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Abstract
Alpha-1-adrenergic receptors are G-protein coupled receptors (GPCRs) activated by
catecholamines. The alpha-1A and alpha-1B subtypes are expressed in mouse and human
myocardium, whereas the alpha-1D protein is found only in coronary arteries. There are far fewer
alpha-1-ARs than beta-ARs in the non-failing heart, but their abundance is maintained or
increased in the setting of heart failure, which is characterized by pronounced chronic elevation of
catecholamines and b□eta-AR dysfunction. Decades of evidence from gain- and loss-of-function
studies in isolated cardiac myocytes and numerous animal models demonstrate important adaptive
functions for cardiac alpha-1-ARs, to include physiological hypertrophy, positive inotropy,
ischemic preconditioning, and protection from cell death. Clinical trial data indicate that blocking
alpha-1-ARs is associated with incident heart failure in patients with hypertension. Collectively,
these findings suggest that alpha-1-AR activation might mitigate the well-recognized toxic effects
of beta-ARs in the hyperadrenergic setting of chronic heart failure. Thus, exogenous
cardioselective activation of alpha-1-ARs might represent a novel and viable approach to the
treatment of heart failure.

I. Introduction
Marked chronic elevation in the endogenous catecholamines, epinephrine and
norepinephrine (NE) is one of the central neurohormonal abnormalities of heart failure.
Catecholamines activate two classes of adrenergic receptors (ARs) in the myocardium: beta-
ARs (β-ARs) and alpha1-ARs (α1-ARs). β-ARs are the predominant cardiac AR, and the
toxic effects of chronic activation of β1-ARs on cardiac myocytes and β2-ARs on cardiac
fibroblasts are central to the pathobiology of heart failure.1,2

α1-ARs are coupled to the Gq/11 (Gαq) family of G-proteins and activate phospholipase Cβ1
(PLCβ1), leading to intracellular calcium release though an increase in inositol trisphosphate
(IP3). Conventional wisdom views activation of myocardial Gq-coupled receptors as
inherently pathological. However, this view is based in large part on a transgenic mouse
model with Gq overexpression that markedly exceeds the two-fold increase found in human
heart failure,3-5 and thus cannot be considered to simulate human pathophysiology. In
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human heart failure, the maximal increase in Gq abundance is two-fold,5 and transgenic
mice with two-fold cardiomyocyte-specific Gq overexpression have no discernible cardiac
phenotype.3,4 α1-ARs also differ from other Gq-coupled receptors with respect to both
cellular distribution in the heart, and intracellular localization within myocytes, as described
later.

Signaling cascades downstream of α1-ARs are diverse and well-characterized, with over 70
known signaling partners.6 The three subtypes of α1-ARs, α1A, α1B, and α1D, have
differential expression in many tissues. The heart contains all three subtypes and substantial
evidence demonstrates that myocardial α1-AR activation confers benefits through multiple
pathways and processes.6

In the rodent and human heart, α1A and α1B-ARs are expressed predominantly in cardiac
myocytes,7,8 whereas the α1D is found in coronary smooth muscle cells.9 Myocardial α1-
ARs are essential for normal post-natal growth of the heart, and exert adaptive and
protective effects in the setting of chronic stress, such as heart failure. Indeed, α1-AR
abundance and function are maintained or increased in the setting of heart failure, in contrast
to β-ARs, which are down-regulated and dysfunctional.7,10

In vitro and animal studies have established that α1-ARs mediate cardioprotection through
numerous adaptive processes, including inhibition of cardiac myocyte death, enhanced
protein synthesis, increased glucose metabolism, and positive inotropy. Human clinical trials
suggest that the use of medications that antagonize the effects of α1-ARs is associated with
an increased incidence of heart failure. Here we review briefly the data from cell, animal,
and human studies that collectively indicate benefit from activation of α1-ARs in the heart,
with a particular focus on the adaptive role of myocardial α1-ARs in the setting of heart
failure, as contrasted to the maladaptive effects of β1-ARs (Figure 1).

