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Abstract
We report a serious problem associated with a number of current implementations of Andersen and
Langevin dynamics algorithms. When long simulations are run in many segments, it is sometimes
possible to have a repeating sequence of pseudorandom numbers enter the calcuation. We show that,
if the sequence repeats rapidly, the resulting artifacts can quickly denature biomolecules and are then
easily detectable. However, if the sequence repeats less frequently, the artifacts become subtle and
easily overlooked. We derive a formula for the underlying cause of artifacts in the case of the
Langevin thermostat, and find it vanishes slowly as the inverse square root of the number of time
steps per simulation segment. Numerous examples of simulation artifacts are presented, including
dissociation of a tetrameric protein after 110 ns of dynamics, reductions in atomic fluctuations for a
small protein in implicit solvent, altered thermodynamic properties of a box of water molecules, and
changes in the transition free energies between dihedral angle conformations. Finally, in the case of
strong thermocoupling, we link the observed artifacts to previous work in nonlinear dynamics and
show that it is possible to drive a 20-residue, implicitly solvated protein into periodic trajectories if
the thermostat is not used properly. Our findings should help other investigators re-evaluate
simulations that may have been corrupted and obtain more accurate results.

Introduction
Molecular simulations of proteins and other complex biomolecules are performed routinely in
atomic detail for tens of nanoseconds. A variety of thermodynamic ensembles are available
for these simulations, but in virtually all cases, investigators wish to see the dynamics of a
system at a particular temperature, corresponding to a Maxwell distribution of momenta for
the particles of the molecular model. In simulations of complex biomolecules, the systems
typically contain enough inhomogeneity that complete equilibration across all degrees of
freedom is not possible over currently achievable simulation timescales, meaning that potential
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energy will tend to be released as structures relax. This, in addition to the slow but inevitable
increase of energy in the system because of the finite time steps taken to propagate the
dynamics, leads to an upward drift in the system temperature as the simulation continues.
Algorithms, such as SHAKE,1 which apply constraints to a finite degree of precision, can also
add to or even dissipate the system’s energy, leading to more temperature drift.

To run simulations on the timescales needed to model chemical processes, a number of
algorithms have been developed to maintain a specified system temperature. These include
velocity rescaling approaches such as the Berendsen2 and Nose-Hoover3 thermostats and
velocity modification approaches such as the Andersen4 and Langevin thermostats.5 In
Andersen thermocoupling, particle velocities are periodically reassigned to pseudorandom
values so that the resulting momenta follow a Maxwell distribution at the desired temperature.
In the Langevin scheme, velocities of the particles in the simulations are modified with
pseudorandom forces as if they were undergoing stochastic collisions with imaginary particles
whose momenta follow a Maxwell distribution at the desired temperature.

The importance of generating long, decorrelated sequences of random numbers for accurate
simulations has been discussed before,6,7 and modern molecular dynamics codes use
algorithms8,9 that can generate sequences so long that they would be unlikely to repeat over
the course of a simulation even if millions of particles were simulated for trillions of time steps
(for example, if a virus capsid were simulated at atomic detail for several milliseconds).

However, modern molecular dynamics codes also offer a large number of options for managing
simulations, and it is difficult to anticipate all the permutations of how those options might be
used. Long simulations can generate tens of gigabytes of trajectory data and take weeks or
months to complete. For this reason, checkpoint files are nearly always used to store the
positions and velocities of atoms so that the simulation may be broken up into small segments
that make it feasible to run on managed computing resources and easy to recover from a
machine crash. However, in several popular molecular dynamics packages, the checkpoint files
do not contain information on the state of the random number generator. In such cases, reuse
of the same random number generator seed causes a finite sequence of random numbers to
appear in every simulation segment. As will be shown, these repeating sequences of random
numbers can drastically affect simulations using either Langevin or Andersen thermostats if
the simulation segments are short; the effects can be subtle but significant if the segments are
longer.

To help determine when this issue may produce significant problems in typical simulations,
we have quantified the effects of repeating sequences of pseudorandom numbers in several test
systems, including two explicitly solvated proteins, and surveyed existing codes to see which
packages are vulnerable. We also show that simply incrementing the random number seed with
each simulation segment effectively removes the artifacts.

Theory
The effects of repeating sequences of pseudorandom numbers are straightforward to describe
in the case of the Langevin thermostat, as we show in the following formalism. We expect that
similar principles hold for the Andersen thermostat.

The Langevin thermostat maintains a desired temperature by application of a friction force
with coefficient ζ and a random force Ri to all particles i to simulate random collisions between
particles in the simulation and imaginary particles in an external bath held at temperature T.
In this framework, collisions with particle i occur at a frequency γi
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(1)

such that the central equation of motion is

(2)

For real water, γ has a value of roughly 50 ps−1. In simulations, smaller values of 2–5 ps−1 are
typically used,10 although some investigators have found that the full 50 ps−1 gives better
results.11 The random force is related to γ by eq 3

(3)

where the angular brackets denote an ensemble average, kb is Boltzmann’s constant, and δ(t)
is the Dirac delta function. By eq 3, the components of the instantaneous random force vector
at time t follow a Gaussian distribution with zero mean and variance 2miγikbT, henceforth
denoted σ2

R.

