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Abstract
An electrostatic model based on charge density is proposed as a model for future force fields. The
model is composed of a nucleus and a single Slater-type contracted Gaussian multipole charge density
on each atom. The Gaussian multipoles are fit to the electrostatic potential (ESP) calculated at the
B3LYP/6-31G* and HF/aug-cc-pVTZ levels of theory and tested by comparing electrostatic dimer
energies, inter-molecular density overlap integrals, and permanent molecular multipole moments
with their respective ab initio values. For the case of water, the atomic Gaussian multipole moments
Qlm are shown to be a smooth function of internal geometry (bond length and bond angle), which
can be approximated by a truncated linear Taylor series. In addition, results are given when the
Gaussian multipole charge density is applied to a model for exchange-repulsion energy based on the
inter-molecular density overlap.
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1. Introduction
Force fields are routinely used to simulate biological molecules in order to study structure and
function. Recently, attention has been focused on developing accurate force field models that
are able to provide a more realistic account of inter-molecular interactions. For example,
polarization models1–6 have been incorporated into force fields7–16 in order to account for
many body effects17–20 in polar environments. In the SIBFA10–12 force field, multipoles are
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placed on atoms and bond barycenters in order to accurately account for the anisotropy in
electrostatic interactions. AMOEBA13–16 places multipoles on atoms and has been developed
as a force field for protein simulations. In addition, electrostatic models, which employ
geometry dependent charges, are being investigated21–24.

Atomic point multipole models derived from distributed multipole expansions25–28 or fit to
the electrostatic potential29 (ESP) have been proposed to improve the description of
electrostatic interactions. However, at short range, it has been noted25,30,31 that atomic point
multipole electrostatic models significantly underestimate electrostatic interactions at dimer
distances. This effect, called penetration error, becomes important at dimer distances where
there is significant overlap of molecular charge densities. Damping functions31–34 have been
proposed as a short range correction to atomic point multipoles in order to account for
penetration effects.

Another approach for calculating short range electrostatic interactions has been to model the
electron density. For example, simple Gaussian charge densities35–37 have been used in models
for liquids. Wheatley38,39 has studied Cartesian Gaussian multipole charge distributions40,
41, which are obtained by differentiating simple normalized Gaussian functions. It was shown
that at long range, the interactions between Gaussian multipole charge densities behave
asymptotically as point multipoles38. As an example, consider a Cartesian Gaussian dipole
charge distribution ρμ with dipole moment , exponent α, and nuclear center  given by

(1)

where  is the field point and ▽R is the Cartesian gradient with respect to the nuclear center

. The electrostatic potential  arising from ρμ is given by

(2)

where erf(x) is the error function defined by

(3)

Note that for large x, erf(x) ≈ 1. Thus, for large exponents or large separations, the electrostatic
potential arising from a Gaussian dipole behaves as a point dipole, i.e.

(4)

Recently, Giese and York42 have derived the electrostatic energy integral, density overlap
integral, and gradients of their matrix elements between contracted solid harmonic Gaussian
(multipole) charge densities in the spherical tensor framework. In analogy to taking derivatives
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of simple normalized Gaussian functions to create Cartesian Gaussian multipoles, spherical
tensor Gaussian multipoles can be constructed by contracting spherical tensor multipole
moments Qlm with the solid harmonic gradient operator43,44 Clm (▽) acting upon a simple
Gaussian function. In the Supplementary Information (SI), a summary of the mathematical
background43–47 used in this work, including definitions and theorems for the solid harmonic
function Clm(x,y,z) and the solid harmonic gradient operator Clm (▽), is provided.

Methods of calculating the Gaussian charge density parameters are also being explored.
Previously, we have proposed the Gaussian Electrostatic Model (GEM)10,48–51 as an
electrostatic model based on Gaussian charge density. The GEM density ρ(r) is represented by
a linear expansion of conventional auxiliary Gaussian basis sets. The density coefficients are
fit to the ab initio density ρQM(r) through a least-squares fit to the error in self-interaction
electrostatic energy52–56 ΔEself given by

(5)

GEM has been shown to accurately reproduce inter-molecular electrostatic interaction energies
at both short and long range distances. In addition, it was also shown that a GEM type model
can be constructed by fitting to the electrostatic potential (ESP) numerically on a grid57. When
fitting to ESP, it was found that fewer Gaussian basis functions were needed to reproduce ab
initio inter-molecular electrostatic energies as compared to fitting to the error in self-interaction
electrostatic energy ΔEself. In that work, we have also given some preliminary results for fitting
a single s-type Gaussian charge function on each atom to the ESP. It was found that a simple
model consisting of a single negative Gaussian charge distribution and positive nucleus on
each atom is able to account for a large fraction of the penetration error and represents a
significant improvement over atomic point charge models for short range electrostatic
interactions.

In the present study, we propose a natural extension to the single (uncontracted) s-type Gaussian
charge model by generalizing to a model based on a single diffuse contracted Gaussian
multipole charge density on each atom. The radial part of the Gaussian multipole charge density
is a Slater-type58,59 contracted Gaussian function fit to exp(-λr). For each atom, the Gaussian
multipole moments Qlm and a single Slater-type exponent parameter λ are fit to the electrostatic
potential (ESP) surrounding the molecule calculated at the B3LYP/6-31G* or HF/aug-cc-
pVTZ levels of theory. The model is tested by comparing electrostatic dimer energies, inter-
molecular density overlap integrals, and permanent molecular moments with their reference
ab initio values. In addition, a significantly improved method of fitting the Gaussian multipoles
to the ESP numerically on a grid is adopted. In particular, angular grids available in most
quantum chemistry codes are used, and a smooth weighting function, similar to the one
proposed by Hu60 et al., is used to filter out points near the nuclear centers.