II. There are 3 α1-AR subtypes, A, B, and D, with distinct patterns of
expression in the heart
IIa. Myocardial α1-ARs: animal models

Cardiac α1-ARs were identified initially in the rat by Williams and Lefkowitz11 and
confirmed shortly thereafter in guinea pig by Karliner and colleagues.12 α1-ARs were
studied subsequently in the hearts of mice, rabbits, pigs, dogs, and cows. There is species-to-
species variation in cardiac α1-AR abundance,13,14 though the basal level of expression is
uniformly lower than β-ARs. α1-AR levels are 5- to 8--fold higher in rats than in other
species.14

The rodent heart contains mRNAs for all three α1-AR subtypes, though only the α1A and
α1B are expressed as proteins (Figure 1).8,14-17 The α1A is the most abundant transcript in
the rodent heart, but competition radioligand binding identifies higher levels of α1B.8,18

Importantly, α1-AR proteins can only be detected reliably using radioligand binding, as
there are no commercially available antibodies with α1-AR specificity.19

Analysis of the major constituent myocardial cell types in rodents reveals that both neonatal
and adult cardiac myocytes contain α1A and α1B-ARs, and cardiac fibroblasts contain no
α1-ARs whatsoever (Figure 2).17,20 Interestingly, recent data demonstrate also that the α1A
subtype is expressed in only a subpopulation of myocytes.21

Thus, signaling events within cardiac myocytes primarily drive the cardiac effects of α1-AR
activation, and α1-ARs cannot participate directly in the fibroblast proliferation and fibrosis
that characterizes heart failure. Experimental chronic infusion of an α1-AR agonist causes
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physiological cardiac hypertrophy without fibrosis,22 whereas β2-AR stimulation drives
proliferation of both rodent and human cardiac fibroblasts.1,23-26

It is axiomatic that receptor localization must determine function, and α1-, α2, and β-ARs all
have distinct distributions among cardiac cells (Figures 1 and 2). These locations need to be
kept in mind, when considering the roles of cardiac ARs.

Cellular distribution also distinguishes α1-ARs from the other major myocardial Gq-coupled
receptors. The majority of cardiac angiotensin II receptors are found in fibroblasts, with
minimal expression in cardiomyocytes,27,28 which may account for pathological effects
when angiotensin II Gq-coupled receptors are activated. ET(B) receptors are found on
cardiac fibroblasts, with minimal expression on cardiomyocytes,29 and participate in
pathological fibrosis in heart failure. The effects of ET(A) stimulation are complex and not
uniformly pathological,30 with evidence to support cardioprotective effects such as positive
inotropy,31 antiapoptosis,32 and ischemic preconditioning.33 Thus, many of the detrimental
effects of Gq-coupled receptor activation can be attributable to effects in cardiac fibroblasts,
not cardiomyocytes. As a corollary, cardiac-specific, α-MHC-driven transgenic models of
some other Gq-coupled receptors should be viewed with caution, given the extremely low
abundance of the wild type receptors in cardiomyocytes relative to non-myocytes; transgenic
over-expression in cardiac myocytes might have minimal relevance to actual
pathophysiology.

α1-ARs, as most GPCRs, historically were thought to localize to the plasma membrane.
However, early studies suggested that α1-ARs were present on the nucleus of neonatal rat
ventricular myocytes (NRVMs),34 and recent compelling evidence confirms nuclear
localization of a substantial proportion of α1-ARs in adult mouse cardiac myocytes.
Radioligand binding of fractionated adult mouse cardiac myocytes detects 80% of α1-ARs
in the nuclear fraction, and this finding is substantiated using BODIPY-prazosin, a
fluorescently labeled α1-AR antagonist.35 Subsequent studies extended this finding,
demonstrating that nuclear localization was required for normal α1-AR signaling and
function in adult cardiac myocytes.36 These discoveries, coupled with the identification in
adult cardiac myocyte nuclei of angiotensin receptors37 and β1-ARs38, challenge the
longstanding paradigm of ‘outside-in’ GPCR signaling in the heart. Endothelin-1 receptors
also have been identified at the nucleus,39 although endothelin receptors can function at the
plasma membrane.40 Thus nuclear compartmentalization of functional α1-ARs may also
distinguish them from other Gq-coupled receptors in the heart.