To understand the effect of repeating random number sequences on molecular dynamics
simulations, we consider Ψ(N), the “residual” force on a particle causesed by Langevin
collisions after N steps of simulation. Each of the three components of Ψ can be expressed as

(4)

where α represents x, y, or z. Ψ is an average rather than a sum because each of the random
forces is only applied during one of the N steps. By the Central Limit Theorem,12 the
distribution of Ψ is also Gaussian with zero mean and variance σ2

R/N. Therefore, the magnitude
of each component of the residual force on an atom after N Langevin dynamics steps of length
Δt can be expressed as

(5)

If the same sequences of N pseudorandom forces are used repeatedly in a Langevin dynamics
simulation, each atom is exposed to a finite number of forces and therefore a nonvanishing
residual force. Over many iterations, this is similar to applying a constant force to each particle,
in a particular direction relative to the axes of the simulation cell, with a magnitude given by
eq 5. The expected and observed magnitudes of residual forces for a Langevin thermostat with
collision frequency 3 ps−1 and a bath temperature of 298 K are plotted as a function of N in
Figure 1. (Observations of the residual forces were made with a modified version of the
AMBER9 PMEMD software, available upon request.)

Although Figure 1 clearly shows significant residual forces acting on each atom even for
lengthy simulation segments, the forces do not act in any concerted fashion (see Figure S1 of
the Supporting Information), and so, their overall effects must be determined by simulations.
As we will show in the Results, these residual forces quickly give rise to severe artifacts when
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short simulation segments are used, but subtle artifacts can occur with greater segment lengths,
such as those investigators might use in practice.

Methods
Proteins for molecular dynamics simulations were obtained from the Protein Data Bank (PDB).
13 All proteins were protonated using the TLEAP module of AMBER914 and modeled using
the AMBER ff99 force field,15,16 with improvements suggested by Simmerling et al.17 SPC/
E water18 was used for simulations in explicit solvent. The Generalized Born (GB) model of
Onufriev et al.19 combined with the LCPO pairwise surface area approximation20 was used
for simulations in implicit solvent. The PMEMD and SANDER modules of AMBER9 were
used for simulations in explicit and implicit solvent, respectively.

Molecular dynamics simulations in explicit solvent were initiated by adjusting positions of
added water molecules with 2000 steps of steepest-descent energy minimization, while
restraining the positions of protein atoms, then performing similar energy minimization of the
protein atoms with the solvent held fixed, and finally running energy minimization of the entire
system with no restraints. Energy minimization of the protein was also done prior to implicit
solvent simulations. Equilibration dynamics in all simulations were performed at a constant
temperature of 298 K using a Langevin thermostat with a collision frequency of 3.0 ps−1 (unless
otherwise stated, this temperature and collision frequency were used in all simulations in this
study). Position restraints were initially used to limit the motion of all heavy atoms; the
restraints were gradually relaxed over a period of 500 ps. For simulations in explicit solvent,
periodic boundary conditions were applied, and the simulation volume was held constant until
the final stages of equilibration, when dynamics were continued in the constant-pressure
ensemble. For implicit solvent calculations, no boundary conditions were used. The
equilibration phase typically involved about ten restarts; different random seeds were used to
initialize the pseudorandom number generator with each restart.

Force calculations for all stages of dynamics in explicit solvent were performed with a 9.0 Å
cutoff on real-space interactions, particle-mesh Ewald electrostatics,21 and Lennard-Jones tail
corrections. Force calculations in implicit solvent were performed with no cutoff on real-space
interactions and a 25 Å cutoff on calculations of the Born radii. The SHAKE algorithm1 was
used to constrain all bonds including hydrogen on protein atoms, and the SETTLE
algorithm22 was used to constrain the internal geometry of explicit water molecules. A time
step of 1.5 fs was used for all production dynamics.

Results
Langevin Artifacts in Explicit Solvent

We first became aware of the danger of repeating random number sequences when we noticed
that the apostreptavidin tetramer (PDB accession code 1SWA) was relatively stable in explicit
solvent when dynamics were propagated at 100 000 steps (150 ps) per segment but rapidly
unfolded when dynamics were propagated at 1000 steps per segment. A Langevin thermostat
with a collision frequency of 3 ps−1 had been used to maintain the temperature at 298 K, and
the same random seed had been provided to initialize the pseudorandom number generator
(PRNG) in all cases. To quantify the protein destabilization effect, Figure 2 shows backbone
root-mean-squared deviation (rmsd) results, taking the equilibrated conformation of the protein
as a reference, for a series of 15 ns simulations of the tetramer using different segment lengths.
When the PRNG is repeatedly initialized with the same seed, the segment length corresponds
to the parameter N as discussed in Theory. For comparison, a nonrepeating sequence of
Langevin forces was generated by running the same simulation with 100 000 steps per segment
and changing the PRNG seed with each restart. To demonstrate that the protein is destabilized
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by repeating sequences of Langevin forces and not some problem with restarting a simulation
from a checkpoint file, we performed a 6 ns simulation with 1000 steps per segment,
incrementing the PRNG seed with each restart. The results in Figure S3 of the Supporting
Information show that this method also results in stable dynamics.

