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Abstract

The statistical metrics used to characterize the external predictivity of a model, i.e., how well it 

predicts the properties of an independent test set, have proliferated over the past decade. This 

paper clarifies some apparent confusion over the use of the coefficient of determination, R2, as a 

measure of model fit and predictive power in QSAR and QSPR modelling.

R2 (or R2) has been used in various contexts in the literature in conjunction with training and test 

data, for both ordinary linear regression and regression through the origin as well as with linear 

and nonlinear regression models. We analyze the widely adopted model fit criteria suggested by 

Golbraikh and Tropsha1 in a strict statistical manner. Shortcomings in these criteria are identified 

and a clearer and simpler alternative method to characterize model predictivity is provided. The 

intent is not to repeat the well-documented arguments for model validation using test data, but to 

guide the application of R2 as a model fit statistic.

Examples are used to illustrate both correct and incorrect use of R2. Reporting the root mean 

squared error or equivalent measures of dispersion, typically of more practical importance than R2, 

is also encouraged and important challenges in addressing the needs of different categories of 

users such as computational chemists, experimental scientists, and regulatory decision support 

specialists are outlined.

1 Introduction

Although Quantitative Structure-Activity/Property Relationships (QSAR or QSPR) 

modelling methods have been used for more than 50 years there is still, surprisingly, 

considerable confusion on the best way to characterize the quality of models. These types of 

models are typically generated using data driven statistical or machine learning methods, 
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and aim to find a quantitative relationship, often quite complex, between the molecular 

properties (descriptors) of a series of molecules or materials and a target property such as 

aqueous solubility, toxicity, drug action, cell adhesion etc2.

To make our terminology clear, we distinguish between the following (mutually exclusive) 

data sets:

• Training set. Data used to generate models. Ideally, a large training set will be 

available with a high degree of molecular diversity that spans a large range of the 

property being modelled.

• Validation set. Data used to estimate prediction error in order to compare models. 

These data are not directly used to fit the models, so give an independent measure 

of model predictive power. However, since models are compared using the 

validation set, it affects the choice of model, particularly when one model is 

selected from a large number of candidate models.

• Test set. Data used to estimate prediction error of the final chosen model. These 

data are used neither to fit the models nor to select between them.

All models require training data. Where sufficient data are available, it is preferable to keep 

some aside as a test set, in order to generate a demonstrably unbiased estimate of the 

magnitude of prediction error. Ideally such test sets should truly independent and drawn 

from a different data source to that providing the training data e.g. by synthesizing 

molecules predicted by a model to have specific properties and testing them. However, this 

type of ideal test set is rarely encountered in practice and partitioning a data set into training 

and test sets (once) is a practical approximation to the ideal case. Additionally, some 

methods use all the data in the training set (particularly when the amount of data available is 

insufficient to allow separate validation and test sets). The two most commonly used 

methods to estimate model predictivity in this case are cross-validation and bootstrapping.

Bootstrapping is a resampling method that involves taking the original training set of M data 

points, and sampling from it with replacement to form a new set (a bootstrap sample) that is 

also of size M. QSAR models are generated from the bootstrap sample. This process is 

repeated a large number of times. As the bootstrap sample is taken from the original data set 

using sampling with replacement, it is not identical with the original data set. The 

distribution of statistics such as R2 is then estimated by the distribution of these statistics in 

the bootstrap samples. Bagging (bootstrap aggregating) involves averaging these bootstrap 

models.