IIb. Myocardial α1A- and α1B-ARs: human studies
Human and mouse cardiac α1-AR abundance and subtype distribution appear to be very
similar. All three α1-AR subtype mRNAs are found in both ventricles of explanted human
hearts; the α1A is the most abundant, followed by the α1B and α1D. As in the mouse, only
the α1A and α1B proteins are detectable by radioligand binding, and the α1B is more
abundant.7 Collectively, these findings suggest that the mouse likely represents an accurate
model for human cardiac α1-AR biology.

IIc. Coronary vascular α1D-ARs in rodents and humans
α1-ARs are well known for their effects in vascular tissue, where they typically mediate
vasoconstriction. The stimulation of vascular α1-ARs by catecholamines produces little
change in the diameter of normal human coronaries.41,42 However, in coronary arteries with
disrupted endothelium, α1-AR stimulation produces pronounced vasoconstriction and can
lead to myocardial ischemia.43-45 The α1D is the predominant α1-AR subtype in human
epicardial coronary arteries and is pharmacologically active in primary human coronary
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smooth muscle cells and ex vivo coronary rings.9 Functional α1B-ARs are expressed in
primary cultures of human epicardial coronary endothelial cells.46 α1A mRNA represents
4% of total α1-AR mRNA in human epicardial coronary arteries and has no discernible
function in either smooth muscle or endothelial cells. Of interest, the α1D also is functional
in mouse coronary arteries,47,48 further reinforcing the similarities between mouse and
human cardiac α1-ARs.

III. The abundance of myocardial α1A- and α1B-ARs is maintained in heart
failure

Heart failure is characterized by persistent marked elevations in catecholamines and the
response of ARs to chronic stimulation is central to the pathobiology of the failing
myocardium. β1-ARs are down-regulated and dysfunctional in heart failure,10,49 and
copious evidence demonstrates that excessive stimulation of cardiac β-ARs in the setting of
heart failure mediates harmful processes to include cell death, fibrosis, and adverse
remodeling. Many large clinical trials indicate that drugs that antagonize β-ARs (i.e. β–
blockers) decrease mortality due to heart failure50 and these medications are an essential
component of contemporary heart failure therapy.51

In contrast, the abundance and beneficial functions of cardiac α1-ARs are maintained or
augmented in the failing heart. Multiple studies indicate that α1-ARs constitute 2-23%
(mean = 11%) of all AR binding in non-failing human heart tissue. However, in
myocardium from failing human hearts, α1-ARs are 9-38% (mean = 25%) of all ARs.7,52-55

Importantly, α1-ARs also appear to maintain their function in the setting of chronic agonist
exposure and heart failure. Chronic treatment of NRVMs with norepinephrine leads to
upregulation of α1A-ARs without densensitization of IP3 synthesis or cardiomyocyte
growth.56 In non-failing human myocardium, β-AR stimulation induces significantly greater
inotropy than α1-AR stimulation; however in failing human heart muscle α1- and β-AR
stimulation can produce equal degrees of positive inotropy.57,58

Analysis of α1-AR subtype profiles in failing and non-failing hearts reveals that the
abundance of α1A mRNA is increased by 40% in the setting of heart failure,7 and that α1A
mRNA abundance positively correlates with left ventricular contractile function.59 α1A and
α1B binding levels are both maintained at nearly identical levels in failing human hearts, as
are levels of the β2-AR, whereas the β1-AR is markedly down-regulated (Figure 3).7

Consequently, the relative importance of α1-ARs and β2-ARs is magnified in the failing
human heart.

These findings recapitulate earlier and ongoing studies in rodent hearts. Total cardiac α1-AR
abundance and function are unaffected by hypertrophy or heart failure in rat models.56,60

α1A mRNA abundance is increased in rats subjected to pressure-loading, as well as in
NRVMs exposed to hypertrophic agonists,56 similar to humans with HF.7,59 Recent studies
suggest also that α1A expression is maintained or increased in failing mouse hearts
(Myagmar et al, unpublished data). Thus it appears that both the non-failing and failing
mouse heart accurately model human α1-AR subtype abundance.

