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Abstract

Background—Lateral distal femur (LDF) scans by dual energy x-ray absorptiometry (DXA) are 

often feasible in children for whom other sites are not measurable. Pediatric reference data for 

LDF are not available for more recent DXA technology.

Aims—To assess older pediatric LDF reference data, construct new reference curves for LDF 

bone mineral density (BMD), and demonstrate the comparability of LDF BMD to other measures 

of BMD and strength assessed by DXA and by peripheral quantitative computed tomography 

(pQCT).

Methods—LDF, spine and whole body scans of 821 healthy children, 5 to 18 years of age, 

recruited at a single center were obtained using a Hologic Delphi/Discovery system. Tibia 

trabecular and total BMD (3% site), cortical geometry (38% site) (cortical thickness, section 

modulus, strain strength index) were assessed by pQCT. Sex and race-specific reference curves 

were generated using LMS-ChartMaker and Z-scores calculated and compared by correlation 

analysis.

Results—Z-scores for LDF BMD based on published findings demonstrated overestimation or 

underestimation of the prevalence of low BMD-for-age depending on the region of interest 

considered. Revised LDF reference curves were generated. The new LDF Z-scores were strongly 
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and significantly associated with weight, BMI, spine and whole body BMD Z-scores, and all 

pQCT Z-scores.

Conclusion—These findings demonstrate the comparability of LDF measurements to other 

clinical and research bone density assessment modes, and enable assessment of BMD in children 

with disabilities, who are particularly prone to low trauma fractures of long bones, and for whom 

traditional DXA measurement sites are not feasible.
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Introduction

Children with physical disabilities such as cerebral palsy, spina bifida, muscular dystrophy, 

and spinal cord injuries that limit ambulation are typically osteopenic 1-3. This in turn results 

in fractures with minimal, or in some cases even unrecognized trauma. Femoral shaft and 

distal metaphyseal fractures are particularly common4,5. Assessment of bone density in 

these conditions is made difficult by several factors. Contractures of the lower limbs are 

prevalent and prevent laying in a fully supine position for optimal whole body and proximal 

femur (hip) measurements by dual energy x-ray absorptiometry (DXA). In addition, the 

anatomy of the proximal femur is frequently distorted in these conditions due to dysplasia, 

subluxation, or hip dislocation. Clinical care of hip disorders in these conditions sometimes 

requires osteotomy procedures and internal fixation with metallic implants, further 

interfering with DXA bone density assessment in this region.

Bone density measurement in the lumbar spine is also problematic in children with many 

common physical disabilities. The anatomy is often distorted due to scoliosis, which if 

surgically treated will have metallic fixation that interferes with DXA imaging. An 

additional point regarding bone density measurements in the lumbar spine is the lack of 

relevance to fracture risk in this population A prospective, longitudinal study in children 

with quadriplegic cerebral palsy found that DXA measures of lumbar spine areal bone 

mineral density (aBMD) were not predictive of subsequent fracture risk 6. This somewhat 

surprising observation likely relates to the finding that aBMD measures in the femur and 

spine correlate poorly in a child with low BMD 7. Fractures in children with physical 

disabilities typically occur in the long bones, most commonly the femur and tibia 8,9. In 

marked distinction to elderly adults, osteoporotic compression fractures of the spine are 

uncommon in nonambulatory children.

In order to address these difficulties in obtaining clinically meaningful assessments of bone 

health in children with disabilities an alternative technique was developed utilizing DXA 

measurements of the distal femur projected in the lateral plane10,11. Advantages of this 

technique are that the femur is the most common site of fracture, children with severe 

contractures can be comfortably positioned, and metallic fixation is rarely utilized in this 

region. Further, subregional analyses allow separate assessment of regions rich in cortical 

versus cancellous bone.
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Existing reference data for bone density of the distal femur is based upon a relatively small 

sample of healthy children who were measured with the older pencil beam DXA 

technology 11. The purpose of this report is to provide more robust pediatric DXA lateral 

distal femur (LDF) aBMD reference data utilizing contemporary fan-beam technology. 