To apply cross-validation, N members of the training set of size M are removed, a model is 

generated from the M – N remaining data points, and the properties of the omitted molecules 

or materials are predicted from the model. This is done M/N times so that each member of 

the training set is omitted once (for leave-one-out (LOO) cross-validation, the most 

commonly employed implementation, N = 1). The predictions of the properties of omitted 

points  are used to generate statistics such as R2.
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Both bootstrapping and cross-validation tend to provide overly optimistic estimates of the 

predictive power of the model, as the data are typically not a truly random sample of 

molecules. The model may fit the training set data well, but whether it would accurately or 

precisely predict the properties of test set molecules external to the model generation process 

remains unproven.1, 3

The use of an independent test set is considered the `gold standard' for assessing the 

predictive power of models, and is the most stringent approach. The model may be fitted 

using bootstrapping or cross-validation on training set data, but its performance is measured 

by predictions of test set data external to the model generation process. The test set can be 

chosen randomly from the data set (best when the data set is large), or by some other method 

such as cluster analysis that chooses test set points that are representative of the data set and 

property range, so fall with the domain of applicability of the model (best for small data sets 

where the statistical fluctuations inherent in random selection are much larger).4–6 When 

clustering is used, it can also be argued that this test set is not completely independent of the 

model generation process but, even so, the test set compounds and their observed property 

values are not used for either model development or model selection.

Regardless of how the model was fitted, a fixture of QSAR and QSPR model validation is a 

graph of observed versus predicted target property values derived from the training, cross-

validation, and/or test sets7. A standard measure of model quality is the coefficient of 

determination8, R2, but the meaning and appropriateness of this statistic depends on the 

context. Does the graph refer to training or test data (the model being formulated with 

reference only to the training data)? Is the best-fit line constrained to pass through the 

origin? Should the predicted or measured variable be assigned to the vertical axis? Can R2 

ever be negative? Confusion or inconsistency in how R2 is derived in the various scenarios 

appears to be fairly common, leading to errors and possible misrepresentation of the 

predictive strength of a model. This has led to a recent escalation in the number of metrics 

used to describe the quality of prediction of the test set, adding to the confusion, especially 

for those relatively new to the QSAR field. For example, Golbraikh and Tropsha define Ro
2 

and Ro
'2, which represent the quality of test set prediction through the origin, the two values 

depending on whether the predicted values are plotted on the ordinate or abscissa. More 

recently, Roy et al.9 attempted to overcome this ambiguity in Ro
2 values by introducing a 

number of `rm' parameters, rm 2, rm
'2, rm 2, Δrm 2 This approach has been challenged by 

Shayanfar and Shayanfar,10 who further introduced a different Ro
2 value (see also comments 

by Roy et al11).

This paper details in practical terms the meaning and usage of R2 in the various contexts 

mentioned above, and suggests how to use it appropriately as a measure of model fit. In 

spirit, this paper is a sequel to the well-known study by Golbraikh and Tropsha1 which 

identified the inadequacy of the leave-one-out cross-validation R2 (denoted as q2 in this 

case) calculated on training set data as a reliable characteristic of the model predictivity. The 

properties of q2 were examined, and more rigorous criteria for evaluating the predictive 

power of QSAR models were proposed. Herein, these previously suggested criteria are 

examined and improved as applied to the external predictivity of QSAR/QSPR models for 

independent test sets. Note that this paper does not repeat the well-documented arguments in 
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favour of using a test data set1, 12; instead, we focus on how to properly use R2 as a measure 

of how well a model can predict the properties of new data.

The following sections define R2 both in general and in the specific case of plots of observed 

and predicted values in QSAR or QSPR modelling. Specific comments on regression 

through the origin are then followed by analysis of the widely used model fit criteria of 

Golbraikh and Tropsha1. Particular discussion of the distinct needs of the R2 metric for 

optimisation purposes, as opposed to pure prediction, precedes the concluding section.

2 What is R2?

R2 (or R2) is usually defined as the square of the correlation coefficient (also called 

Pearson's r) between observed and predicted values in a regression (and for this reason is the 

same whether observed values are regressed on predictions or the other way round). But it 

may not be widely known that other definitions of R2 are used, the most common of which 

agrees with this formula only if the predicted values come from an ordinary regression (or 

similar method) on the observed values. Importantly, this is not the case when applying a 

model to test data, or even for training data in the case of some nonlinear models13. Sections 

5 and 6 demonstrate this point by examples. Care is thus required in choosing an appropriate 

definition of R2.