In this work, we will show that a single diffuse contracted Gaussian multipole (shell) on each
atom is capable of reproducing ab initio inter-molecular electrostatic energies and density
overlap integrals on hydrogen bonded dimers at equilibrium geometries. For inter-molecular
electrostatic energies, the accuracy attained by Gaussian multipoles is shown to be
approximately 0.1 kcal/mol, which is comparable to that of our original GEM model. Since
the GEM model is represented by an auxiliary Gaussian basis set consisting of many
uncontracted Gaussian shells (multipoles) on each atom, the proposed single Gaussian
multipole model is expected to be an efficient model suitable for developing a force field for
molecular dynamics simulations. In addition, since there are fewer fitted parameters used in
Gaussian multipoles, the fit is more stable. Based on this property, the atomic Gaussian
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multipoles Qlm are shown to be a continuous function of internal geometry (bond lengths, bond
angles, etc). More specifically, it is shown that the atomic Gaussian multipole moments Qlm
can be approximated as a truncated linear Taylor series in bond length and bond angle for the
case of water.

The inter-molecular density overlap integral calculated by Gaussian multipoles can be applied
to the exchange-overlap model proposed by Wheatley and Price61,62 for the exchange-
repulsion energy. The first order inter-molecular exchange-repulsion energy Eexch is defined
as the total ab initio dimer energy minus the inter-molecular electrostatic energy calculated
using the frozen monomer wave functions. The ab initio exchange-repulsion energy Eexch can
be modeled by fitting a proportionality constant K to the inter-molecular density overlap
integral S by

(6)

where a is an empirical exponent parameter used to improved the quality of fit62. The
expression in eqn. 6 is commonly generalized to a pair-wise sum over atom-atom61,62

contributions between the two monomers. One of the challenges of developing parameters and
applying the exchange-overlap model is first finding an accurate and convenient representation
of the molecular charge density. In a previous work48,50, we have applied the exchange-overlap
model in eqn. 6 to the GEM molecular charge density. A molecular pair K parameter was fit
to the ab initio exchange-repulsion energy for the water-water dimer over several randomly
oriented water-water geometries. Although fitting molecular pair K parameters over atomic
pair parameters may not be ideal for constructing a general force field, we are interested in
studying the effects of applying an anisotropic charge density to the exchange-overlap model.
In the present study, a single molecular pair K parameter (eqn. 6) is fit to the ab initio exchange
energies using the inter-molecular density overlap integrals calculated by atomic Gaussian
monopoles, dipoles, and quadrupoles for small molecule hydrogen bonded dimers. Including
anisotropy in the description of charge density is shown to make a significant improvement in
reproducing ab initio exchange-repulsion energies.

In the following section, a Gaussian multipole charge density is defined and expressions for
the electrostatic potential, electrostatic energy, and density overlap integral are given. Details
on fitting Gaussian multipoles to the electrostatic potential are provided along with a discussion
on how the model is tested with ab initio inter-molecular electrostatic energies, inter-molecular
density overlap integrals, and permanent molecular multipole moments. This is followed by a
brief discussion on how the inter-molecular density overlap integrals calculated by Gaussian
multipoles are applied to the exchange-overlap model. In the next section, results for Gaussian
multipoles are presented. Inter-molecular electrostatic energies, inter-molecular density
overlap integrals, and permanent molecular multipole moments calculated by Gaussian
multipoles are compared with their respective ab initio values. The geometry dependence of
atomic Gaussian multipole moments Qlm is presented for the case of water. Results are given
when the Gaussian multipole inter-molecular density overlap integrals are applied to the
exchange-overlap model. Lastly, the results are summarized and future applications are
discussed in the Conclusions.

2. Methods
In this section, a definition of a contracted Gaussian multipole charge density is given along
with expressions for the electrostatic potential, electrostatic energy, and density overlap
integrals. This is followed by a brief discussion of Slater-type contracted Gaussian functions
and a description of how the Gaussian multipoles are fit to the ESP. In the next sub-section,
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computational details on the calculation of ab initio electrostatic energies and inter-molecular
density overlap integrals are discussed. The calculation of permanent molecular multipole
moments are described. This section concludes with computational details of how the
exchange-overlap parameters are fit.

2.1 Gaussian Multipoles
The definition we have used for a contracted Gaussian multipole charge density is similar to
the one given by Giese and York42. In that work42, expressions for efficiently calculating
electrostatic and density overlap matrix element integrals between real regular solid harmonic
contracted Gaussian functions are given along with gradients of their matrix elements. In order
to test the model for Gaussian multipole charge density, we have implemented similar
expressions using complex solid harmonic Gaussian (multipole) functions, which are given
below. A derivation of the following results along with a summary of necessary mathematical
background43–47 is given in the SI for the interested readers. Many of the theorems quoted in
the SI have been used in the evaluation of integrals between solid harmonic Gaussian basis
functions63–65 for quantum chemistry calculations.

In the Introduction, it was mentioned that a spherical tensor Gaussian multipole charge
distribution can be defined in terms of multipole moments Qlm and the solid harmonic gradient
operator Clm (▽) acting upon a normalized Gaussian function. As shown in the SI, the solid
harmonic gradient operator is especially useful in deriving integral quantities such as
electrostatic energies and density overlap integrals. In the following discussion, the final results
for electrostatic energy and overlap integral between two Gaussian multipole charge densities
are given after all derivative operations have been evaluated.

A contracted Gaussian multipole charge density  with moments Qlm and nuclear center
 evaluated at the point  is given by

(7)

where lmax is the maximum order of the Gaussian multipoles (e.g. lmax = 0 for monopoles, 1
for dipoles, etc.),  is the complex conjugate of a solid harmonic function, and ρl is a
derivative of a contracted Gaussian charge density defined by

(8)

where Nc is the degree of contraction. For l = 0, the density ρ0 is normalized to unity,

. multipole moments of the charge density  with respect to the center  are
the coefficients Qlm, i.e.

(9)

The electrostatic potential ϕ arising from ρ in eqn. 7 is given by
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(10)

where ϕl is defined by

(11)

and erf(x) is the error function defined in eqn. 3.