These LDF reference data were compared to DXA measures of areal BMC and aBMD of the 

spine and whole body, the sites recommended for clinical assessment of bone density in 

children 12. In addition, LDF bone density was compared to tibia measures of trabecular and 

cortical volumetric BMD (vBMD) and geometry measured by peripheral quantitative 

computed tomography (pQCT). Unlike DXA aBMD measures, which are based on a two-

dimensional bone image, pQCT provides a three-dimensional vBMD measure, distinct 

estimates of trabecular and cortical vBMD, and measures of bone geometry known to relate 

to bone strength13. These comparisons were performed as a relative validation of the LDF 

measurement with respect to other commonly used clinical and research methods for bone 

density assessment.

Methods

Sample

Study participants consisted of healthy children, 5 to 18 years of age, enrolled in the 

Reference Project on Skeletal Development at The Children's Hospital of Philadelphia. 

Subjects were recruited through the pediatric practices of The Children's Hospital of 

Philadelphia, newspaper advertisements and community fliers. Children were excluded for 

chronic health conditions (e.g., renal, endocrine, gastrointestinal disorders) and medication 

use (e.g., glucocorticoids) that might affect growth or development (premature birth), dietary 

intake (medications affecting appetite), or bone density (restricted ambulation). Children 

were not excluded on the basis of fracture history, since fractures occur in 25 to 50% of 

otherwise healthy children14,15. Parents or guardians of subjects less than 18 years of age 

provided written informed consent, and the subjects provided assent. Subjects 18 years of 

age provided informed consent. The protocol was approved by the Internal Review Board of 

The Children's Hospital of Philadelphia.

Assessment of Growth and Pubertal Development

Height was measured to the nearest 0.1cm with a stadiometer (Holtain, Crymych, UK) and 

weight to the nearest 0.1kg a digital scale (Scaletronix). All measurements were obtained in 

triplicate by a trained anthropometrist using standardized techniques 16 with the subject 

wearing light clothing and with shoes and hair adornments removed. The mean of the three 

measurements was used in the analysis. The stage of pubertal development was determined 

using a validated self-assessment questionnaire 17,18 and classified according to Tanner 19.

DXA Measures of Bone Density

Areal bone mineral density (aBMD) measurements were obtained by dual energy x-ray 

absorptiometry (DXA) with a Delphi/Discovery (Hologic, Bedford, MA) densitometer. All 

measurements were obtained with the same device and analyzed using software version 

12.3. The DXA exam included scans of the lumbar spine and whole body following 

standardized positioning, acquisition and analysis techniques. The coefficient of variation 
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(%CV) for DXA measurements of the spine and whole body in children range from 0.64 to 

1.20 20.

The lateral distal femur scan was obtained as described in Henderson et al. 21; positioning of 

the subject is illustrated in Figure 1a, and placement of the regions of interest (ROIs) is 

shown in Figures 1b and 1c. Briefly, the patient is placed in a side lying position on the 

scanning table, on the side being measured, with the femur following the length of the table. 

The other thigh is flexed out of the field of view. The lateral distal femur is analyzed for 

three regions of interest: region 1 is placed at the anterior half of distal metaphysis, region 

two is metadiaphyseal, and region 3 is diaphyseal. Region size is based on the diaphyseal 

width; all three regions are the same height. To assure consistency in lateral distal femur 

scan acquisition and analysis techniques, a subset of 40 randomly selected scans were 

reviewed by an independent investigator (HK). In addition, all scans were inspected by one 

investigator (BZ) for movement, interfering factors, and analysis consistency (placement of 

regions of interest) to assure technical quality of all scans.

pQCT Measures of Volumetric BMD and Bone Strength

Volumetric BMD (vBMD) and bone strength of the distal tibia were assessed by peripheral 

quantitative computed tomography (pQCT) in a subset of the healthy reference sample using 

a Stratec XCT2000 device (Orthometrix, White Plains, NY) with a voxel size of 0.4mm and 

scan speed of 25mm/sec. An anthropometric measure of tibia length (mm) (from the distal 

tip of the medial malleolus to the superior edge of the medial tibial plateau) was obtained 

using sliding calipers (Rosscraft, Vancouver, BC). A scout view was obtained to place the 

reference line at the proximal border of the distal tibia growth plate, and measurements were 

obtained at regions located at the distal 3% and 38% of tibia length. Scans were analyzed 

using the Stratec 5.50 software. At the 3% site, scans were analyzed for total and trabecular 

vBMD1. At the 38% site, scans were analyzed for cortical thickness, section modulus and 

the strain strength index (SSI)2. The coefficient of variation (%CV) for selected pQCT 

measures were as follows: trabecular density 1.4%, cortical thickness 1.4%, SSI 2.8% 22.