Kvalseth13 reviews no fewer than eight such definitions, recommending the following 

simple and informative formula:

(1)

where y is the observed response variable,  its mean and  the corresponding predicted 

values. This definition applies to any prediction method, including linear regression, neural 

nets, etc. R2 therefore measures the size of the residuals from the model compared to the 

size of the residuals for a null model where all predictions are the same, i.e. the mean value 

.

The numerator in the fraction in (1) is the sum of squared residuals (SSR). The importance 

of this term is sometimes forgotten, but it is at the heart of the meaning of R2: good models 
give small residuals. Squaring the residuals before summing ensures that positive and 

negative residuals are counted equally, rather than cancelling each other out. (Less common 

alternatives to R2 use the median instead of the sum13, 14, or absolute values of the residuals 

instead of squares.8, 13) For a good model, SSR is low. High R2 values are thus preferable; a 

perfect model has R2 = 1.

Maximizing R2 for a particular dataset is equivalent to minimising SSR. Ordinary linear 

regression finds the best linear model by this criterion (hence its common name `least 

squares'), but alternative methods may help when variable selection is necessary (e.g. if 

there are more variables than observations, so not all of them can be used), as is commonly 
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the case in QSAR, or if the relationship between the response and predictor variables is 

nonlinear, also common.

The average squared residual, MSE (mean squared error), obtained by dividing SSR by the 

number of observations, n, is a meaningful measure of model fit. Its square root RMSE (root 

mean squared error) gives a standard deviation of the residuals. (For the training set the SSR 

should be divided by n – p, where p is the number of parameters in the model, giving an 

unbiased estimate of the variance of the residuals).8 Calculating p is straightforward for 

regression models but less so for more complicated models such as neural nets etc.3) The 

RMSE, or an estimate of the standard deviation of residuals from the model, should usually 

be reported – for example, whether a method predicts melting points with a standard 

deviation of 0.1 °C or 100 °C is often more relevant to potential users than various other 

statistics of model fit. An approximate 95 % confidence interval for predicting future data is 

, if the model is correct and errors are normally distributed. The use of 

measures of dispersion such as RMSE has been strongly advocated by Burden and 

Winkler.6, 15

R2 is a measure of how well the model fits a particular data set; the fraction in Equation 1 

compares the variation in the residuals to that of the observations themselves. Again 

referring to the example of predicting melting points of compounds, achieving an RMSE of 

1 °C requires a much better model if the observed data span a range of hundreds of degrees 

than if they cover only a few degrees. A common verbal definition of R2 is thus the 

proportion of variation in the response that can be explained by the model. Note though that 

the value of a model is generally in its overall accuracy and precision, not how successfully 

it explains the variation in a particular data set. RMSE, or an equivalent measure of 

dispersion, is often a more helpful indicator of a model's usefulness than is R2.

Equation 1 shows that, if it were possible to augment the dataset so that the observed values 

have greater variation while maintaining the same model accuracy, then R2 would increase 

because  is larger. However, such a procedure would improve neither RMSE nor 

the practical usefulness of the model at any point in the range. Figure 1 illustrates this point: 

increasing the range of the data, but maintaining an identical distribution of residuals, 

increases R2.

It is instructive if Equation 1 is viewed from another perspective also: the denominator is the 

sum of squared residuals for a model that ignores all the predictor variables (the `model' 

that minimizes SSR in this case is simply the average response). The denominator thus acts 

a scaling factor, relating SSR to the overall variation in the observed data. Ordinary 

regression applied to a training data set can do no worse than the model , so Equation 1 

implies that R2 ≥ 0 in this case. However, if the model is applied to data for which the 

response values y were unknown when fitting the model (as is the case in predicting 

observed activity values of the test set data), or if a method other than ordinary regression is 

used, Equation 1 can sometimes give negative values. This is often highly confusing for 

novices struggling with a notion that a squared value of a parameter is negative. However, in 
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this case the interpretation is simply that the model fit is so poor that the ratio in the right-

hand side of the formula achieves values exceeding 1!