The mechanisms underlying the preservation of α1-AR levels and function in heart failure
are partly known. β1-AR desensitization occurs through GRK2, the abundance and function
of which is upregulated in human and rat heart failure, similar to upregulation of GRK5.61,62

GRK2 and GRK5 have little if any effect on α1-ARs,63-65 and both GRK2 and GRK5 are
expressed in many myocardial cell types.62 In contrast, GRK3 is expressed exclusively in
myocytes and selectively regulates α1-ARs.62,63 GRK3 abundance is unchanged in heart
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failure,61,62 which might partly explain the fact that heart failure does not change α1-AR
levels and function. Interestingly, transgenic mice with cardiac-specific expression of a
GRK3 peptide inhibitor (GRK3ct, analogous to the well-studied GRK2ct) have increased
contractility without fibrosis and enhanced α1-AR signaling at baseline. After transverse
aortic constriction, GRK3ct transgenic mice are protected from systolic dysfunction, despite
equal induction of ventricular hypertrophy and β-myosin heavy chain induction.66,67 These
findings imply that increased α1-AR signaling can be beneficial, and collectively mirror the
beneficial phenotype of mice with modest α1A-AR overexpression.68

IV. Blocking α1-ARs is associated with heart failure in clinical trials
α1-AR antagonists, or “α-blockers”, are used widely for the treatment of benign prostatic
hypertrophy (BPH) and occasionally in the treatment of hypertension. ALLHAT, the largest
clinical trial of anti-hypertensive medications, included an arm in which roughly 24,000 men
and women with high blood pressure received the non-selective α1-blocker, doxazosin. The
incidence of heart failure in this group was twice as high as in the other arms of the trial and
the Data Safety Monitoring Board discontinued the doxazosin arm prematurely due to safety
concerns.69 Of note, in 2002 13.2 million prescriptions for α-blockers were dispensed
nationally, and the release of ALLHAT had little near-term effect on the use of these
medications.70,71

Smaller studies also corroborate the association between α1-AR blockade and worsening
heart failure. In the V-HeFT trial, use of the α1-blocker prazosin was associated with a trend
toward increased mortality, in contrast to the beneficial effects of the other vasodilator
medications tested.72 A recent analysis also indicated an increased risk for heart failure
hospitalizations in patients taking α-blockers without concomitant β-blockade.□73

Further loss-of-function evidence suggesting the benefit of α1-AR activation comes from
multiple trials of sympatholysis for the treatment of heart failure. The Moxonidine Safety
and Efficacy trial (MOXSE)74 and the Moxonidine Congestive Heart Failure trial
(MOXCON)75 studied the efficacy of the sympatholytic agent moxonidine in the treatment
of heart failure. Both trials found that moxonidine was very effective in decreasing plasma
NE levels, yet both also observed an excess of mortality in the sympatholysis group. The
mortality signal was strong enough to prompt premature discontinuation of enrollment in
MOXCON.

The BEST trial examined the effects of bucindolol, a β-blocker with sympatholytic
properties, on heart failure patients. In contrast to trials using other β-blockers for the
treatment of heart failure, the bucindolol group experienced higher mortality.76 It is
controversial whether pharmacaogenetic factors play a role in this result with
bucindolol.77-82 With reference to the evidence presented in this review, we suggest that one
possible explanation for sympatholytic-associated harm in heart failure is the withdrawal of
adaptive pathways mediated by α1-AR activation.

The findings from these studies collectively challenge the prevailing paradigm that
sympathetic activation is inherently and categorically harmful in heart failure.

V. Knockout (KO) mouse models demonstrate cardioprotective effects of
α1A- and α1B-ARs

α1-Antagonists with the aforementioned adverse effects in clinical trials might have had
"off-target" effects. However, α1-AR KO mice provide convincing evidence that α1-
signaling is required for cardiac protection.
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Va. Characterization of α1-AR KO mice
The findings from loss-of-function human trials are corroborated by studies in mice lacking
cardiac α1-ARs, with evidence indicating distinct beneficial roles for both the α1A and
α1B. Broadly speaking, the α1A appears to regulate α1-mediated cardioprotection, the α1B
might mediate catecholamine-induced physiological hypertrophy, and the α1D contributes
to regulation of blood pressure, as reviewed in detail.83

