or exogenously expanded Tregs) would be worth exploring.

A limitation of this study was the final sample size (n = 49), 
which likely contributed to underpowering and inability to meet 
the prespecified study primary endpoint, the 2-hour C-peptide 

Figure 6. Changes in lymphocyte populations from baseline to 24 months in participants assigned to alefacept and placebo. (A) CD4+ Tcm (CD4+ CD127+ 
FoxP3– CD45RA– CD45RO+ CCR7+). (B) CD8+ Tcm (CD8+ CD45RA– CD45RO+ CCR7+). (C) CD4+ Tem (CD4+ CD127+ FoxP3– CD45RA– CD45RO+ CCR7–). (D) CD8+ Tem 
(CD8+ CD45RA– CD45RO+ CCR7–). Data were analyzed as described in Figure 5 and are mean values ± SD. Percent change from baseline is presented for T 
cell subsets as % of CD4+ non-Treg or CD8+ T cells in B–D. *P < 0.01. For all analyses, the number of evaluable subjects (n) at each time point is shown in 
Figure 1. C1 and C2 denote the two 12-week treatment courses. For additional details, see https://www.itntrialshare.org/T1DAL_fig6.url.
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blocks of size 3. Site personnel randomized subjects via an interactive 
web–based system, which sent the treatment assignments directly 
to the unmasked site pharmacists. All subjects and site personnel, 
including the independent diabetes educators, remained masked 
throughout the study. Site personnel were masked to total lympho-
cyte, CD4+, and CD8+ counts on lab reports unless CD4+ counts 
decreased to <250 cells/μl (26). At outpatient visits, participants 
received 15 mg alefacept (Amevive, received from Astellas) or equiv-
alent volume of saline (placebo) i.m. weekly for 12 weeks and, after 
a 12-week pause, 12 additional weekly doses of alefacept or placebo. 
Participants underwent a 4-hour MMTT at screening, 52 weeks, and 
104 weeks; a 2-hour MMTT at 24 and 78 weeks; and intensive diabe-
tes management (30).

Laboratory tests. Autoantibodies were assayed at the Barbara 
Davis Center (Aurora, Colorado, USA) and the University of Florida; 
C-peptide and HbA1c at the Northwest Lipid Research Laboratory 
(Seattle, Washington, USA); and chemistries, hematology, viral loads, 
and serology at ICON Central Labs.

Immunophenotyping. Cryopreserved peripheral blood mononu-
clear cells (PBMCs) were batch-analyzed after the month-24 end-
point using an LSR II flow cytometer (BD Biosciences) and gated with 
Flowjo Mac Version 9.8.1 (Tree Star Inc.) at the Benaroya Research 
Institute (Seattle, Washington, USA). Antibody panel configurations 
were changed from the 12-month evaluations to improve discrimi-
nation between naive and memory T cell subsets (see Supplemental 
Tables 1 and 2; ref. 26).

the last dose. This study provides proof of concept that intermit-
tent dosing with a targeted and well-tolerated immunotherapy 
can improve islet function in T1D and encourages further inves-
tigations to develop an immunologically based therapy for T1D.

Methods
Study design and patients. This was a phase-2, randomized, placebo-
controlled, double-blind clinical trial conducted at 14 clinical centers 
in the United States (see ref. 26 for complete details; the trial protocol 
is available in the Supplemental Materials; the trial profile is shown in 
Figure 1) with a 9-month treatment period and 15 months of follow-up 
(March 2011 to March 2014).

Eligible participants were 12–35 years of age at the time of screen-
ing; <100 days from diagnosis at the time of enrollment; positive for 
at least one diabetes-associated autoantibody (insulin, GAD-65, IA-2, 
ZnT8, or ICA); and had peak-stimulated C-peptide of >0.2 nmol/l 
during a MMTT. Exclusion criteria included evidence of tuberculo-
sis, hepatitis B or C, HIV, or active EBV or CMV infection; significant 
cardiac disease; conditions associated with immune dysfunction or 
hematologic dyscrasia (including malignancy, lymphopenia, throm-
bocytopenia, or anemia); liver or renal dysfunction; ongoing use of 
diabetes medications other than insulin; recent inoculation with a live 
vaccine; and lactating or pregnant females.