The electrostatic interaction energy between two Gaussian multipole charge densities

 and  and their nuclei Z1 and Z2 is given by

(12)

where  is the potential at  due to ρ2 and  is defined by a similar expression.
The density overlap integral S between two Gaussian multipole charge densities is defined by

(13)

The electrostatic and density overlap integrals in eqns. 12 and 13 can be expressed by42

(14)

where  for the electrostatic integral,  for the
density overlap integral, and the interaction matrix  is given below. The electrostatic
energy and density overlap integrals between two normalized contracted Gaussian monopole
charge densities with unit charge are given by

Elking et al. Page 6

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(15)

where R is the distance between nuclear centers and αμv is the Gaussian product exponent
defined by

(16)

In addition, the constants Alm and Blm are defined by

(17)

for l ≠ 0, and A00 = B00 = 1. The scaled solid harmonic function is defined by

. The interaction matrix  from eqn. 14 is given by

(18)

where Fl(R) ≡ 2l (d/dR2)1 F0(R). Finally, the point multipole results for electrostatic potential
and electrostatic energy can be found by considering an uncontracted Gaussian multipole
(Nc = 1), taking the large exponent limit (α→∞), and noting erf (x) → 1 as x → ∞.

The atomic Gaussian multipole moments Qlm are commonly defined25 with respect to a local
frame of the atom  and then rotated to the system or global frame  through
Wigner rotation matrices 

(19)

Recursion formulae for evaluating  have been given in Choi66 et al. For each atom, the
Cartesian transformation matrix R between the local and global frames is defined with respect
to the relative positions of the atom and its neighbors13,67,68.

2.2 Slater-Type Contracted Gaussian functions
The contraction coefficients dμ and exponents αμ are fit to a simple Slater function exp(-r) over
all space for Nc = 1 − 14
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(20)

For Nc = 1 − 6, the optimized exponents agree with those used in the development of the original
STONG basis sets58,59. The contraction coefficients dμ and exponents αμ fit to exp(-r) are used
to find the corresponding coefficients and exponents for exp(-λr) by a scaling argument. The
final expression for a normalized Slater-type charge density with unit charge and exponent λ
is given by

(21)

where . A full list of contracted coefficients and exponents for exp(-r)
can be found in the SI for Nc = 1 − 14.

2.3 Non-linear Fit to Potential
The model for molecular charge density presented in this work consists of an effective nuclear
charge Zeff and a set of contracted Gaussian multipole moments Qlm with a single diffuse Slater
exponential parameter λ centered on each atom. Only the valence charge density is modeled,
and the core electron density near the nuclear centers is neglected by using screened nuclear
charges Zeff = Z − Ncore, where Z is the true nuclear charge and Ncore is the number of core
electrons. The number of core electrons Ncore is taken to be 0 for hydrogen, 2 for the first row
elements, and 10 for the second row elements. Thus, the screened nuclear charges Zeff are set
to 1.0 for H, 4.0 for C, 5.0 for N, 6.0 for O, 7.0 for F, and 7.0 for Cl. Initially, we experimented
with using the true nuclear charges, e.g. Z = 8 for O. However, when the true nuclear charges
are used, the inter-molecular density overlap integrals at equilibrium dimer distances are
consistently overestimated by 10–15%. If the true nuclear charges are used, the model is forced
to account for both the core and valence electron density with a single diffuse Slater-type
Gaussian function. By only modeling the valence charge density, we had found that using
effective screened nuclear charges gave significantly smaller errors when comparing to the ab
initio inter-molecular electrostatic energy and density overlap integral.

The model for Gaussian multipole molecular charge density ρGM evaluated at the point  is
a represented as a sum over atomic Gaussian multipole charge densities given by

(22)

where  is the nuclear center of atom a, Qlm,a are the atomic Gaussian multipole moments
of atom a, λa is the Slater exponent on atom a, and ρl is defined by eqn. 8. The electrostatic
potential due to the effective nuclear charges and Gaussian multipole charge density can be
found from eqn. 10 as
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(23)

where  is the field point, Zeff,a is the effective nuclear charge of atom a, and ϕl is defined by
eqn. 11. For each atom, Qlm,a and λa are treated as optimizable parameters and fit to the ab
initio electrostatic potential ϕQM surrounding the molecule. Gaussian quadrupoles are defined
by lmax = 2, i.e. a Gaussian monopole, dipole, and quadrupole with the same atomic exponent
parameter λa are placed on a given atom a. Similarly, Gaussian dipoles are defined by lmax =
1, i.e. a Gaussian monopole and dipole with the same atomic exponent parameter λa are placed
on a given atom a.

Points near the nuclei are filtered out or discarded by using a weighting function . The

weighting function  used in this work is a modified version of a weighting function taken

from Hu et al.60 In this present study,  is a sigmoid function of the form

(24)

where ρQM is the ab initio electron density. The weighting function  is small for regions

of high electron density, while  for regions of low electron density. The adjustable
parameters σ and lnK0 control the curvature and location of the sigmoid function, respectively.

In the limit of large σ,  becomes a step function. For Gaussian multipoles, the σ and
lnK0 parameters are set to 0.3 and −6.0. The σ and lnK0 parameters are selected by performing
a 2D scan of parameters and observing the average error in electrostatic dimer energy of
hydrogen bonded dimers at equilibrium geometries. A plot of the average RMSD error in
electrostatic dimer energy is given in Fig. 1 for the case of contracted (Nc = 4) Gaussian
quadrupoles fit to the ESP calculated at the B3LYP/6-31G* level. The surface is flat and a
range of values perform equally well, e.g. (σ, lnK0) = (0.2, −7), (0.3, −6), (0.4, −5), etc. Similar
parameter scans were performed with Gaussian monopoles, dipoles, and quadrupoles at various
degrees of contraction Nc, and the same set of parameters were found to be local minima. In
Hu et al.60, a weighting function for fitting atomic point charges to the ab initio ESP is proposed.
There, it was shown that the point charges are stable with respect to varying conformations.

The main differences between the weighting function w  used in this work and the one
proposed by Hu60 et al. are that the ab initio electron density ρQM is used, rather than an
empirical model for ρQM, and points far away from the molecule are given a weight of 1.0. We
have also fit atomic point multipoles to the ESP using the σ and lnK0 weight parameters of 0.8
and −9.0 given by Hu60 et al.