3 Assessing a model

In QSAR and QSPR studies the aim is to generate the model that gives the best predictions 

of properties (the dependent variable) based on other properties of molecules or materials 

(that is, their descriptors) in the training set. The quality of a model is assessed by a plot of 

the observed versus predicted dependent variable property values. This can be done for a 

training set, where it illustrates how well the model predicts the data used to generate it, or 

for a test set that contains data never used to train the model. The accuracy of prediction of 

the dependent variable property value for the test set data is a measure of the ability of the 

model to generalize to new data it has not seen before. The closer the data in such a plot lies 

to the line  the better the model, because the predicted numerical values are very close 

to those measured by experiment. Including this line on the graph helps the predictive power 

of the model to be assessed (the graph also provides a check for outliers or trends in the 

data).

Equation 1 provides the formula for R2 as a measure of model fit. Note that in a plot of test 

data, y,  and  in Equation 1 should all relate to test data, not training data. Some authors12 

have recommended using y and  from the test set but  from the training set; however using 

 from the test set is not only simpler and consistent but also minimizes R2, so is more 

conservative. This question does not arise in calculating RMSE, another advantage of this 

metric.

A regression on the observed and predicted values themselves (rather than the values for the 

y=x model) is sometimes reported for test set data. This, however, provides a measure not of 

the absolute degree of accuracy of the model, but the degree to which its predictions are 

correlated with observations. This correlation should be reported separately, as discussed in 

Section 6 below.

When training set observations are regressed on their predicted values, the fitted model is 

simply  (by definition,  is already the linear combination of predictors that minimizes 

SSR) and R2 is the same as it was for the original model; thus a separate regression is 

unnecessary. The same will usually hold at least approximately for other (e.g. nonlinear) 

prediction methods.

But this is not the case for test data. The regression of observed vs. predicted values in this 

case will have a value of R2 that is larger than that of the original model. The original model 

based on the training set data can estimate each test set observation y by a predicted value, ; 

but the linear regression of observed on predicted values maximizes R2 for a secondary 

model, . The fitted model will not be  in this case, since the test set is not 

identical with the training set; thus the secondary model will give a larger value of R2. A 

large difference between the two regression R2 values would indicate a systematic error in 

the model, since it does not correctly predict the test data with good precision (although it 

may predict the trend correctly). The larger value of R2 is not a true test set estimate of 
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model fit, since it comes from a regression model using test set data, while the definition of 

test set data is that it is not used to fit a model. Instead, the test set value of R2 must be 

calculated directly from Equation 1.

Finally and for completeness, regressing predicted values on the actual observations has also 

been suggested.1 Using observations in this way to predict model estimates, rather than the 

other way round, is counterintuitive. For training data of a regression model, Besalu et al7 

show the regression line will be  (though the reason for this is not 

regression to the mean as claimed). The slope in such a graph is thus (surprisingly) R2, 

which may be well less than the ideal of 1, and the intercept is , which may be 

far from the ideal of zero if  is large – even for relatively good models with R2 (for 

example) around 0.8. The same features will appear on graphs of test data, provided the 

regression model is unbiased. Again, this will usually hold at least approximately for 

prediction methods other than regression (provided the average predicted observation is 

close to the actual average observation). It is thus unnecessary to perform such a regression, 

and unreasonable to expect it to give a slope of 1 or zero intercept.

Some further comments on regression through the origin, recommended by Golbraikh and 

Tropsha1, are relevant before suggesting improvements to their criteria for a good model.

4 Regression through the origin

All regression equations discussed to this point have had no constraints placed on them. But 

it is also possible to constrain regression equations so that the line passes through the origin. 

Adding this constraint invalidates the observations of Section 2; for example, the value 

given by Equation 1 would differ depending on whether observed values are regressed on 

predictions or the other way around.