Procedures. Eligible subjects were randomly assigned 2:1 to ale-
facept or placebo. The site-stratified randomization scheme was 
computer generated at the data-coordinating center using permuted 

Figure 7. Changes in ratios of Tregs to memory T cells from baseline to 24 months in participants assigned to alefacept and placebo. (A and B) Ratios of 
Tregs to CD4+ and CD8+ Tcm. (C and D) Ratios of Treg to CD4+ and CD8+ Tem cells. Flow populations and analyses are as described in Figures 5 and 6. Data 
are mean values ± SD presented as % change from baseline. *P < 0.01. For all analyses, the number of evaluable subjects (n) at each time point is shown in 
Figure 1. C1 and C2 denote the two 12-week treatment courses. For additional details, see https://www.itntrialshare.org/T1DAL_fig7.url.
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were compared using Poisson regression. Fisher exact test was used 
to compare the number of responders (complete or partial) versus 
nonresponders (subjects who did not meet the criteria for complete 
or partial response). Flow cytometry data were log-transformed 
and analyzed by repeated measures ANOVA, and P values were cal-
culated to compare the differences of least square means between 
treatment groups at every visit. For any secondary and exploratory 
analyses, corrections were not made for multiple comparisons. SAS 
version 9.2 was used for all data analyses. P values for these com-
parisons are 2-sided. Further detail, including methods for handling 
missing C-peptide data and sensitivity analyses, are described in the 
Supplemental Methods. Datasets for these analyses are accessible 
through TrialShare, a public website managed by the ITN (https://
www.itntrialshare.org/T1DAL.url).

Study approval. The T1DAL study was conducted according to 
the Declaration of Helsinki and in accordance with good clinical 
practice guidelines, performed under an investigational new drug 
application (IND 105,308), and approved by independent institu-
tional review boards at each participating clinical center. All par-
ticipants or parents provided written informed consent or assent 
(<18 years old). An independent data and safety monitoring board 
(DSMB) conducted regular safety reviews, and the sponsor’s medi-
cal monitor provided additional study oversight. AEs were recorded 
and reported according to the standards set forth in the National 
Cancer Institute Common Terminology Criteria for Adverse Events 
(NCI-CTCAE), Version 4.0 (May 28, 2009).

Outcomes. Prespecified outcomes at 24 months included the 
change in mean 4-hour and 2-hour C-peptide area AUC from 
baseline, change in mean insulin use, major hypoglycemic events, 
HbA1c levels, and frequency and severity of AEs in the alefacept 
versus placebo groups.

Statistics. The original sample size of 66 was calculated to provide 
85% power to detect a 50% improvement in the 2-hour C-peptide 
AUC of alefacept over control at 12 months (details on sample size cal-
culations are shown in the study protocol provided in the Supplemen-
tal Materials and in ref. 26). Enrollment was halted at 49 subjects fol-
lowing voluntarily withdrawal of alefacept from the U.S. market; drug 
discontinuation was driven by business considerations and was not 
based on safety or regulatory concerns (46). Thus, the power dropped 
to 80% to detect a 55% improvement.

All randomized subjects who received any dose of study treat-
ment (n = 49) were used in the intention to treat (ITT) analysis for the 
24-month endpoints. For the primary inferential analysis, C-peptide  
AUCs were transformed to ln(AUC+1) and treatment groups com-
pared by fitting an ANCOVA model with change from baseline as 
the outcome and baseline ln(AUC+1) value as a covariate. Means 
and summary statistics are presented on the untransformed scale. 
Missing C-peptide AUC data were imputed for 7 subjects in the ITT 
population who did not have an MMTT at month 24 (3 alefacept, 4 
placebo). Secondary inferential analyses on HbA1c and insulin-use 
were based on ANCOVA models at each time point with adjustment 
for baseline levels. Hypoglycemic event rates between the 2 groups 

Figure 8. Changes in proportions (% of parent) of PD-1–expressing T cells (naive and central memory) from baseline to 24 months in participants 
assigned to alefacept and placebo. (A and B) PD-1–expressing CD4+ and CD8+ Tn cells. (C and D) PD-1–expressing CD4+ and CD8+ Tcm. Flow populations and 
analyses are as described in Figures 5 and 6. Data are mean values ± SD. *P < 0.01. For all analyses, the number of evaluable subjects (n) at each time point 
is shown in Figure 1. C1 and C2 denote the two 12-week treatment courses. For additional details, see https://www.itntrialshare.org/T1DAL_fig8.url.
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prior to submission. Bayer HealthCare LLC, Diabetes Care pro-
vided blood glucose monitoring supplies through an investigator- 
sponsored research grant. The authors provided Bayer a copy of the 
original manuscript prior to submission.
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