Statistical Analysis

Descriptive statistics and graphical displays were generated to characterize the data and 

assess the distributions. Height, weight and body mass index (BMI) were converted to Z-

scores (standard deviation scores) based on the Centers for Disease Control and Prevention 

Growth Charts 23.

Z-scores for lateral distal femur aBMD were calculated based on previously published 

reference data for lateral distal femur aBMD11. For males and females separately, the 

student's T-test was used to determine whether the distribution of Z-scores was significantly 

different than expected for a healthy reference samples, i.e., a mean of zero and standard 

deviation of one.

1pQCT analysis parameters used: contour mode 1, peel mode 1, inner threshold=200, outer threshold=600.
2pQCT analysis parameters used: contour mode 1, peel mode 2, cortmode 2, threshold = 711.For the SSI measure only, the threshold 
was set to 300.
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To assess the need for sex and race-specific reference curves, multiple linear regression 

analyses were used to determine whether significant group differences existed. Subjects 

were categorized as black vs. non-black according to self-reported race. Based on these 

analyses (results not presented), it was determined that separate sex- and race-specific 

reference curves were needed.

Reference curves for lateral distal femur aBMD measurements were generated using the 

“LMS” method 24 that accounts for the non-linearity, heteroscedasticity and skewness of 

aBMD data in growing children. Sex and race specific curves were constructed for aBMD of 

regions 1 through 3 using the LMS Chartmaker Program version 2.325. The LMS method 

fits three parameters (LMS) as cubic splines by nonlinear regression. The three parameters 

represent the median (M), standard deviation (S), and power in the Box-Cox transformation 

(L) that vary as a function of age. These parameters are used to construct centile curves 

using the following formula:

Equation 1

where the L, M, and S are age-specific, and the Z is the Z-score that corresponds to a given 

percentile (e.g., Z=0 is the 50th percentile). For an individual with a measurement X, a Z-

score is calculated using the age-specific L, M and S parameters and the following formula:

Equation 2

Fit of the curves was evaluated by graphical inspection of the centile curves relative to the 

raw data and by Q-Q plots.

The LMS method was also used to generate sex and race-specific reference curves for all 

other densitometric measures on the same sample of subjects. Z-scores for DXA measures 

of spine aBMC and aBMD, total body aBMC and aBMD, and pQCT measures of trabecular 

and total vBMD at the 3% site of the tibia relative to age, and for cortical thickness, section 

modulus and strain-strength index relative to tibia length were calculated. Additional 

statistical analyses included correlations among the Z-scores for growth, lumbar spine, 

whole body and lateral distal femur aBMD, and pQCT measures of vBMD and bone 

strength.

Results

Lateral distal femur results were available for 821 of the 854 subjects recruited. The subjects 

for who lateral distal femur BMD scans were excluded for technical limitations (less than 

4%) did not differ in age, sex, race or spine aBMD Z-score from the remainder of the 

sample. Characteristics of the sample are shown in Table 1. Similar to other reports of U.S. 

children26,27, Z-scores for height, weight and BMI were above zero signaling that their 

growth differed somewhat from the CDC Growth Charts. This sample was similar in height 

Z-score, but had lower weight and BMI Z-scores than the sample used in the development of 

the original LDF reference data (0.6±1.0 for both Z-scores) 11. Descriptive statistics (mean 
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and standard deviation) for all bone measures are given in Table 2. The study subjects had 

DXA bone density values that were similar to U.S. national reference data26 (available only 

for ages 7 to 17: spine aBMD Z-score: -0.07±1.0, n=612; whole body aBMD Z-score: 

0.09±1.0, n=668). Due to the limitations of the scan field length relative to femur 

dimensions, fewer subjects had results for lateral distal femur Region 3 (n=625) compared to 

Region 1 (n=821).