The streptavidin tetramer is a dimer of dimers.23 The two dimers are each more stable than
the tetramer as a whole, as demonstrated by the existence of dimeric streptavidin mutants24
and the mechanism of tetramer stabilization by biotin binding.25 For this reason, we tracked
backbone rmsd not just for the tetramer but also for its dimer components. As shown in Figure
2, individual dimers maintained their original backbone conformations better than the tetramer
as a whole under cycles of repeating sequences of Langevin forces. rmsd for the individual
monomers is not shown, but it closely parallels the dimer rmsd.

If very long sequences of repeating Langevin forces (100 000 and 1 000 000 steps per segment)
are used, artifacts are difficult to detect in simulations of only 15 ns. Before we became aware
of the problem with Langevin dynamics, a simulation of the apostreptavidin tetramer was
carried out for 145 ns, using 100 000 and 1 000 000 step segments at different times but with
the same PRNG seed in all cases. Backbone rmsds for monomers, dimers, and the tetramer in
this system are shown in Figure 3. At a glance, the system appears to behave reasonably, except
for the dissociation of the tetramer at 110 ns.

The apostreptavidin tetramer is known to be highly stable, even in concentrated urea,26 so the
dissociation seen in Figure 3 and in Figure S2 of the Supporting Information is not realistic.
But because the tetramer is known to be stabilized by biotin binding27 and because we had a
250 ns simulation showing the biotin-liganded tetramer to be stable in solution (data not
shown), we initially believed that the dissociation of the unliganded tetramer was qualitatively
correct. However, inspection of the rmsd for portions of the trajectory run with 1 000 000 versus
100 000 steps per segment suggests that over a very long simulation the tetramer can be
destabilized by 100 000 step segments with identical PRNG seeds in much the same way that
shorter segments destabilize it more quickly. Indeed, with sequences of 100 000 pseudorandom
Langevin forces acting on each atom, the residual forces described in equ 5 would have been
half as strong as those obtained with sequences of 25 000 Langevin forces, which created
artifacts immediately.

To further investigate the extent of these artifacts, we conducted 36 ns simulations of the 20-
residue Trp-Cage miniprotein in explicit solvent and subjected the system to repeating
sequences of Langevin forces in the same manner as was done with the 500-residue
apostreptavidin tetramer. The results in Figure 2 show that Trp-Cage also unfolds under rapidly
repeating Langevin forces, but remains stable if the Langevin thermostat is used correctly.
Notably, whereas residual forces from a repeating sequence of 25 000 Langevin forces caused
some instability in the apostreptavidin system, residual forces of the same magnitude denatured
the Trp-Cage miniprotein. Moreover, under repeating sequences of 10 000–25 000 Langevin
forces, Trp-Cage appeared to be stable for 17–20 ns before suddenly unfolding.

Still, the extent of artifacts in simulations using 100 000 or 1 000 000 steps per segment remains
uncertain. Because the residual forces do not act in a concerted fashion, their effects may be
more pronounced on local features of the protein structure. We therefore computed atomic
root-mean-squared (rms) fluctuations for backbone atoms over the final 30 ns of each
simulation as shown in Figure 5. Error bars were determined by computing rms fluctuations
over four 7.5 ns subintervals and taking the standard deviation. In explicit solvent, the computed
fluctuations do not differ greatly if the thermostat applies sequences of 100 000, 1 000 000, or
an infinite number of Langevin forces. Furthermore, there is no apparent trend in the data;
atomic fluctuations for nearly all backbone atoms increase slightly if repeating sequences of 1
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000 000 Langevin forces instead of 100 000 are used, but they decrease again if an infinite
sequence of Langevin forces is used. The amount of sampling in 36 ns of dynamics is rather
small, however. In the next section, we sample protein conformations over longer time scales
with a Langevin thermostat and an accelerated dynamics method.

Langevin Artifacts in Implicit Solvent
Although a Langevin thermostat can be used with explicitly solvated systems, it is more
commonly used to simulate stochastic collisions with imaginary solvent particles in an
implicitly solvated system. We therefore conducted simulations of the Trp-Cage
miniprotein28 in Generalized Born (GB) solvent. Because the system is so small (300 atoms
versus 8000 for the explicitly solvated Trp-Cage versus 40 000 for the explicitly solvated
apostreptavidin tetramer), we were able to obtain very long (200 ns) simulations and more
convergent estimates of atomic fluctuations.

As shown in Figure 4, the Trp-Cage miniprotein explores conformations with larger backbone
rmsd relative to the native state in GB implicit solvent as opposed to SPC/E explicit solvent.
Again, with repeating sequences of 100 000 or more Langevin forces acting on each atom,
Trp-Cage is stable, but with fewer sequences, it becomes denatured quickly.