The fitting function χ2 is given by
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(25)

where ϕGM and ϕQM are the electrostatic potentials (ESP) calculated by Gaussian multipoles
(eqn. 23) and ab initio, respectively. χ2 is approximated numerically on a coarse grain molecular
grid taken from a modified version of NWChem69,70 and optimized using a Levenberg-
Marquardt non-linear least-squares fit algorithm71. The ab initio electrostatic potential is
calculated at both the B3LYP/6-31G* or HF/aug-cc-pVTZ levels using the Gaussian 03
software package72. Earlier in our study, we had experimented with using rectangular grids
similar to the CHELPG73 type grids used in optimizing atomic point charges. A relatively fine
grid spacing of 0.05 Å was used and points within 1 Å of any nuclei were discarded. For
uncontracted Gaussian multipole (Nc = 1), this procedure gave Gaussian multipole parameters
which predicted electrostatic energies in approximate agreement to the results presented here
using the molecular grids with a smooth weighting function. However, for water, the number
of rectangular grid points needed was on the order of 106 – 107, which can be compared to
103 – 104 grid points used in the coarse grain molecular grids.

2.4 Ab initio Dimer Energy and Molecular Density Overlap Test
The model is tested by comparing inter-molecular electrostatic dimer energies and density
overlap integrals on equilibrium dimer geometries of various molecules hydrogen bonded to
water. The geometries of the dimers are optimized at both the B3LYP/6-31G* or the HF/aug-
cc-pVTZ levels, while keeping the monomers rigid in their respective monomer-optimized
geometries. For the model fit to B3LYP/6-31G* data, the model is tested by comparing to ab
initio electrostatic energies calculated by the Constrained Space Orbital Variation (CSOV)
decomposition74 method using a modified version of the HONDO75,76 quantum chemistry
program. For the model fit to HF/aug-cc-pVTZ data, ab initio electrostatic energies are
calculated by the Reduced Variational Space77,78 (RVS) decomposition method using the
GAMESS79 quantum chemistry program. In addition, we have developed code to calculate ab
initio inter-molecular density overlap integrals from the ab initio density matrix using the
McMurchie-Davidson algorithm80.

For the water-water dimer, the model is tested by calculating inter-molecular electrostatic
energies and density overlap integrals on non-equilibrium dimer geometries. Several water-
water dimer geometries are generated by rigidly translating one water molecule with respect
to the other in the direction of the inter-molecular H..O hydrogen bond. The inter-molecular
electrostatic energies and density overlap integrals calculated by Gaussian multipoles are
plotted as function of H..O distance and compared to their ab initio values. In addition, 100
water-water dimer geometries are generated in random orientations, while the relative center
of masses lie between 2.5 and 5.0 Å. Scatter plots of the inter-molecular electrostatic energy
and density overlap integral are presented comparing the results calculated by Gaussian
quadrupoles with their ab initio values.

2.5 Molecular Multipole Moments
The Gaussian multipoles are further tested by comparing permanent molecular dipoles (l = 1),
quadrupoles (l = 2), octapoles (l = 3), and hexadecapoles (l = 4) with their ab initio molecular
multipoles. The atomic Gaussian multipole moments Qlm at position  are translated to the
origin by the following expression25
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(26)

where Clm is a solid harmonic function. Note that  for all values of l and m. For
example, an atomic Gaussian dipole (with respect to its atomic position) contributes to the total
molecular dipole, quadrupole, octapole,.. (with respect to the origin). The translated atomic

Gaussian multipoles at the origin  are summed to give the total spherical tensor molecular
moment. Expressions for converting real spherical tensor multipoles into traceless Cartesian
multipoles can be found in Özdoğan81. Below, the results for converting complex spherical
tensor multipoles Qlm ≡ Qr

lm + iQi
lm into their traceless Cartesian forms are given. For l = 1,

the Cartesian dipole μα is related to Q1m by

(27)

For l = 2, the traceless Cartesian quadrupoles  are related to Q2m by

(28)

Note the trace of the quadrupoles is zero, i.e. . For the conversion
formulae of traceless Cartesian octapoles (l = 3) and hexadecapoles (l = 4) from their complex
spherical tensor moments, see the SI. The ab initio molecular multipole moments are calculated
by Gaussian 0372 and then converted to their traceless forms25. For example, the expression

for converting Cartesian quadrupoles Θαβ into traceless Cartesian quadrupoles  is given by

(29)

Similar expressions for converting Cartesian octapoles and hexadecapoles into their traceless
forms are given in the SI.

2.6 Gaussian Multipole Geometry Dependence
The atomic Gaussian multipole moments Qlm in the local frame (eqn. 19) are calculated as a
function of bond length and bond angle for a water molecule. The geometry of water is
optimized at the B3LYP/6-31G* level. Several geometries of water are found by performing
two separate one dimensional scans of perturbing one of the bond lengths and the bond angle
away from equilibrium in increments of 0.1 Å and 1°, respectively. Atomic Gaussian
quadrupoles Qlm and exponent parameters λ (Nc = 4) are fit to the B3LYP/6-31G* ESP for the
optimized water geometry. For each perturbed geometry, new atomic Gaussian quadrupoles
are fit the B3LYP/6-31G* ESP calculated for that geometry, while the exponent parameters
λ are kept at their geometry optimized values. The atomic Gaussian multipoles in the local
frame  are plotted as a function bond length and bond angle.
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2.7 Overlap-Exchange Model
The exchange-overlap model61,62 is tested using the model for Gaussian multipole charge
density for hydrogen bonded dimer pairs. For a given dimer, several geometries are generated
by translating one of the monomers in increments of 0.1 Å along the axis defined by the two
atoms forming the hydrogen bond. For each dimer geometry, the B3LYP/6-31G* exchange
energy Eexch is calculated through CSOV decomposition. Only dimer geometries for which
the total dimer energy is within +5 kcal/mol of the total minimum dimer energy are kept.
Typically, this entails 40 – 60 dimer geometries, of which the exchange energy lies between 0
and 30 kcal/mol. For example, the exchange overlap model for the water-water dimer is fit to
63 geometries, whose exchange energies lie between 0 and 27 kcal/mol. For each dimer pair,
a single molecular pair K parameter is fit to the ab initio exchange energy (eqn. 6) using the
inter-molecular density overlap integrals S calculated by Gaussian multipoles with a = 0.95.