Z-scores for aBMD of the lateral distal femur based on previously published reference 

data11 acquired with a pencil-beam device are shown in Table 3. All Z-scores were 

significantly different from zero, and varied by sex, race and site. Thus, use of this reference 

data may lead to overestimation of the prevalence of low BMD-for-age (defined by the 

International Society for Clinical Densitometry12 as Z-score < -2.0) in some groups, and 

overestimation in other groups, depending on the region of interest considered.

The new reference curves for lateral distal femur aBMD resulted in Z-scores with a mean of 

zero and standard deviation of one, as expected. The L, M, and S parameters and percentile 

distributions are given in Table 4a to 4c, and the distributions of lateral distal femur aBMD 

are shown in Figures 2 to 4. Because of the small number of subjects in the 5 year old age 

group (n=13, divided by race and sex), the values in Table 4a to 4c were restricted to ages 6 

to 18. The L, M (50th percentile) and S values in Table 4 can be used to calculate a Z-score 

for an individual child using equations 1 and 2 given above.

DXA spine and whole body scans were available for 838 subjects, and pQCT scans were 

available for 566 subjects at the 3% site and 610 subjects at the 38% site. Since values for 

these measures increased with age and body size in a non-linear fashion, Z-scores were 

computed for all measures to account for these expected changes. The mean ± sd was 0±1 

for each of these Z-scores, e.g., aBMD of the spine and whole body and pQCT measures of 

vBMD and bone strength, as expected. Correlations among Z-scores for growth/body size 

(height, weight, BMI), aBMD and vBMD and strength measures are shown in Table 5. 

These correlation coefficients illustrate that lateral distal femur aBMD Z-scores were 

significantly associated with other DXA measures of aBMD recommended for clinical 

assessment in children12. The lateral distal femur Z-scores, like other aBMD Z-scores, were 

positively and significantly associated with growth (height, weight and BMI) Z-scores 

indicating that children who were large for their age had greater aBMC and aBMD for their 

age. Also of note, lateral distal femur Z-scores, like the spine and whole body Z-scores, 

correlated well with pQCT measures of vBMD and bone strength, especially the measures 

of trabecular and total vBMD.

Discussion

For many children with disabilities and at-risk for the co-morbidity of low BMD, traditional 

assessment techniques such as spine or whole body imaging by DXA are often not an option 

due to deformity, indwelling hardware or difficulties with positioning. In addition, lower 

limb fractures are particularly common among children with conditions affecting mobility, 

such as cerebral palsy and Duchenne muscular dystrophy 4,5, so the distal femur is of 

significant clinical interest. Distal femur scans offer an excellent alternative for most of 
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these children. Previously published reference data for the lateral distal femur were based on 

a smaller sample of 256 healthy children, primarily Caucasian 11. These scans were obtained 

on older technology, the Hologic (QDR1000 and 2000 models) scanners in pencil-beam 

mode. The current generation of fan-beam technology DXA instruments offer more rapid 

scan times; a factor that is critical in the success of obtaining interpretable scans in children, 

especially those with significant physical or cognitive disabilities. In addition, changes in 

DXA instruments and software are known to have a significant impact on aBMD results in 

children because of their smaller bone size and soft tissue distribution 28,29. The results of 

this study demonstrated that the distribution of lateral distal femur aBMD in this large 

sample of healthy children measured in the latest generation of Hologic software and 

hardware in fan-beam mode differed from the previously published data. Thus, when 

selecting reference data for the evaluation of measurements in children, it is important to 

consider the hardware and software versions used12.

Optimally, pediatric reference data should be based on a sample of healthy children that is 

sufficiently large to characterize the age and sex related variability in the outcome measure, 

and on statistical techniques that accurately characterize the variability in the measure. 