Regression through the origin can also lead to negative values of Equation 1 even for the 

training data, since the added constraint may make the model even worse than simply 

estimating each observation by the sample mean. For this reason, a different formula, 

applicable only to regression through the origin, is used (without warning!) by various 

software packages10, 11 including R and at least some modern versions of Microsoft Excel:

(2)

In Equation 2, SSR is again compared to the residuals from a model that ignores all 

predictor variables. The only such model that passes through the origin estimates each 

observation by the value zero. With this definition, R2 values for linear regression on 

training data are again non-negative. Equation 2 gives higher values of R2 than Equation 1 

(much higher when the mean observation is high), so values from the different equations are 

not comparable. R2 values from (2) are also commonly close to 1 even when the model is 
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very poor, greatly reducing their utility in distinguishing good models from less good 

ones.13

5 Criteria for a good model for predictive purposes

Kubinyi16 and Golbraikh and Tropsha1 demonstrated clearly that q2 values on training data 

often bear no relation to the predictive ability of models on test data (q2 is defined as the 

value of Equation 1, using the training data set, where the predicted values are  from 

LOO cross-validation12). The advice to assess model fit and predictive ability using test data 

is extremely pertinent.

However, the measures of model fit for test data suggested in the latter paper1 are not strictly 

statistically correct. The application of F ratios is invalid,8 since it assumes both that there is 

only one predictor and that the mean predicted value equals the mean observation, neither of 

which are likely to hold; and there are other errors of interpretation. Even if the statistic was 

valid, it indicates only whether there is any relationship between predictor variables and 

response, not whether this fit is good.

The main criteria for validity of a model as assessed by the test set predictions suggested by 

Golbraikh and Tropsha1, and endorsed by Tropsha, Gramatica and Gombar12, relate to 

regression through the origin of observed and predicted values. These criteria are: -

1. q2 on training data > 0.5

2. Regressing observed on predicted test data (or vice versa):

ο R2 > 0.6

ο R2 through the origin close to unconstrained R2

ο Slope of regression through the origin close to 1

Criterion 1 is a valid condition for training data where cross validation has been applied, 

though as Golbraikh and Tropsha1 demonstrate this gives little indication of the model's 

predictive power on test data.

Criterion 2, which applies to test data, ensures that no good model capturing the correlation 

between actual and predicted data irrespective of the absolute error will be rejected; good 

models have small residuals and thus the graph of observed versus predicted values will 

have data points clustered around the line . (Yet even a model with low R2 may still be 

practically useful; again, the practical usefulness of a model is better determined by its 

RMSE than by the value of R2).

As discussed in Section 3, it is more meaningful to report simply both the RMSE and the 

value of R2 from the  model, and the squared test set correlation between observed and 

predicted values, as discussed in Section 6. Calculating regressions through the origin is 

unnecessary. Furthermore, the criteria of Golbraikh and Tropsha1 identify as good some 

models that actually have poor fit, as the following examples demonstrate. Note also that the 

definitions of R2 through the origin in Golbraikh and Tropsha1 are incorrect; they not only 

use Equation 1 rather than Equation 2 (which is merely a matter of convention), but some 
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equations contain typographical errors also (see Supplementary Information for details). 

Corrected formulas are applied in the following discussion.

Figure 2 shows two hypothetical plots of observed and predicted test data values that pass 

the criteria above despite representing poor model fits. In the left graph, the regression of 

observed on predicted data has an R2 of 0.60 and regressing predicted on observed data 

through the origin gives an R2 of 0.58 and slope of 1.1499, satisfying the conditions above. 

(Condition 1 relates to training data, not shown here.)

But, as described in Section 2, the proper measures of fit are RMSE = 2.1 and R2 = 0.22, 

calculated from Equation 1. The data are far from the dotted line representing ; the 

model fit is in fact poor.

Figure 2b shows a more extreme example; the ordinary regression and regression through 

the origin are identical, with R2 = 1 and a slope of 0.85. The criteria are thus again satisfied, 

even though the data are far from the dotted line representing . In this case RMSE is 1.3, 

which is very high given that the entire observed range is only 2.5. The correct R2 value is 

−1.28, negative in this case since the residuals are larger than the variation of the 

observations around their mean. This again indicates that the model fits extremely poorly, 

despite passing the criteria of Golbraikh and Tropsha.1 (Reducing the range of the predicted 

values but maintaining the form of this graph, with predicted values 85% of the observed 

values, would decrease the value of R2 (correctly calculated) even further.)