3. Results
In this section, results for Gaussian monopoles, dipoles, and quadrupoles are presented. Recall
that `Gaussian quadrupoles' refers to a model in which Gaussian monopoles, dipoles, and
quadrupoles with the same atomic exponent parameter λ are placed on each atom. In the next
few sub-sections, results for inter-molecular electrostatic energy, density overlap integral, and
permanent molecular multipole moment calculated by Gaussian multipoles are compared with
their respective ab initio values. For the case of water, the atomic local frame Gaussian
multipole moments  are plotted as a function of bond length r and bond angle θ. Lastly,
results are given when Gaussian multipoles are applied the exchange-overlap model.

The dependence of inter-molecular electrostatic energy and density overlap integral on the
degree of Slater-type contraction Nc is studied. For Nc = 1, the model for charge density is a
single Gaussian function. In the limit of large Nc, the model for charge density is equivalent
to using a Slater function exp(−λr). For Gaussian multipoles fit to the B3LYP/6-31G* ESP,
the results for energy and density overlap favored Nc = 4. However, for the Gaussian multipoles
fit to the HF/aug-cc-pVTZ ESP, the errors in inter-molecular electrostatic energy and density
overlap decreased for larger values of Nc. The results indicate the optimal degree of contraction
Nc depends on the size of the ab initio basis set. The smaller 6-31G* basis set favors a smaller
degree of contraction, while the larger aug-cc-pVTZ basis set prefers a larger degree of
contraction. The values Nc = 4 and Nc = 8 are chosen for the Gaussian multipoles fit to the
B3LYP/6-31G* ESP and the HF/aug-cc-pVTZ ESP, respectively. For more details on the Nc
dependence, see the SI.

3.1 Electrostatic Energy
Electrostatic dimer energies for several molecules hydrogen bonded to water are calculated at
their equilibrium geometries. In Table I, electrostatic dimer energies are given for Gaussian
monopoles, dipoles, and quadrupoles with Nc = 4, which are fit to the ESP calculated at the
B3LYP/6-31G* level. The Gaussian multipole electrostatic dimer energies are compared with
their reference B3LYP/6-31G* values. The root mean square deviation (RMSD) errors in
electrostatic dimer energy are 0.568, 0.567, and 0.094 kcal/mol for Gaussian monopoles,
dipoles, and quadrupoles, respectively. On average, the errors for Gaussian monopoles and
dipoles (Nc = 4) are quite similar, while a significant improvement is gained for Gaussian
quadrupoles. As a representative example, the electrostatic dimer energies of the water–
methanol(1) dimer are −8.751, −8.103, and −8.558 kcal/mol for Gaussian monopoles, dipoles,
and quadrupoles, respectively. These numbers can be compared to the reference ab initio
electrostatic energy for the water–methanol(1) dimer of −8.524 kcal/mol. Gaussian quadrupoles
are found to be particularly important in predicting the electrostatic dimer energies of organic
halides with water. For example, the ab initio electrostatic energy for the water–CH3Cl(1) dimer
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is −0.372 kcal/mol. This result can be compared to the electrostatic dimer energies predicted
by Gaussian monopoles, dipoles, and quadrupoles of −1.070, −0.719, and −0.362 kcal/mol,
respectively.

A similar analysis is performed at the HF/aug-cc-pVTZ level. Gaussian multipoles (Nc = 8)
are fit to the ESP calculated at the HF/aug-cc-pVTZ level, while the reference ab initio
electrostatic energies are calculated at the same level of theory using the RVS decomposition
method. Due to computational limitations, 11 of the original 25 hydrogen bonded dimers are
studied at this level. The dimers with the smallest monomers are chosen (water, ammonia,
methanol, CH3F, and CH2F2). As expected, a significant improvement is found by increasing
the multipole order from Gaussian monopoles to Gaussian quadrupoles. The RMSD errors in
electrostatic dimer energy are 0.885, 0.366, and 0.133 kcal/mol for Gaussian monopoles,
dipoles, and quadrupoles, respectively. As an example, the electrostatic energies for the water–
methanol(1) dimer predicted by Gaussian monopoles, dipoles, and quadrupoles (Nc = 8) are
−9.233, −8.187, and −8.847 kcal/mol, respectively. These results can be compared to the HF/
aug-cc-pVTZ electrostatic energy of −8.753 kcal/mol. For more individual results, see the SI.

The results for inter-molecular electrostatic energy given above are calculated on equilibrium
dimer geometries. For non-equilibrium dimer geometries, the inter-molecular electrostatic
energy are calculated for the water-water dimer. The electrostatic energies calculated by
Gaussian quadrupoles (Nc = 4) and ESP fitted atomic point quadrupoles are plotted for various
hydrogen bond distances H..O in Fig. 2 for the water-water dimer and compared to their
reference B3LYP/6-31G* values. As in the case of Gaussian quadrupoles, we call ̀ atomic point
quadrupoles' as a model in which ESP fitted atomic point monopoles, dipoles, and quadrupoles
are placed on each atom. The optimized equilibrium dimer H..O distance is found to be 1.94
Å at the B3LYP/6-31G* level. At the equilibrium dimer separation, Gaussian quadrupoles
predict an electrostatic energy of −8.195 kcal/mol, atomic point quadrupoles predict −6.422
kcal/mol, while the reference ab initio result is −8.235 kcal/mol. The under-estimation of the
atomic point quadrupole energy is an example of the penetration error25,30,31 for atomic point
multipoles. At long range H..O distances, beyond 2.3 Å, both Gaussian quadrupoles and atomic
point quadrupoles accurately reproduce the ab initio electrostatic energy. At short range H..O
distances less than 1.64 Å, the Gaussian quadrupole electrostatic energy begins to slowly
deviate from its reference B3LYP/6-31G* result. For example at 1.54 Å, the B3LYP/6-31G*
ab initio electrostatic energy is −20.11 kcal/mol, which can be compared to the result of −21.54
kcal/mol calculated by Gaussian quadrupoles and −11.74 kcal/mol calculated by atomic point
quadrupoles. In Fig. 3, the inter-molecular electrostatic energies calculated by Gaussian
quadrupoles are compared with their ab initio reference values for several randomly oriented
water-water dimers. The electrostatic energies calculated by Gaussian quadrupoles agree with
their ab initio reference values for energies ranging from −10 kcal/mol to +5 kcal/mol.
Additional scatter plots of inter-molecular electrostatic energy can be found in the SI for
randomly oriented hydrogen bonded dimers.