Atomic fluctuations for backbone C atoms obtained from the final 180 ns of trajectories with
100 000 and 1 000 000 step segments using repeating random seeds are compared to those
obtained from a trajectory generated with constantly changing random seeds in Figure 5. As
before, error bars were created by splitting the data into four 45 ns segments and computing
standard deviations. In implicit solvent, the atomic fluctuations generally increase as the length
of the repeating sequence of random forces goes from 100 000 to infinity. Because more than
six times as many conformations were used to calculate these fluctuations, the results are
somewhat more certain than those from the explicit solvent simulations. Although the error
bars look larger in the implicit solvent case, as a fraction of the corresponding fluctuations the
error bars in implicit solvent are in fact roughly two times smaller. While short repeating
sequences of Langevin forces acting on each atom denatured the protein, sequences of 100 000
forces appeared to reduce its mobility relative to much longer ones. This apparent contradiction
may be explained by looking at the backbone rmsd obtained for shorter repeating sequences
of Langevin forces, as shown in Figure S4 of the Supporting Information. In such cases, the
rmsd may climb to very high values, but then hovers around particular values for extended
periods of time, suggesting that the denatured conformations do not fluctuate very much.

The atomic fluctuations only appear to diminish in the absence of explicit solvent particles,
however (see Figure S5, Supporting Information). When solvent is represented explicitly,
denatured protein structures tend to fluctuate more even after the native conformation is lost.
This dichotomy likely arises as the individual water molecules can migrate to different regions
of the protein even if subjected to repeating sequences of Langevin forces. (Indeed, as will be
discussed later in the Results, if the sequences are very short, the water molecules are all being
propelled in particular directions and the polypeptides are literally showered with rapidly
moving water molecules.) These solvent interactions impart instability on the polypeptide
motion, increasing the atomic fluctuations, whereas in implicit solvent the polypeptide moves
only according to the Langevin forces acting on its own atoms and thereby becomes trapped
in a particular conformation.

The dissociation of the apostreptavidin tetramer over very long simulations in explicit solvent
and reduced atomic fluctuations of the Trp-Cage miniprotein in implicit solvent give
indications that simulations run with repeating sequences of 100 000 Langevin forces are not
safe from artifacts. However, different PRNG seeds will create unique repeating sequences of
Langevin forces that will affect the system in different ways, whereas our results thus far have
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shown the effects of only one sequence of a given length on each system tested. To precisely
quantify the microscopic effects of residual forces as a function of the simulation segment
length, we needed to be able to thoroughly sample the entire conformational space of a system
and run many simulations with different sequences of Langevin forces.

For this purpose, we chose to study the seryl-serine peptide in implicit solvent. Because the
serine side-chain is so small, residual forces acting on it will not be averaged over many atoms,
and therefore, its χ1 angle should be very prone to reorientation due to these forces. Eight
independent simulations of 1 µs were done using segments of 25 000, 100 000, and 1 000 000
steps with repeating random seeds, as well as segments of 100 000 steps with changing random
seeds. Distributions of χ1 angles for each serine side-chain, as well as three backbone dihedral
angles, are shown in Figure 6. While nonrepeating sequences of Langevin forces consistently
generate the same distribution for each of the dihedral angles, unique repeating sequences of
Langevin forces each impart their own bias on the system, causing the distribution of dihedral
angles to converge differently in each case. As expected, the distortions grow larger as the
simulation segment length decreases.

The thoroughness of equilibrium sampling in the seryl-serine system permitted direct
calculation of transition free energies, ΔG, by comparing the probability of finding each of the
five dihedral angles at two values ν and η in the unbiased ensemble (the trajectory computed
with a nonrepeating sequence of Langevin forces). We also computed changes in the transition
free energies, ΔΔG, between the unbiased ensemble and each of the biased ensembles generated
with finite sequences of Langevin forces. These quantities are defined mathematically as

(6)

(7)

In the above equations, T represents the temperature (298 K), and R represents the gas constant.
Results from this analysis are given in Table 1. The table only reports average values of
ΔΔG, but individual cases showed changes in the transition free energies in excess of 1 kcal/
mol for some of the biased ensembles obtained with 100 000 steps per segment. Contrary to
our expectations, the largest ΔΔG values were obtained in the backbone ϕ angle of the second
residue; residual forces on many atoms exert torques about this dihedral, yet the distortion
resulting from an average of all these torques remains large. Although the distributions of each
dihedral angle in the unbiased ensemble may not be totally accurate, the computed values of
ΔG and ΔΔG provide precise measurements of the degree to which simulations using finite
sequences of Langevin forces are biased, as well as the degree of bias present in short
simulations (40 ps to 1.5 ns) using Langevin dynamics.