Mice lacking the α1A (on a mixed FVB/N-129 background) have low blood pressure and
normal heart size.18 α1B-AR knockout mice (α1B-KOs) on a mixed N-129/B6 background
have normal heart size,15,84 but a reduced cardiac hypertrophic response to subpressor
infusion of an α1-agonist.84 Furthermore, α1B-KOs on a congenic C57BL/6 background
have small hearts.85 Regardless of genetic background, α1B-KO mice have normal blood
pressure, but a blunted pressor response to infusion of adrenergic agonist.15,84-87 α1D-KO
mice have normal hearts, but reduced blood pressure and decreased coronary
vasoconstriction in response to phenylephrine.47,87,88

Systemic knockout of both the α1A and α1B (α1AB-KO) eliminates all myocardial α1-AR
binding.8 Surprisingly, the α1AB-KO mice (congenic B6 background) are normotensive,
indicating that one or more of the other mechanisms controlling blood pressure can
compensate for absence of α1-ARs.8 However, cardiac growth cannot be compensated, in
that adult α1ABKO male mice have small heart, indicating impaired physiological cardiac
hypertrophy after weaning. This “small heart” phenotype is not seen in female mice, which
have smaller hearts than do males. Overall contractility measured by echocardiography is
normal in the smaller α1AB-KO hearts, but stroke volume, heart rate, and cardiac output are
reduced, and the α1AB-KO mice have decreased exercise tolerance.8

Vb. KO models show that myocardial α1-ARs are cardioprotective
α1AB-KO mice also are more susceptible to injury, as evidenced by increased mortality and
dilated cardiomyopathy leading to severe heart failure, in the setting of pressure-loading due
to transverse aortic constriction.8,89,90 Pressure-loaded α1-ABKO hearts have worse fibrosis
than their wild type littermates, and increased cardiac cell death due in part to enhanced
apoptosis. Cultured α1-ABKO cardiac myocytes exhibit increased necrosis and apoptosis
when treated with NE, isoproterenol, doxorubicin or H2O2.90-92 The enhanced susceptibility
to cell death is rescued by adenoviral reintroduction of the α1A, but not the α1B, and
requires activation of ERK 1/2.92 Collectively, these in vivo and in vitro findings
demonstrate an essential cardioprotective role for the α1A in cardiac myocytes, mediated
through ERK signaling.

VI. Gain-of-function experiments demonstrate beneficial effects of cardiac
α1-AR activation

Gain-of-function experiments, largely using well-characterized agonists, demonstrate
broadly cardioprotective effects of activating myocardial α1-ARs. These adaptive processes
include physiological hypertrophy, i.e. hypertrophy with preserved or increased contractile
function, positive inotropy, protection from cell death, and ischemic preconditioning. In
many cases, it remains unclear which α1-AR subtype regulates these cardioprotective
effects, though the α1A has been implicated in a number of studies.

VIa. Pharmacologic α1-AR activation induces physiological cardiac hypertrophy
The experimental use of adrenergic agonists has been central to advancing our
understanding of the function of α1-ARs in the heart. NE, epinephrine, and phenylephrine
(PE) have been used in cell, animal, and human models for decades. The first report of
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functional α1-ARs in cardiac myocytes described hypertrophy and an increase in beating
frequency of NRVMs upon incubation with NE and the β-blocker, propranolol.93,94

Treatment of NRVMs with α1-AR agonists remains a widely utilized model for
experimental cardiac myocyte hypertrophy, and the hypertrophic response has been
confirmed in adult cardiac myocytes and myocytes of multiple species.95-100 α1-AR
activation induces hypertrophy characterized by upregulation of the “fetal gene” program, to
include atrial natriuretic peptide,101,102 α-skeletal actin,103,104 and β-myosin heavy
chain.105-107 In vitro agonist experiments have elucidated the complex signaling pathways
that mediate α1-induced cellular hypertrophy, identifying over 70 downstream signaling
partners to include PKC isoforms,106,108,109 PKD,110,111 ERK 1/2,8, p90RSK,112,113 and
HDACs.114,115

Though fetal gene induction generally is considered inherently detrimental, it is unclear
whether upregulation of this gene program is causative or merely a marker of pathology. In
fact, numerous beneficial roles have been identified for the natriuretic peptides,116 and any
pathogenicity of α-skeletal actin and β-myosin heavy chain can be questioned.117-119

Evidence even suggests that β-myosin heavy chain induction is not a marker for myocyte
hypertrophy per se.118

In vivo agonist studies substantiate the biologic significance of α1-AR induction of cardiac
myocyte hypertrophy. Infusion of a sub-pressor dose of NE causes cardiac hypertrophy with
preserved or increased contractile function in mouse, cat, and dog models.22,84,120-123

Importantly, the increase in cardiac mass is not accompanied by fibrosis or cell death.
Collectively these findings define the in vivo response to α1-AR agonist infusion as
physiological, rather than pathological, cardiac hypertrophy.