These examples amply demonstrate a weakness in the criteria described in Golbraikh and 

Tropsha.1 There is no value in calculating R2 for regression through the origin of observed 

on predicted values, or vice versa; instead the RMSE and R2 calculated from Equation 1 

using  from the original model are of much greater practical use.

Our recommended criteria for a useful model for predictive purposes are thus simply:

• High R2, eg R2 > 0.6, calculated for test set data using Equation 1. This ensures the 

model fits the data well.

• Low RMSE of test set predictions. How low RMSE must be depends on the 

intended use of the model. Even a model with low R2 can be practically useful if 

RMSE is low. A useful rule of thumb is that the test set RMSE should be less than 

10% of the range of target property value.

These criteria are simpler and clearer than those proposed above and more recently by 

Tropsha17, due to this sharper understanding of how to calculate the statistics for the test set 

predictions.

6 Criteria for a good model for ranking molecules

The preceding sections establish improved criteria for good models for predictive purposes. 

For these purposes, we recommend plotting predicted and observed values for the test set, 

but calculating R2 directly via Equation 1 rather than from a line of best fit on this graph. 
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Such a line gives the squared test set correlation between observed and predicted values, 

rather than a test set measure of model fit.

However, the best fit correlation between observed and predicted values in the test set is still 

important in some situations. As most QSAR/QSPR practitioners are aware, the quantity and 

diversity of the training data are often relatively low due to the cost and difficulty in 

generating larger data sets, or a limitation on the number of compounds that could show 

appreciable activity in a biological assay. For this or other reasons, the model may not fully 

capture the relationship between the molecular properties (descriptors) and the dependent 

variable property of interest. In this rather more realistic scenario, the numerical values of 

the target properties of the test set data may not be predicted as accurately, but the model 

may still allow correct identification of trends. It is still of great value to know which 

molecules or materials are the `best' (highest activity against a drug target, highest water 

solubility, lowest toxicity, lowest pathogen adhesion etc.) and which are likely to have poor 

properties. This allows molecules or materials to be prioritized for synthesis. In this case, the 

trend-capturing correlation between observed and predicted values for the test set may be 

more relevant than either RMSE or accurate numerical prediction of the property by the 

model.

Preferably, a regression line for the observations fitted to their predicted values should have 

a slope close to 1 ( ) and it may pass close to the origin, as would be the case for an ideal 

model. However, this is not essential when the relative ranking of molecules or materials in 

the test set is more important than numerically accurate values for the property being 

modelled. The value of R2 that this secondary regression model generates is the square of 

the correlation coefficient between the observed and predicted values of the test set; to avoid 

confusion with the value of R2 for the original model, we suggest this statistic be described 

explicitly as the squared test set correlation between observed and predicted values. This is 

simple and unambiguous. This squared test set correlation need only be reported if it is 

significantly higher than the value of R2 calculated from Equation 1, and when relative 

ranking of molecules or materials suffices, rather than accurate prediction of the properties 

of each molecule or material.

Other measures may be even more appropriate in this case. Both observed and predicted 

values may be ranked from 1 to n, where n is the number of data points; the correlation 

between these rankings, known as Spearman's rank correlation coefficient18, assesses how 

well the predictions order the observed values, regardless of how accurate the predictions 

are.

(3)

where di = xi − yi is the difference in ranking I and n is the population size. If the order of 

the observed values exactly matches that of the predicted values after sorting, then Equation 

3 will equal 1; but if some observed values are incorrectly ordered by the predictions then 

some of the summands in the numerator will be negative, so the index will be closer to 0. 
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The lowest possible value is −1, attainable only if the observed values are in the reverse 

order compared to the predicted values. The index is thus interpreted similarly to a 

correlation coefficient.