Severity of Artifacts As a Function of the Langevin Collision Frequency
As was predicted in Theory and shown in the preceding results, the severity of artifacts from
the Langevin thermostat diminishes as the length of the repeating seqeunce of pseudorandom
forces grows. However, by eq 5, the magnitude of residual forces and thus the severity of
artifacts is also proportional to the square root of the collision frequency γi, and different values
of this parameter have been used in the past.10,11 We therefore repeated some of the
simulations of Trp-Cage in implicit solvent with γi set to 50 ps−1 rather than 3 ps−1. By eq 5,
we would expect the higher collision frequency to increase the average residual force on each
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atom roughly by a factor of 4. With a collision frequency of 3 ps−1, a segment length of 6000
steps would be needed to obtain residual forces of comparable magnitude (this was verified
with the modified AMBER9 PMEMD code used to generate Figure 1).

The results in Figure 7 confirm that, even with relatively long 100 000 step segments, the 50
ps−1 Langevin collision frequency can generate a striking artifact when combined with
repeating sequences of pseudorandom forces. As indicated by the system’s convergent
backbone rmsd, the Trp-Cage miniprotein is driven to a very small set of structures under these
conditions. Examination of the checkpoint files from each segment of the simulation shows
that, within 12 ns, the coordinates and velocities are converged to 1.0 × 10−7 Å and 1.0 ×
10−7 Å ps−1, respectively, and the trajectory segments are identical thereafter. Although it was
surprising to obtain periodic behavior over such long (150 ps) intervals in such a complex
system, we also observed periodic behavior for 50 000 step segments and 200 000 step
segments (data not shown). Periodicity was not observed in the trajectory if the random seed
was changed with each restart (see Figure 7) or if a collision frequency of 3 ps−1 was used (see
Figure 4).

These observations led us to consider the possibility that the periodic behavior observed with
strong thermocoupling was related to the protein unfolding seen in previous sections. If so, the
fact that the strongly thermocoupled Trp-Cage system run in long segments did not unfold to
the same extent as the weakly thermocoupled Trp-Cage system run in short segments (see
Figure 4) needed further investigation. We emphasize that, as discussed in the preceding
Langevin Artifacts in Implicit Solvent section, different repeating sequences of Langevin
forces may drive the system into different conformations, and it is conceivable that occasionally
these conformations would fall close to the native state. We therefore ran three additional
simulations with 100 000 steps per segment, repeating random seeds, and a collision frequency
of 50 ps−1. All trajectories eventually became periodic, but the time to obtain this behavior
varied for each different sequence of Langevin forces (see Figure S6 of the Supporting
Information), and the length of the period was five simulation segments, rather than just one,
in one of the cases. Although each periodic trajectory displayed a different level of backbone
rmsd relative to the native state, all of the backbone RMSDs were much lower than the
backbone RMSDs eventually seen in similar runs with repeating sequences of 10 000–25 000
Langevin forces (see Figure 4).

In summary, a Langevin thermostat with a collision frequency of 50 ps−1 drove the Trp-cage
miniprotein into periodic trajectories 100 000–500 000 steps long. Under such strong
thermocoupling, repeating sequences of Langevin forces did not denature the system to the
extent seen before, but a periodic trajectory does represent an extreme restriction of the
protein’s conformational space.

Artifacts in a Simulation of Pure Water
With an explicitly solvated protein system, the motions of atoms in the protein are tightly
coupled, but the motions of solvent particles are not. In the previous section, we tested the
effects of repeating sequences of Langevin forces if the system contains only the tightly coupled
degrees of freedom; conversely, we can look for artifacts in the thermodynamic properties of
a system containing many small, unconnected particles.

Multiple 6 ns simulations of a box of 512 SPC/E water molecules were conducted at 1 atm
pressure and 298 K using a Langevin thermostat (collision frequency 3 ps−1). Constant random
seeds were used to restart the simulations in segments ranging from 250–16 000 steps, and
four independent simulations were conducted using unique random seeds for each segment
length. As shown in Figure 8, the density, heat of vaporization, and heat capacity of SPC/E
water all change noticeably for segments with fewer than 4000 steps. In such simulations, one
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cannot obtain a convergent value of the diffusion coefficient because every water molecule
suffers a net displacement along a particular direction during each segment. However,
compared to the artifacts observed in solvated proteins, the density, heat of vaporization, and
heat capacity of water are not very sensitive to Langevin artifacts.

Artifacts Created by Repeating Random Number Sequences with the Andersen Thermostat
Although we did not provide a formal description of the way repeating sequences of velocity
reassignments could create artifacts if the system temperature is maintained by an Andersen
thermostat, we expected that this would have similar effects to applying repeating sequences
of forces. An array of 15 ns simulations was carried out for the apostreptavidin tetramer with
the same repeating random seeds and segment lengths as in the case of the Langevin thermostat.
Results are shown in Figure 9. As before, the use of the Andersen thermostat with a repeating
PRNG seed destabilized the tetramer, indicating that the Andersen thermostat can create
artifacts in much the same manner as the Langevin thermostat.