In order to compare Gaussian multipoles with the Gaussian Electrostatic Model (GEM)57,
electrostatic dimer energies are calculated on 10 water dimers82,83 which represent local
minima on the water-water potential energy surface. Previously, GEM57 was fit to the B3LYP/
6-31G* ESP using the A1 and P1 auxiliary Gaussian basis sets (ABS). Two GEM models for
water were developed. In a 3 pt. GEM water model, ABS's have been placed on atomic centers
only. A second GEM water model has been developed by placing ABS's on both the atomic
centers and bond midpoints resulting in a 5 pt. GEM water model. The average absolute errors
in the electrostatic energy for the 3 pt. GEM water model are 0.11 and 0.12 kcal/mol for the
A1 and P1 basis sets, respectively. Including basis functions on bond midpoints results in an
improved fit for GEM. The errors in the 5 pt. GEM water fit to the ESP are 0.06 and 0.04 kcal/
mol for the A1 and P1 basis sets, respectively. The average errors in electrostatic dimer energy

Elking et al. Page 13

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for GEM can be compared to the error of 0.06 kcal/mol for Gaussian quadrupoles (Nc = 4).
The GEM 5 pt. water model with the A1 and P1 basis sets have a total of 110 and 213 primitive
Gaussian functions, respectively. The total number of uncontracted basis functions in the GEM
water models can be compared to the total number of contracted Gaussian quadrupoles of 27.

3.2 Molecular Density Overlap Integral
The model for Gaussian multipoles is further tested by comparing inter-molecular density
overlap integrals with their ab initio values. In Table II, the inter-molecular density overlap
integrals are given for the hydrogen bonded dimers at their equilibrium geometries. The inter-
molecular density overlap integrals for Gaussian monopoles, dipoles, and quadrupoles (Nc =
4) are compared with their respective B3LYP/6-31G* values. On average, there is a significant
improvement in going up in multipole order from Gaussian monopoles to Gaussian
quadrupoles. The RMSD errors in inter-molecular density overlap integrals are 2.571, 0.752,
and 0.195 10−3 e2/Å3 for Gaussian monopoles, dipoles, and quadrupoles, respectively. A
representative example is the water-methylamine complex at equilibrium, which has an ab
initio value of 15.89 10−3 e2/Å3. This value can be compared to the inter-molecular density
overlap calculated by Gaussian monopoles, dipoles, and quadrupoles of 19.78, 17.05, and 15.56
10−3 e2/Å3, respectively. Similar trends can be found for the Gaussian multipoles fit to the HF/
aug-cc-pVTZ ESP. At the HF/aug-cc-pVTZ level, the RMSD errors in inter-molecular density
overlap integral are 2.668, 0.502, and 0.268 10−3 e2/Å3 for Gaussian monopoles, dipoles, and
quadrupoles (Nc = 8), respectively. For individual results on HF/aug-cc-pVTZ Gaussian
multipoles, see the SI.

The results given above are for inter-molecular density overlap integrals calculated at
equilibrium dimer distances. For non-equilibrium dimer geometries, the inter-molecular
density overlap integrals are compared with their ab initio values for the water-water dimer.
In Fig. 4, the inter-molecular density overlap integrals calculated by B3LYP/6-31G* Gaussian
quadrupoles (Nc = 4) and the B3LYP/6-31G* reference values are plotted as a function of H..O
distance. The inter-molecular overlap integrals predicted by Gaussian quadrupoles agree with
their ab initio values for H..O distances ranging from 2.3 Å to 1.7 Å. For shorter separations,
the inter-molecular overlap integrals predicted by Gaussian quadrupoles begin to overestimate
the ab initio result. In Fig. 5, the inter-molecular density overlap integral calculated by Gaussian
quadrupoles are compared with their respective ab initio values for several randomly oriented
water-water geometries. The inter-molecular overlaps integrals range from 0 to 30.0 10−3 e2/
Å3. There is a small over-estimation (~6 %) of the inter-molecular density overlap integrals
calculated by Gaussian quadrupoles as compared with their ab initio values. In the SI,
additional scatter plots of inter-molecular density overlap integral can be found for other
randomly oriented hydrogen bonded dimers.

3.3 Molecular Multipole Moments
The permanent molecular multipole moments up to hexadecapole are calculated for the
atomic Gaussian monopole, dipole, and quadrupole models (Nc = 4) and compared with their
reference B3LYP/6-31G* values. As an example, the non-zero components of the molecular
quadrupole for ammonia are given in Table III. A significant improvement is found by
increasing the atomic Gaussian multipole order from Gaussian monopoles to Gaussian
quadrupoles. For example, the ab initio Qxx component of the molecular quadrupole is 1.3140
D-Å, which can be compared to the value predicted by Gaussian monopoles, dipoles, and
quadrupoles of 0.9211, 1.2701, and 1.3139 D-Å, respectively.

The results for molecular multipole moments given for ammonia are representative of the other
14 monomers studied in this work. The RMSD errors in molecular multipole moment up to
hexadecapole are averaged over all the molecules and presented in Table IV. As expected,
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there is a significant decrease in average RMSD error for increasing atomic Gaussian multipole
order. For example, the average RMSD errors in molecular hexadecapole are 3.402 DÅ3 for
atomic Gaussian monopoles, 0.969 for Gaussian dipoles, and 0.130 for Gaussian quadrupoles.
For more individual results, see the SI.