VIb. Myocardial α1-ARs cause positive inotropy, particularly in the failing heart
Though induction of hypertrophy is the most broadly studied of α1-AR effects, the first
physiological response to α1-AR stimulation detected in humans was increased inotropy. In
early reports, α1-AR agonists induced an inotropic response ex vivo in preparations from
human atria124 and ventricles,125,126 as well as in vivo.127,128 The contractile response to
α1-AR activation is preserved or enhanced in failing human myocardium,52,58,129 in
contrast to the β-AR response, which is markedly diminished.10

Animal models generally confirm the positive inotropic response to α1-AR
stimulation,130-132 and experiments in mice reveal critical details. Ex vivo perfused hearts
have a positive inotropic response to α1-AR stimulation,48 and chronic α1-AR activation is
required for normal contractile performance in perfused mouse hearts.89 Interestingly,
myocytes and ventricular trabeculae from the mouse right ventricle have a negative
inotropic response to α1-AR activation, as contrasted with mostly positive responses in left
ventricular myocytes and myocardium.133-135 The overall net positive response in the intact
heart is likely explained by the greater contribution of the left ventricle. A surprising finding
is that heart failure switches the α1-AR inotropic response in mouse right ventricular
trabeculae from negative to positive,136 a potential adaptive response to the pulmonary
hypertension of heart failure. Given the central role of impaired contractile function in the
pathophysiology of heart failure, the augmentation of inotropy through α1-AR activation
clearly constitutes an adaptive response.

The inotropic response to α1-AR stimulation likely arises from multiple mechanisms.
Myofilament calcium sensitivity is increased,137 as is calcium entry.138-140 α1-AR
activation also leads to phosphorylation of myosin light chain and troponin I by myosin light
chain kinase and PKC.136,141
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Vic.□ α1-AR activation promotes cardiac myocyte survival
The pathobiology of heart failure is characterized by increased cell death through both
necrosis and apoptosis, mediated in part by chronic catecholamine surge.142 Abundant
evidence identifies β1-ARs as the mediators of enhanced cell death, whereas α1-ARs do not
appear to participate in either necrotic or apoptotic cell death. In fact, in vitro studies offer
convincing evidence that α1-ARs even counteract toxic β1-AR pathways to preserve cell
viability.

In NRVMs, α1-AR agonists block apoptosis due to the β-AR specific agonist
isoproterenol,143,144 and in adult rat cardiac myocytes, NE-induced apoptosis is inhibited by
a β-blocker (propranolol) but not an α-blocker (prazosin).143 Pharmacologic α1-AR
activation also protects against cell death due to numerous other experimental insults to
include hypoxia,145 serum starvation,145 and doxorubicin.146

α1-AR anti-apoptotic signaling involves multiple pathways. Studies using NRVMs indicate
phosphorylation of Bcl-2145 and Bad after α1-AR activation,147 potentially leading to
stabilization of the mitochondrial membrane. ERK 1/2 is a frequent downstream partner of
α1-ARs, and also regulates cytoprotective effects in the setting of agonist
treatment.92,143,144,148 Phenylephrine (PE)-mediated cytoprotection requires α1-AR
regulation of the GATA-4 and NFAT transcription factors.146,149