Although the severity of the artifacts appear to be smaller in terms of backbone rmsd than the
artifacts created by Langevin dynamics with similar segment lengths, we stress that the strength
of thermocoupling in each thermostat is determined differently and that this can also influence
the severity of artifacts (see Severity of Artifacts As a Function of the Langevin Collision
Frequency section). We did not try to match the degree of thermocoupling in the Andersen
dynamics simulations with that used in our other explicit solvent simulations.

Discussion
Common Features of Artifacts Resulting from Repeating Random Number Sequences

In the Results, we identified a number of abnormal behaviors that can be observed in systems
run with repeating sequences of Langevin forces. Most of the backbone root-mean-squared
deviation (rmsd) artifacts can be explained as consequences of residual forces, which decay
slowly as a function of the length of the sequence of Langevin forces as shown in Figure 1.
Together, these residual forces do not act in any concerted fashion, but individually they do
act in a particular direction relative to the coordinate axes of the simulation box. Each atom of
the protein is therefore forced in a unique random direction, and the protein becomes distorted
until the forces on each atom are counterbalanced by gradients of the system’s potential energy
function. Weak residual forces, such as those encountered with 100 000 steps and a collision
frequency of 3 ps−1, appear to be enough to break apart globular domains along their weak
interfaces (see Figure S2, Supporting Information), but stronger residual forces can denature
the domains themselves (see Figure 2 and Figure 4), regardless of the type of solvent used.
Similar artifacts obtained with the Andersen thermostat (see Figure 9) are likely the products
of “residual momenta.”

Initially, it would seem that the relative positions of larger groups of atoms would be less prone
to artifacts than smaller groups of atoms because the residual forces acting on individual atoms
would be averaged such that the net force pulling two groups of atoms apart would be small.
However, the larger ΔΔG values observed for the backbone ϕ angle in Figure 6 and the
separation of the apostreptavidin tetramer seen in Figure 3 do not support this reasoning.
Instead, because each atom of a rigid molecular structure has a different moment arm about
some center of rotation, the residual forces on just a few atoms could be amplified, creating
the large ΔΔG values between populations of certain dihedral angles and the hinge-bending
motion of the apostreptavidin tetramer dissociation (see Figure S2 of the Supporting
Information).
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In the Theory section, we stated that repeatedly applying a finite sequence of pseudorandom
forces to an atom was similar to applying a constant net force on that atom. However, a more
precise description is needed to explain the periodicity of trajectories observed in Results,
Severity of Artifacts As a Function of the Langevin Collision Frequency section, and the
differences in atomic fluctuations observed in Results, Langevin Artifacts in Implicit Solvent
section. Separate trajectories initiated from distinct conformations of a system have been
observed to synchronize if identical sequences of pseudorandom noise are used to propagate
Langevin dynamics.29 This synchronization occurs after the trajectories remain uncorrelated
for some amount of time, the length of which depends on the strength of the pseudorandom
noise. In the examples given throughout the Results, the checkpoint files written at the end of
each segment of a simulation provide distinct conformations of the system, and the collision
frequency tunes the strength of the noise. In the Results, Severity of Artifacts As a Function
of the Langevin Collision Frequency section, the 100 000-step segments of the trajectory
become synchronized as identical sequences of strong pseudorandom noise are repeatedly
applied. This offers an explanation of how synchronization of successive trajectory segments
could occur in as little as 12 ns with γ set to 50 ps−1 but not in 200 ns if γ is set to 3 ps−1.

An earlier work by Fahy and Hamann30 performed similar calculations on small systems
driven with a rudimentary Andersen-like thermostat. In this work, they noted the existence of
a critical length of time between velocity reassignments, τc, such that reassigning velocities
more frequently resulted in synchronization of the trajectories and reassigning them less
frequently resulted in indefinite chaotic behavior. Noting that τc corresponds to the strength of
thermocoupling in the Anderson thermostat, we can hypothesize that there exists some critical
strength of thermocoupling in the Langevin thermostat above which synchronization of
trajectories is guaranteed and below which chaotic behavior will be observed. This is consistent
with our results, and knowledge of the value of τc or equivalent γc could help investigators
make better choices about how to maintain the temperature of a simulation. However, more
studies would be necessary to estimate these critical thresholds for different system sizes and
topologies.

On the basis of the above observations, we may extend our description of the artifacts created
by repeating sequences of Langevin forces or Andersen velocity reassignments in molecular
dynamics simulations and state it loosely as follows: Thermostats operating with repeating
finite sequences of random noise will cause incoherent perturbations in a system’s potential
energy surface, the strength of the perturbations being inversely proportional to the square
root of the length of the noise sequence and directly proportional to the square root of the
strength of the noise itself. The incoherent distortions tend to reduce the conformational space
available to the system; in the limit of strong noise, the system may be driven into periodic
trajectories according to the unique sequence of noise applied.