3.4 Gaussian Multipole Geometry Dependence
The atomic Gaussian multipole moments are investigated as a function of bond length r and
bond angle θ for the case of water. Gaussian quadrupoles (Nc = 4) are calculated at the B3LYP/
6-31G* level for several geometries of water obtained by perturbing either the O-H1 bond
length or the H1-O-H2 bond angle. The atomic Gaussian multipole moments in the local frame
(eqn. 19) are converted to their traceless Cartesian moments (eqns. 27 and 28). In Fig. 6, the
atomic Gaussian monopole moment q on oxygen is plotted when the H1-O bond length is
varied. The Gaussian monopole charge q is a smooth function of bond length, which can be
approximated as a straight line for bond lengths between 0.92 and 1.00 Å (the equilibrium bond
length is 0.9684 Å). In addition, the zz component of the local frame traceless Cartesian
quadrupole moment  on the H1 hydrogen is plotted as a function of H1-O-H2 bond angle
in Fig. 7.  can be approximated as a straight line for bond angles between 95° and 111°
(the equilibrium bond angle is 103.66°). In both Figs. 6 and 7, the straight lines are determined
by the value of the local frame atomic multipoles  at the equilibrium geometry and the
finite difference derivative of  with respect to the bond length or bond angle at the
equilibrium geometry. The results given in Figs. 6 and 7 are examples, and the other atomic
Gaussian moments  follow similar trends (see the SI for more examples). For small
internal geometry perturbations, the above results suggest that the local frame atomic Gaussian
multipole moments can be approximated by a truncated linear Taylor Series as a function of
the two bond lengths r1 (H1-O) and r2 (H2-O) and the bond angle θ (H1-O-H2) as

(29)

where  is the atomic Gaussian multipole at the geometry optimized equilibrium structure.

, , and  are the finite difference partial derivatives of
 with respect to r1, r2, and θ, respectively, evaluated at the equilibrium structure.

3.5 Exchange-Overlap Model
The exchange-overlap model is fit to exchange-repulsion energies calculated at the B3LYP/
6-31G* level through CSOV decomposition as described in section 2.7. The inter-molecular
density overlap integrals are calculated from Gaussian quadrupoles (Nc = 4) fit to the B3LYP/
6-31G* ESP. For the water-water dimer, the RMSD error of fit is 0.350 kcal/mol for Gaussian
quadrupoles, over a range of exchange energies from 0.0 to 27.0 kcal/mol. At the equilibrium
water-water dimer distance, the exchange energy calculated by the exchange-overlap model is
5.449 kcal/mol, compared to the ab initio result of 5.362 kcal/mol. In Fig. 8, the water-water
exchange energy calculated by the model is compared with the ab initio value and plotted as
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a function of H..O distance. A similar analysis is performed on the other hydrogen bonded
dimers. The RMSD fit errors are averaged over all the dimers and given by 0.764, 0.379, and
0.275 kcal/mol for Gaussian monopoles, dipoles, and quadrupoles, respectively. This result
indicates that including anisotropy in the model for charge density makes a significant
improvement when applying the exchange-overlap model. At equilibrium distances, the
exchange energies lie between 0.1 and 10 kcal/mol. The RMSD in exchange energy at the
equilibrium dimer distance averaged over the hydrogen bonded dimers are 1.782, 0.262, and
0.276 kcal/mol for Gaussian monopoles, dipoles, and quadrupoles, respectively. For Gaussian
quadrupoles, the molecular pair K parameters range from 0.5786 kcal/mol (103 Å3/e2)0.95 for
the water-CH3F dimer to 0.7499 for the water-ammonia dimer. The average value of the
molecular pair K parameter over all the dimers is 0.6607. Because of the variability of the K
parameters, a single molecular pair K parameter may not be sufficient for larger molecules or
when a large amount of configuration space is sampled. For more individual results, including
exchange parameters K, RMSD errors, and exchange dimer energies, see the SI.

4. Conclusion
We have proposed a model based on contracted Gaussian multipole charge density. The atomic
Gaussian multipoles are fit to the ab initio electrostatic potential and are shown to reproduce
ab initio electrostatic dimer energies, inter-molecular density overlap integrals, and permanent
molecular multipole moments. For the case of water, the local frame atomic Gaussian multipole
moments  are shown to be a smooth function of bond length r and bond angle θ, which
can be approximated as a truncated linear Taylor series. In a follow up work, we will present
analytic atomic force expressions for geometry dependent Gaussian multipoles and show that
geometry dependent electrostatic models are capable of reproducing ab initio electrostatic
atomic forces. In addition, the inter-molecular density overlap integrals calculated by Gaussian
multipoles has been applied to a model61,62 for exchange-repulsion energy based on inter-
molecular density overlap integral. A molecular pair K parameter is fit to the ab initio exchange-
repulsion energy for hydrogen bonded dimers. A significant improvement is found in going
from Gaussian monopoles to Gaussian quadrupoles, indicating that including anisotropy in the
description of atomic charge density is important. Though the preliminary results of applying
the exchange-overlap model to the Gaussian multipole charge density are encouraging, a more
extensive investigation would be useful, possibly by studying atomic pair K parameters fit to
a larger molecular data set. We plan to further study the exchange-overlap model using
Gaussian multipoles, and we hope to propose a general set of transferable exchange-overlap
parameters in the near future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Contour plot of the average RMSD error in electrostatic dimer energy (kcal/mol) as a function
of parameters σ and lnK0 for the ESP weighting function. The electrostatic energies are
calculated on hydrogen bonded dimers at equilibrium geometries using B3LYP/6-31G*
Gaussian quadrupoles (Nc = 4). The dark purple running through the center represents minima
in the average RMSD error in electrostatic dimer energy.
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Figure 2.
The electrostatic energy (kcal/mol) calculated by atomic point quadrupoles, Gaussian
quadrupoles, and ab initio is plotted as a function of H..O distance for the water – water dimer.
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Figure 3.
The inter-molecular electrostatic energy (kcal/mol) calculated by Gaussian quadrupoles (y-
axis) and ab initio (x-axis) is plotted for randomly oriented water – water dimer geometries.
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Figure 4.
The inter-molecular density overlap integral (10−3 e2/Å3) calculated by atomic Gaussian
quadrupoles and ab initio is plotted as a function of H..O distance (Å) for the water – water
dimer.
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Figure 5.
The inter-molecular density overlap integral (10−3 e2/Å3) calculated by Gaussian quadrupoles
(y-axis) and ab initio (x-axis) is plotted for randomly oriented water – water dimer geometries.