Racial differences in aBMD during childhood add further complexity to the development of 

reference data. For most BMD measures, the age-related changes are non-linear and the 

variability increases with age. The reference ranges presented here were based on a total of 

821 children, with at least 180 children in each sex and race group. The statistical technique 

used to generate the reference ranges was the same as that used for the creation of the CDC 

growth charts23 and the U.S. reference data for aBMD26. This approach enables calculation 

of exact centiles and Z-scores using equations 1 and 2 (above) and the L, M, and S values 

from Table 4. A possible limitation of the reference data presented is that all subjects were 

evaluated at a single geographical location drawing on subjects from urban and suburban 

communities. Potential regional and device-specific variation in lateral distal femur aBMD 

could not be assessed. In addition, because of limitations in the length of the scan field 

relative to the size of the femur, not all regions of interest could be measured in all subjects.

Separate reference curves were presented for Black vs. Non-Black children. Racial 

differences in BMD are widely recognized in adults and children 30-34. However, the clinical 

application of race-specific reference curves should be carefully considered. The 

International Society for Clinical Densitometry recommends the use of reference curves 

based on Caucasian samples for adults for all race and ethnic groups 35. For children, the use 

of race-specific curves is recommended12 since they may be useful in identifying children 

who are not attaining their genetic potential for bone mineral accrual. However, the use of 

race-specific reference curves for determination of fracture risk in children is unknown and 

requires further investigation.

Z-scores for lateral distal femur aBMD were compared to Z-scores for growth, traditional 

DXA measures of aBMD, and pQCT measures of vBMD and bone strength. While none of 

these comparisons attest to the accuracy of lateral distal femur aBMD measurements since 

they are measuring different aspects of skeletal and somatic growth and development, they 

do provide important insights. First, the lateral distal femur aBMD Z-scores were 

significantly associated with body size measures, as were other aBMD Z-scores. In other 
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words, children who were large for their age also had higher aBMD for their age. Of note, 

the association between height Z-score and lateral distal femur aBMD Z-score was 

somewhat lower than the corresponding associations between height Z-score and spine and 

whole body aBMD Z-score. This is likely due to the technique used in the analysis of the 

lateral distal femur image, in which bone size is taken into account in defining the region of 

interest. This is not done in spine or whole body DXA measurements. Since many children 

at-risk for low BMD also have growth failure, it is an important consideration that this 

measure of aBMD status is less influenced by height status. It is also noteworthy that the 

correlations between lateral distal femur aBMD and weight and BMI Z-score were higher 

than for other aBMD measures. One possible explanation is that the distribution of weight-

bearing forces are more concentrated on the lateral distal femur than on the spine or whole 

body, so the strength of this association may reflect the impact of weight-bearing physical 

activity on BMD of the femur.

Lateral distal femur aBMD Z-scores were also strongly associated with Z-scores of distal 

tibia total and trabecular vBMD, and mid-shaft cortical thickness, section modulus and SSI 

obtained by pQCT. These pQCT measures offer more detail than DXA various aspects of 

bone strength (trabecular bone at the ultradistal 3% site and cortical bone in the mid-shaft at 

the 38% site) and therefore provide further evidence of the utility and validity of the lateral 

distal femur scan to characterize bone strength. The use of Z-scores in the analysis has the 

advantage of removing the age or size effects associate with the unadjusted bone 

measurements. Z-scores are an indicator of status relative to peers of the same age and sex. 

The correlations among Z-scores demonstrated, for example, the degree to which a healthy 

child who has a high lateral distal femur aBMD for age will also have a high trabecular 

vBMD relative to same age peers. The correlation results also demonstrated that the lateral 

distal femur aBMD Z-scores performed as well or better than spine and whole body Z-

scores in relation to pQCT measures of trabecular and cortical bone in healthy children.

Unlike DXA measures of aBMD, pQCT vBMD Z-scores were not influenced by height 

status 36. Although these pQCT measures were obtained on the tibia rather than the femur 

(due to the configuration of the pQCT device), the significant associations between the 

lateral distal femur aBMD Z-scores and pQCT outcome measures indicates the degree to 

which lateral distal femur DXA aBMD measurements are generalizable to other measures 

obtained with a method that is strongly predictive of fracture risk in experimental 

situations37,38.