In vivo models using α1-AR agonists reinforce the in vitro findings. Chronic infusion of α1-
AR agonists causes physiological hypertrophy without evidence of cell death in multiple
animal models.22,84,120-123 These early studies used agonists that bind all 3 α1-AR subtypes,
thus it has been unclear whether the salutary effects resulted from activation of the α1A, the
α1B, or some combination thereof. However, recent evidence points toward the α1A as the
primary cardioprotective AR subtype. Continuous infusion of a subpressor dose of the α1A-
selective agonist A61603 prevents death and heart failure in mice injected with the
chemotherapeutic agent, doxorubicin.150,151 These results echo the findings from
experiments using cardiac myocytes from α1-ABKO mice in which adenoviral
reconstitution of the α1A, but not the α1B, abrogates enhanced myocyte death due to
doxorubicin, β-AR stimulation, and H2O2.92

VId. α1-ARs mediate ischemic preconditioning in the heart
Abundant evidence also supports a role for α1-ARs in ischemic preconditioning. Agonist
studies in multiple species including rat,152,153 mouse,154 dog,155-157 pig,158 and rabbit159

indicate that myocardial α1-AR activation protects against ischemic injury. In particular, the
α1A is implicated in the preconditioning response in a number of different models.
Transgenic mice overexpressing a constitutively active α1A show complete protection from
ischemic injury, whereas α1B transgenics develop injury comparable to wild type mice.160

A novel transgenic rat model also indicates that overexpression of the α1A in the rat heart
reduces infarct size after coronary ligation by mediating the second window of ischemic
preconditioning.161

Activation of PKC is central to α1-AR mediated preconditioning,153,162-164 and further
downstream effectors include superoxide dismutase,165,166 inducible nitric oxide
synthase,154 5’ nucleotidase,155 and heat shock proteins.162

VIe. α1-AR transgenic mouse models have variable phenotypes
Studies of mice with transgenic overexpression of α1-AR subtypes yield somewhat
conflicted results, possibly resulting from disparate constructs (different promoters, different
receptor cDNAs), the varying extents to which the receptors are overexpressed, whether the
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transgenic mouse is systemic or cardiac-specific, the specific receptor active state conferred
by the mutations in constitutively active mutants, and varied sites of transgene integration
into the genome. Sex and strain of the transgenic mice studied likely contribute as well, but
are not uniformly given in the various papers. Many of the details on each transgenic mouse
are tabulated elsewhere.6

The disparate findings may also result in part from challenges inherent in the overexpression
of GPCRs. In particular, transgenesis does not guarantee that the overexpressed receptor will
assume the same conformation as an endogenous receptor in the setting of agonist
stimulation. As such, it is conceivable that physiological responses in transgenic GPCR
models are governed by aberrant signaling downstream from an overexpressed receptor in
an alternate active state, rather than merely an exaggerated representation of endogenous
signaling. This concept was demonstrated nicely in mouse cardiomyocytes overexpressing a
constitutively active human β2-AR.167 With reference to α1-AR transgenics, this issue is
complicated further by the fact that different α1 agonists themselves induce biased signaling
at wild type receptors, presumably based on receptor conformation.168

Two-fold systemic overexpression of a constitutively active mutant α1A enhances ischemic
preconditioning.160 In a separate transgenic model, exaggerated cardiac myocyte-specific
overexpression of the wild type α1A improves contractility without hypertrophy (148-170
fold overexpression).169 Sixty-six-fold overexpression of the wild type α1A protects against
heart failure due to pressure loading and myocardial infarction, but is associated with
enhanced fibrosis, apoptosis and death in aged mice.68,170,171 The latter results are
particularly surprising in light of the wealth of evidence from other gain-of-function studies
indicating cardioprotection and a lack of fibrosis, and could be confounded by the grossly
supraphysiological levels of α1A overexpression.

Characterization of multiple α1B transgenic mice has been even more confusing. Two-fold
systemic overexpression of a constitutively active mutant α1B causes cardiac hypertrophy in
the setting of normal blood pressure,172 as does cardiac myocyte-specific 3-fold
overexpression of a constitutive active mutant α1B,173 or 70-fold overexpression of a wild
type α1B.174 However, another mouse line with 2-fold overexpression of a constitutively
active α1B has normal heart size with decreased contractile function,175 and 43-fold
myocyte-specific overexpression of the α1B produces dilated cardiomyopathy and early
death.176-178