Elking et al. Page 24

J Chem Theory Comput. Author manuscript; available in PMC 2011 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Atomic Gaussian monopole moment q (e) on oxygen in a water molecule as a function of H1-
O bond length. The B3LYP/6-31G* equilibrium H1-O bond length is 0.9684 Å.
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Figure 7.
Atomic local frame Gaussian quadrupole moment  (eÅ2) on the `H1' hydrogen in a water
molecule as a function of H1-O-H2 bond angle. The B3LYP/6-31G* equilibrium H1-O-H2
bond angle at is 103.66°.
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Figure 8.
The exchange energy calculated by Gaussian quadrupoles and ab initio is plotted as a function
of H..O distance for the water–water dimer.
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Table I

Electrostatic energies (kcal/mol) for equilibrium hydrogen bonded dimers (X-water). The electrostatic energies
predicted by Gaussian monopoles EM, Gaussian dipoles EDM, and Gaussian quadrupoles EQDM (Nc = 4) are
compared to their reference B3LYP/6-31G* electrostatic dimer energies calculated using the CSOV
decomposition method. The superscripts (1), (2), (3) denotes multiple dimer geometries. (1 kcal/mol = 4.184 kJ/
mol)

X EM EDM EQDM CSOV

Formamide(1) −13.59 −12.82 −13.42 −13.68

Formamide(2) −8.723 −7.849 −8.554 −8.545

Formamide(3) −7.618 −7.089 −7.627 −7.679

N-methylformamide −9.330 −8.058 −8.186 −8.285

Water(1) −7.934 −7.730 −8.195 −8.235

Water(2) −4.697 −4.582 −4.780 −4.879

Water(3) −3.517 −3.192 −3.129 −3.179

Methanol(1) −8.751 −8.103 −8.558 −8.524

Methanol(2) −7.263 −7.712 −8.217 −8.296

CH3Cl(1) −1.070 −0.719 −0.362 −0.372

CH3Cl(2) −2.297 −2.564 −2.714 −2.768

CH2Cl2(1) −0.580 −0.274 −0.029 −0.035

CH2Cl2(2) −4.237 −4.211 −4.618 −4.693

CH3F(1) −3.187 −2.731 −2.481 −2.538

CH3F(2) −1.639 −1.889 −1.922 −2.003

CH2F2 −2.211 −1.803 −1.673 −1.743

CH2F2
(2) −2.904 −3.160 −3.233 −3.358

Ammonia(1) −10.60 −11.04 −11.95 −12.04

Ammonia(2) −3.360 −3.263 −3.538 −3.629

Methylamine −11.61 −11.76 −12.35 −12.43

Formaldehyde −6.046 −5.330 −6.113 −6.145

Acetaldehyde(1) −7.676 −6.762 −7.541 −7.717

Acetaldehyde(2) −6.943 −6.156 −7.036 −7.025

Acetone −8.427 −7.541 −8.424 −8.545

Dimethyl ether −7.457 −7.849 −8.300 −8.185

RMSD 0.568 0.567 0.094
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Table II

Inter-molecular density overlap integrals (multiply by 10−3 e2/Å3) for equilibrium hydrogen bonded dimers (X-
water). The overlap integrals predicted by Gaussian monopoles SM, Gaussian dipoles SDM, and Gaussian
quadrupoles SQDM (Nc = 4) are compared to their reference B3LYP/6-31G* values. The superscripts (1), (2), (3)

denotes multiple dimer geometries. (10−3 e2/ Å3 = 1.482 10−4 e2/a0
3, where a0 is the Bohr radius)

X SM SDM SQDM SQM

Formamide(1) 20.29 17.30 16.76 16.99

Formamide(2) 15.47 11.05 11.25 10.88

Formamide(3) 8.283 7.201 7.577 7.399

N-methylformamide 16.36 12.04 11.43 11.37

Water(1) 11.28 9.969 9.133 9.061

Water(2) 2.871 2.513 2.503 2.698

Water(3) 1.189 0.958 0.930 1.084

Methanol(1) 15.40 12.70 11.47 11.30

Methanol(2) 8.783 10.21 9.470 9.518

CH3Cl(1) 0.662 0.461 0.243 0.308

CH3Cl(2) 1.790 2.469 3.238 3.250

CH2Cl2(1) 0.329 0.217 0.116 0.162

CH2Cl2(2) 3.812 3.704 5.341 5.440

CH3F(1) 5.679 3.358 2.886 3.086

CH3F(2) 2.542 2.561 2.738 2.881

CH2F2
(1) 3.635 2.044 1.806 2.036

CH2F2
(2) 4.477 4.016 4.275 4.569

Ammonia(1) 15.63 13.75 13.21 13.39

Ammonia(2) 3.647 4.297 4.230 4.327

Methylamine 19.78 17.05 15.56 15.89

Formaldehyde 10.71 8.028 8.060 7.871

Acetaldehyde(1) 12.77 9.957 9.584 9.657

Acetaldehyde(2) 12.63 9.390 9.573 9.241

Acetone 14.30 11.37 11.18 11.12

Dimethyl ether 15.56 14.34 12.58 12.25

RMSD 2.571 0.752 0.195
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Table III

Non-zero components of the molecular quadrupole moment D-Å of ammonia for Gaussian monopoles, dipoles,
and quadrupoles (Nc = 4) fit to B3LYP/6-31G* ESP.

Atomic XX YY ZZ RMSD

Gaussian monopoles 0.9211 0.9211 −1.8422 0.39291

Gaussian dipoles 1.2701 1.270 −2.5400 0.04402

Gaussian quadrupoles 1.3139 1.3138 −2.6278 0.00015

B3LYP/6-31G* 1.3140 1.3140 −2.6281
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Table IV

Average RMSD error (Δ) in Traceless Molecular Dipole, Quadrupole, Octapole, and Hexadecapole moment over
14 molecules predicted by Gaussian monopoles (M), dipoles (D), and quadrupoles (Q) (Nc = 4) fit to B3LYP/
6-31G* ESP.

Atomic ΔDip (10−3 D) ΔQuad (DÅ) ΔOct (DÅ2) ΔHex (DÅ3)

Gaussian monopoles 9.489 0.1947 0.9970 3.402

Gaussian dipoles 2.495 0.0453 0.2154 0.969

Gaussian quadrupoles 1.045 0.0061 0.0381 0.130
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