Unfortunately, the artifacts caused by repeating sequences of Langevin forces or Andersen
velocity reassignments seem to be very extensive because of the way the residual forces scale
with the sequence length. Many published simulations could potentially have been affected;
the results in this study show that, over very long simulations, some observables such as atomic
fluctuations in implicit solvent display artifacts if a finite sequence of even 1 000 000 Langevin
forces is used to control the temperature. Artifacts in backbone rmsd measurements may be
detectable if a repeating sequence of 100 000 Langevin forces is used. With sequences of fewer
than 100 000 Langevin forces, the artifacts may take tens of nanoseconds to appear, but they
are often dramatic. We would like to offer a general statement such as “simulations performed
with sequences of 1 000 000 or more Langevin forces and a weak thermocoupling of 3 ps−1

or less are safe from artifacts,” but certain analyses other than those presented in this study
may be more sensitive to thermostat artifacts.
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Survey of Current Molecular Dynamics Packages with Respect to Random Number
Generation

The potential for artificially distorting a biomolecule by incorrect use of the Langevin or
Andersen thermostats represents a serious problem for molecular simulations. This prompted
us to make a brief survey of existing molecular dynamics packages to see which
implementations could allow users to unwittingly perturb their systems with repeating
sequences of pseudorandom numbers. The most robust protection against the artifacts
identified in the Results is to pass the state of the random number generator through the
molecular dynamics checkpoint files and, by default, to override userspecified random seeds
when restarting a molecular dynamics calculation. In this manner, the pseudorandom number
generator (PRNG) would produce a single sequence for the entire simulation.

As stated in the results, we discovered this problem while running Langevin dynamics with
the AMBER9 software package.14 By default, both of its simulation modules use a random
seed of 71277, and users may specify other values. The state of the PRNG is not passed via
the checkpoint file, however, so Langevin and Andersen dynamics simulations are prone to
artifacts unless the user specifically requests that the random seed be set using the clock time,
changes the random seed with a script running outside of the AMBER software, or performs
simulations in very long segments. Similarly, the GROMACS (version 3.*)31–34 software
runs with a default random seed of 1993 and does not pass the state of the PRNG through its
checkpoint files, but users may request that the seed be set using the clock time. Tests with the
GROMACS software presented in the Supporting Information confirm that artifacts can be
generated in the same manner as was shown for the AMBER code throughout the Results.
Robust protection against random number artifacts will be implemented in future versions of
both AMBER and GROMACS.

In the DL_POLY package (version 3),35 the random seed is set at compile time, although if
segments of a Langevin or stochastic dynamics simulation are run in parallel on a varying
number of processors, different series of pseudorandom numbers will be generated.

The NAMD code36 is highly resistant to Langevin artifacts because of the manner in which it
generates random numbers. By default, the PRNG seed is set by the clock time, although users
may set it to a specific value. The state of the PRNG is not passed through the checkpoint file,
but some unique aspects of the NAMD code offer added protection against random number
artifacts (see the Supporting Information). These aspects of the code make it very difficult to
obtain such artifacts with NAMD.

The CHARMM37 and DESMOND38 packages both implement the robust solution by passing
the state of the PRNG through simulation checkpoint files and, so, can be considered safe from
the artifacts identified in this study.

Future Directions: Thermostats for Molecular Dynamics Calculations
We have shown that, if used correctly, the Langevin thermostat produces stable dynamics for
explicitly solvated proteins over tens of nanoseconds. Other studies39 have reported stable
dynamics for tens to hundreds of nanoseconds using the Berendsen “weak-coupling” approach
to temperature regulation. However, the results in Figure 1 suggest that a sufficiently large
number of random forces (or, by extension, velocity reassignments) must be applied to each
atom to ensure that a thermostat based on random numbers has not applied significant net forces
or momenta to the individual atoms of the system. Furthermore, data in Results, Severity of
Artifacts As a Function of the Langevin Collision Frequency section, corroborate the findings
of Ciesla and co-workers,29 suggesting that separate trajectories of large molecular systems
can become synchronized if both simulations are run with the same sequence of Langevin
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forces, even if that sequence is infinite. Investigators should therefore carefully consider the
manner in which their thermostat functions, beyond simple qualifications such as stable
dynamics.

All molecular dynamics thermostats attempt to simulate coupling of the system to an external
bath at the desired temperature, but none of the methods are entirely physically meaningful.
In reality, “heating” and “cooling” refer to the equilibration of the momenta of particles in two
systems brought into contact with one another. In common biomolecular simulations with
explicit solvent, the solvent is typically an accessory, while the analysis focuses on the
biomolecule itself. It may therefore be desirable to modify existing thermocoupling schemes
to regulate only the temperature of the solvent, or perhaps only the temperature of solvent
particles further than some minimum distance from the biomolecule. This method, similar in
spirit to stochastic dynamics,40,41 would regulate the temperature of the biomolecule
indirectly, hopefully causing very little perturbation to its dynamics. Other modifications of
simple thermostats42 should also be considered.