In summary, reference curves for lateral distal femur aBMD measurements to be used for 

clinical care are presented based on a large multi-ethnic sample of healthy children. This 

technique provides an excellent opportunity for bone health assessment in children for 

whom spine or whole body measurements are not feasible. A critical issue for any measure 

of bone health is the relationship to fracture. Futures studies are needed to evaluate the 

ability of lateral distal femur aBMD measurements to predict fracture, especially among 

children for whom traditional DXA measurement sites are not feasible.
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Figure 1. 
(A) Patient positioning for the left lateral distal femur scan showing the child in a side-lying 

position with positioning devices (foam blocks and sand bags) to assist in attaining a 

comfortable and stable position. The femur is centered on the table and parallel to the edge. 

The forearm scan mode is used to obtain the scan. (B) Analysis of the scan requires insertion 

of region of interest boxes. The width and height of each region of interest box is illustrated 

in the figure. (C) The three regions of interest are illustrated in the figure.
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Figure 2. 
Reference curves for areal bone mineral density for Region 1. The reference curves are 

based on 244 non-black females, 183 black females, 212 non-black males and 182 black 

males.
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Figure 3. 
Reference curves for areal bone mineral density for Region 2. The reference curves are 

based on 244 non-black females, 183 black females, 211 non-black males and 180 black 

males.
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Figure 4. 
Reference curves for areal bone mineral density for Region 3. The reference curves are 

based on 184 non-black females, 146 black females, 157 non-black males and 138 black 

males. The curve for black males is restricted to ages 6 to 16 because there was insufficient 

representation of subjects in this age range.
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Table 1
Sample Characteristics (n=821)

Gender 52% Female

Race 45% Black / African American

Sexual Maturity

 Tanner 1 34%

 Tanner 2 14%

 Tanner 3 15%

 Tanner 4 23%

 Tanner 5 15%

Age, y* 11.4 (3.5)

Height Z-score* 0.3 (0.9)

Weight Z-score* 0.4 (1.0)

BMI Z-score* 0.3 (1.0)

*
mean (sd)
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Table 2
Bone Density Measures by DXA and pQCT

Measure n Mean s.d.

Lateral Distal Femur

 Region1 aBMD, gm/cm2 821 0.88 0.19

 Region2 aBMD, gm/cm2 818 0.96 0.21

 Region3 aBMD, gm/cm2 625 0.93 0.23

Lumbar Spine and Whole Body DXA

 Lumbar Spine aBMC, gm 810 35.1 17.0

 Lumbar Spine aBMD, gm/cm2 810 0.73 0.19

 Whole Body aBMC, gm 814 1393 554

Tibia pQCT

 Tibia Total vBMD (3% site), gm/cm3 546 307 39

 Tibia Trabecular vBMD (3% site), gm/cm3 546 248 31

 Tibia Cortical Thickness, mm 587 4.47 0.90

 Tibia Section Modulus, mm3 587 1210 537

 Tibia Strain Strength Index, mm4 587 1128 508

aBMD: areal bone mineral density

vBMD: volumetric bone mineral density
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Table 5

Correlations Among Z-Scores*

Region 1 aBMD Region 2 aBMD Spine aBMD WB aBMC

Region 2 aBMD 0.81 1.00 0.63 0.68

Region 3 aBMD 0.72 0.91 0.58 0.65

Height 0.26 0.26 0.32 0.60

Weight 0.54 0.48 0.44 0.64

BMI 0.50 0.44 0.36 0.45

Spine aBMC 0.55 0.61 0.84 0.85

Spine aBMD 0.61 0.63 1.00 0.78

WB aBMC 0.66 0.68 0.78 1.00

WB aBMD 0.68 0.72 0.77 0.87

Trabecular vBMD 0.61 0.64 0.45 0.46

Total vBMD 0.57 0.63 0.46 0.42

Cortical Thickness 0.44 0.47 0.40 0.31

Section Modulus 0.39 0.36 0.35 0.37

Strain Strength Index 0.36 0.34 0.35 0.37

*
Note: all correlations are statistically significant p<0.0001
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