The only clear commonality between the various α1B transgenics is the lack of a blood
pressure phenotype. These apparently incompatible findings likely arise from the sources of
variability mentioned above, and ultimately offer limited insight regarding the physiological
role of the myocardial α1B-AR. As there is no available pharmacological compound with
α1B selectivity, the best available evidence regarding the function of the α1B in the heart
comes from knockout mouse models that suggest it is involved in normal post-weaning
physiological developmental hypertrophy,8,84,85 and hypertrophy induced by sub-pressor
infusion of an α1-agonist.84

VII. Summary
Decades of studies in cells, animals, and humans describe adaptive and protective roles for
α1-ARs in the heart. These functions are particularly important in the context of chronic
adrenergic activation, such as heart failure, wherein β-ARs are downregulated and
dysfunctional. Evidence from loss- and gain-of-function studies indicates that myocardial
α1-ARs not only protect against the development of heart failure, but also maintain their
beneficial functions in established heart failure. As detailed in this review, these functions
include physiological hypertrophy, enhanced positive inotropy, protection against apoptotic

Jensen et al. Page 9

J Cardiovasc Pharmacol. Author manuscript; available in PMC 2015 April 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and necrotic cell death, and ischemic preconditioning. α1-ARs are estimated to be 90%
unoccupied in chronic heart failure, suggesting that these beneficial pathways could be
augmented further by activation with an exogenous agonist.179 Indeed, this concept was
affirmed in a recent small clinical trial in which advanced heart failure patients derived
significant clinical benefit from the use of midodrine, a non-selective α1-AR agonist.180

In mice and humans, the α1A and α1B are the predominant α1-AR subtypes in the
myocardium, whereas the α1D is expressed in coronary arteries. The α1A likely regulates
cell survival pathways and ischemic preconditioning, and contributes to contractile function.
The function of the α1B is less certain, though it appears to regulate post-natal heart size.
Activation of the α1D leads to coronary vasoconstriction, particularly in the absence of a
functioning endothelium. Ongoing translational work will expand upon the recent finding
that selective α1A activation protects against heart failure in a mouse model,150,151 and test
the hypothesis that cardioselective α1-AR activation is a viable therapy for heart failure.
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Figure 1. Adrenergic receptors in the failing cardiac myocyte
Radioligand binding levels of cardiac myocyte ARs are in the order β1 > β2 > α1B > α1A >
β3. Some ventricular myocytes do not express all subtypes.21 New data localize the α1-ARs
to the myocyte nucleus.35,36 The (patho)physiological roles of chronic activation are
indicated.
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Figure 2. Adrenergic receptors in cardiac non-myocytes
Cardiac ARs are also broadly expressed on cells other than cardiac myocytes. α1D-ARs
constrict coronary vascular smooth myocytes. α2-ARs constrict coronary vascular smooth
muscle cells and inhibit NE release from sympathetic nerves. β2-ARs stimulate NE release
from sympathetic nerves, activate fibroblasts, and relax coronary smooth muscle cells. The
roles of ARs in coronary endothelium are less defined.
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Figure 3. Adrenergic receptors in non-failing and failing human myocardium
The β1-AR is dominant in the non-failing heart, but is markedly down-regulated in the
failing heart, whereas the α1A, α1B, and β2 are not. Data are taken from Jensen et al.7 In
that study, receptors in human left ventricular free wall were quantified by radioligand
binding, using 3H-prazosin for α1-ARs and 125I-cyanopindolol for β-ARs. Specific binding
at the 3H-prazosin Kd was 40%. The proportion of the α1A subtype was defined by
competition with 5-methyl-urapidil; the proportion of β1, with CGP 20712A; and the
proportion of β2, with ICI-118,551. Non-failing hearts were unused donors, and failing were
from transplant. Mean data from 4-6 patients for non-failing and failing are normalized to
the value of the α1A in non-failing set at 1 (1.44 fmol/mg protein). The preparation used for
binding was a complete myocardial lysate, not a “membrane” preparation, so that fmol
values relative to protein are low, but no receptors are “tossed out”. The rationale for this
approach is that about 60% of total myocardial α1-ARs are in a typical 1000g pellet, and
only 15% of total remain in a 40,000g “membrane” pellet used typically for binding.83 Use
of “membrane” preparations can cause artifacts, as documented with myocardial β-
ARs.181,182
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