The goal of this study was to expose a serious problem associated with the use of Langevin
and Andersen thermostats in molecular simulations and to present in detail possible artifacts
that might arise. However, the results from simulations with strong thermocoupling raise
questions about the way thermostats affect the dynamical properties of biomolecular models,
and whether it would be helpful to modify current thermocoupling schemes as increasing
computational resources make it possible to study kinetic properties of events such as protein
folding or ligand binding through simulations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Residual accelerations on atoms observed in Langevin dynamics. Langevin forces on
individual atoms were summed over steps of a molecular dynamics run of the Trp-Cage
miniprotein using collision frequency 3 ps−1 and a bath temperature of 298 K. Averaging the
forces over N previous steps gives a value for the residual force on that atom, a quantity which
tends to zero as 1/√N. Residual forces on each atom were normalized by the atom’s mass to
give accelerations. The black line shows average residual acceleration for all atoms; circles
show the values expected from eq 5.
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Figure 2.
Backbone rmsd of apostreptavidin and Trp-Cage, revealing artifacts in Langevin dynamics.
Each protein was simulated in explicit solvent at 298 K using a Langevin thermostat with a
collision frequency of 3 ps−1 and simulation segments with lengths given in the figure legend.
The same random seed was used to reinitialize the pseudorandom number generator (PRNG)
at the beginning of every segment, except for the “infinite” case, in which segments of 100
000 steps were initiated with different PRNG seeds every time.
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Figure 3.
Long-time scale Langevin dynamics of apostreptavidin tetramer under repeating sequences of
Langevin forces. Root-mean-sqaured deviation (rmsd) of the tetramer (black line), average
dimer rmsd (orange line), and average monomer rmsd (blue line) are plotted over 145 ns. The
bar just above the x-axis is solid black when 1 000 000 step segments were used and white
when 100 000 step segments were used. The period of simulation using the longer segments
shows a slight reduction in the rmsd of the tetramer and stable RMSDs for dimers and
monomers. In contrast, all of these rmsd values steadily increase, particularly that of the
tetramer, when segments of 100 000 steps are used. Figure S2 of the Supporting Information
illustrates the tetramer dissociation at 110 ns.
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Figure 4.
Backbone rmsd of the Trp-Cage miniprotein revealing artifacts in Langevin dynamics. The
Trp-Cage miniprotein was simulated in Generalized Born solvent using a Langevin thermostat.
Simulations with different segment lengths are plotted in different colors following the legend
in Figure 2. Simulations with 1000 and 10 000 steps per segment unfolded within 2 ns and, so,
are not visible on the plot.
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Figure 5.
Atomic fluctuations of Trp-Cage backbone atoms in two solvent environments. The numbering
of atoms on the x-axis proceeds as (residue 1) N, CA, C, (residue 2) N, CA, C,…, (residue 20)
N, CA, C. Fluctuations for simulations with sequences of 105, 106, and an infinite number of
Langevin forces are shown as the blue, orange, and black lines, respectively. Error bars are
given in the same colors as partially transparent regions surrounding each line. Simulations in
explicit solvent were run for 36 ns, and simulations in implicit solvent were run for 200 ns.
Note that the y-axis has a different scale in each panel.
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Figure 6.
Distributions of five dihedral angles in the seryl-serine system under finite sequences of
Langevin forces. Eight independent trajectories of the seryl-serine system were computed with
25 000 (green lines), 100 000 (yellow lines), 1 000 000 (red lines), and an infinite sequence of
Langevin forces (black lines) acting on each atom. The distributions above are normalized by
the expected population of each dihedral angle value if the potential energy surface were
completely flat. The distributions obtained for infinite sequences of Langevin forces are
mutually convergent, demonstrating the thoroughness of the sampling from these 1000 ns
simulations. However, finite sequences of Langevin forces tend to perturb the distributions.
These perturbations are quantified in terms of transition free energies in Table 1.
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Figure 7.
Backbone rmsd of the Trp-Cage miniprotein during Langevin dynamics with strong
thermocoupling. When each segment is initiated with the same random seed (dashed line), the
repeating sequence of 100 000 Langevin forces drives the protein into a periodic trajectory
(see Results, Severity of Artifacts As a Function of the Langevin Collision Frequency section).
No such behavior is seen if an infinite sequence of Langevin forces is used instead (solid line).
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Figure 8.
Thermodynamic properties of a box of 512 SPC/E water molecules revealing Langevin
artifacts. Formulas for the density (ρ), heat of vaporization (ΔHvap), and heat capacity (Cp) can
be found in work by Jorgensen and Jenson43 (note that the polarization energy correction18
is invoked in computing ΔHvap). Solid black lines extending from the right border indicate the
values of each quantity if a nonrepeating sequence of Langevin forces is used; dashed lines
indicate experimental results for water at 298 K. Error bars are obtained from four indpendent
simulations.
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Figure 9.
Backbone rmsd of the apostreptavidin tetramer revealing artifacts in Andersen dynamics. The
apostreptavidin tetramer was simulated in explicit solvent with repeating sequences of
Andersen velocity reassignments. The legend in Figure 2 indicates the length of segments in
each simulation; velocity reassignment occurred every 1000 steps (e.g., the red line presents
backbone rmsd of the tetramer when all atoms are reassigned to the same set of velocities every
1000 steps).
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