These measures are now illustrated by example. Returning to Figure 2a, R2 is only 0.22; the 

observed values are far from their predictions. But if relative rankings of the data are more 

important than accurate prediction, the squared test set correlation between observed and 

predicted values of 0.6 may also be mentioned; the model did at least order the test data 

fairly accurately, which may be all that is required. Spearman's rank correlation coefficient 

(0.71) is also much higher, indicating the model predictions were ordered approximately 

correctly even though the absolute prediction accuracy was poor.

In Figure 2b, test set observations were so far from their predicted values that R2 was 

negative. Yet the squared test set correlation between observed and predicted values is 1: the 

model ordered the data perfectly, which may suffice in some applications. Spearman's rank 

correlation coefficient was also 1 in this case.

A further example is provided by the melting point of ionic liquids. The data taken from 

Varnek et al. relate to the melting points for four chemical classes of ionic liquids.19 These 

data were modelled by Varnek et al. as separate chemical classes but we have used 

molecular descriptors and a Bayesian regularized neural network to generate a model that 

predicts the melting points for all ionic liquids taken as a single group. The purpose is not to 

describe this particular model but to show how the metrics for model validation apply to a 

real-world problem. The QSPR model resulting from the analysis of these data is given in 

Figure 3. While the regression through the data gives almost identical R2 values regardless 

of the assignment of the observed values to the x or y axes, the regression of x=y 

(corresponding the numerically accurate predictions not just ranking) is very dependent on 

the choice of axes, as is regression though the origin.

The model tended to under-estimate low melting points and over-estimate high melting 

points in the test set, which is reflected in a fairly low value of R2 = 0.17 as calculated from 

Equation 1. This may suggest modifications to the model. However, the squared test set 

correlation between the observed and predicted melting points from the QSPR model is 

much higher: 0.47. This describes the ability of the model to correctly predict the trend in 

melting points rather than the correct numerical values. The Spearman rank for the 

predictions of the test set was 0.66. This suggests that the model may still be effective in 

finding which ionic liquids have the lowest or the highest melting points, even though exact 

numerical estimates may not be accurate.

When the purpose of a model is to find the best molecules or materials, not necessarily to 

predict their properties, the utility of a model is not solely dependent on quantitative 

accuracy.20 In such cases the squared test set correlation between observed and predicted 

values, or the Spearman rank correlation coefficient, may be more relevant.
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7 Conclusions

The value of Golbraikh and Tropsha's work1 is in its very effective demonstration that 

model quality and predictivity should be assessed by test data, not only on the training data. 

However, the measures of model fit suggested are overly complicated and potentially 

misleading. Instead, researchers should simply report the R2 and RMSE or a similar statistic 

like the standard error of prediction for the test set, which readers are more likely to be able 

to interpret. The value of R2 should be calculated for the test data using Equation 1, not from 

a regression of observed on predicted values. However, if relative rankings of the data 

suffice, rather than accurate numerical prediction, then it may be relevant to report, in 

addition, the squared test set correlation between observed and predicted values (or an 

equivalent metric).

This paper elucidated some common misunderstandings surrounding the use of R2 as a 

measure of model fit. Much confusion could be spared, if everyone knew how to use R2!

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
For the black data alone, R2 = 0.49, while for the combined data the regression line is the 

same but R2 = 0.79. The RMSE is the same in each case, as the red and black residuals are 

identical, but increasing the range of activity values in the data increases R2.
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Figure 2. 
Illustrative plots of observed and predicted data. The dotted line shows the relationship y = 

ŷ data points for good models would lie close to this line. Solid regression lines and dashed 

lines for regression through the origin are also added in order to illustrate the test data 

conditions of Golbraikh and Tropsha,1 though plotting such lines on the graphs is not 

advocated here.
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Figure 3. 
The test set predictions (154 compounds in test set) from a model predicting the melting 

point of 771 ionic liquids (ionic liquid data from Varnek et al.19) A regression line has been 

drawn through the data (solid line). The dotted line is for x=y and the regression values 

relate to fitting points to each line. The two graphs represent the plotting of the same test set 

data but with reversal of the assignment of the observed melting points to the axes. Note that 

the x=y regression gives markedly different results depending on which data are assigned to 

the y-axis.
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