
A Counterfactual P-value Approach for Benefit-Risk Assessment 
in Clinical Trials

Donglin Zeng*, Ming-Hui Chen†, Joseph G. Ibrahim*, Rachel Wei‡, Beiying Ding‡, Chunlei 
Ke‡, and Qi Jiang‡

*Department of Biostatistics, University of North Carolina, McGavran Greenberg Hall, CB#7420, 
Chapel Hill, NC 27599, USA

†Department of Statistics, University of Connecticut, 215 Glenbrook Road, U-4120, Storrs, CT 
06269, USA

‡Global Biostatistical Science, Amgen Inc., One Amgen Center Drive, Thousand Oaks, CA 
91320, USA

Summary

Clinical trials generally allow various efficacy and safety outcomes to be collected for health 

interventions. Benefit-risk assessment is an important issue when evaluating a new drug. 

Currently, there is a lack of standardized and validated benefit-risk assessment approaches in drug 

development due to various challenges. To quantify benefits and risks, we propose a 

counterfactual p-value (CP) approach. Our approach considers a spectrum of weights for 

weighting benefit-risk values and computes the extreme probabilities of observing the weighted 

benefit-risk value in one treatment group as if patients were treated in the other treatment group. 

The proposed approach is applicable to single benefit and single risk outcome as well as multiple 

benefit and risk outcomes assessment. In addition, the prior information in the weight schemes 

relevant to the importance of outcomes can be incorporated in the approach. The proposed 

counterfactual p-values plot is intuitive with a visualized weight pattern. The average area under 

CP (AUCP) and preferred probability over time are used for overall treatment comparison and a 

bootstrap approach is applied for statistical inference. We assess the proposed approach using 

simulated data with multiple efficacy and safety endpoints and compare its performance with a 

stochastic multi-criteria acceptability analysis (SMAA) approach.
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1 Introduction

Evaluation of balance between benefits and risks is fundamental in development, 

registration and use of drugs. Risk-benefit assessment (RBA) is generally considered 

challenging and has received considerable attention from regulatory agencies, governance 

bodies, patients and industry. The US Food and Drug Administration (FDA) internally 

piloted a framework with the intention to provide a standard RBA framework. In Europe, 
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the Committee for Medicinal Products for Human Use (CHMP) had a comprehensive 

review of available qualitative and quantitative methods and processes for regulatory RBA 

in their working report in 2010 and 2012 [1,2]. Pharmaceutical Research and Manufacturers 

of America (PhRMA) developed a benefit risk action team (BRAT) framework to enable a 

structured and transparent approach to Benefit-risk assessment [3] and then transferred the 

BRAT framework to the Centre for Innovation in Regulatory Science, Ltd. (CIRS) in order 

to further the technical development and broaden the input from the scientific community.

Multiple methods are available to quantify benefits and risks of new drugs [4]. Drug RBA 

typically includes multiple benefit and risk criteria. In this setting, multi-criteria decision 

analysis (MCDA) was proposed to provide a framework for systematic analysis of complex 

decision problems involving value trade-off [5]. This approach constructs a multi-criteria 

decision model for benefits and risks, and quantifies them into some summarized risk-

benefit scores. However, MCDA only provides the point estimate of the score for combined 

benefits and risks. Therefore, the uncertainty associated with sampling variation of criteria 

measurements is not incorporated. In addition, the approach requires specifying the weight 

for each criterion which involves subjective judgment; the decision makers may not reach a 

consensus about the weights [5]. To overcome the limitations of MCDA, a stochastic multi-

criteria acceptability analysis (SMAA) approach [6-11] has been proposed. The SMAA-2 

method [7,8] extends the original SMAA [6] by considering all ranks in the analysis. The 

SMAA methodology has been applied to risk assessment [9-10] and SMAA-2 has been 

applied to drug RBA [11]. The SMAA approach [11] considers a multi-criteria decision 

problem and quantifies the decision uncertainty through descriptive measures calculated as 

multidimensional integrals over stochastic parameter spaces to aid in decision making. The 

weights in the SMAA approach are random variables comparing to elicited weights in 

traditional approaches. The SMAA approach can incorporate the sampling variation in 

criteria measurements and characterize the benefits and risks using different prior 

distributions for weights. The decision making in the SMAA approach is mainly done 

through central weight vectors and confidence factors if there is no preference information, 

and through rank acceptability indices to find the best alternative when preference 

information is incorporated. However, the ranking approach in SMAA may not be 

statistically efficient because of disregarding the quantitative values of the benefits and risks. 

In addition, there is a lack of graphical representation of the risk-benefit assessment over the 

weight selection in the MCDA approaches including the SMAA.

In this paper, we propose a new concept, called the counterfactual p-value (CP), to quantify 

benefit-risk balance when comparing two treatment plans. The proposed concept will 

automatically incorporate prior importance of weighing each benefit or risk endpoint. We 

will further propose a graphical display of this concept which shows different weighting 

schemes for benefit-risk analysis. Some summary measures based on the graph will be used 

for comparison. Finally, the proposed method will be used to analyze a simulated dataset.
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2 Method

2.1 Counterfactual P-value

We consider two treatment plans (A vs B). For plan A, we define a multivariate benefit-risk 

value as uA = (u1A, …, uKA)T, where larger values are associated with better outcomes; 

similarly for plan B, we define a multivariate benefit-risk value uB = (u1B, …, uKB)T. Note 

that both uA and uB refer to some concatenations of benefit and risk attributes. From a given 

study, we can estimate these values, and we let  denote the corresponding 

random vector for the estimated value in plan A and  is the random vector 

for the estimated value in plan B. Usually  and  can be 

transformations of the endpoint outcomes using value functions [3], where the 

transformations are used to make these concatenated benefit-risk values comparable. We 

assume  and , where nA 

and nB denote the group sizes of treatment A and treatment B, respectively. Note that the 

normality assumption holds approximately in large sample sense but this assumption is not 

essential in our method and it can be replaced by any parametric distribution.

For any given weight w = (w1, …, wK)T, where , we define vA(w) = w1u1A + … 

+ wKuKA and vB(w) = w1u1B + … + wKuKB as weighted combinations of benefit-risk values. 

Correspondingly, we obtain  and 

. Then, we define a probability for plan A associated with w 
as

similarly, we define a probability for plan B associated with w as

We call both probabilities as counterfactual p-values for two reasons: (1) treating subjects 

already in one plan with the other plan never happens so the scenarios in both definitions are 

counterfactual; (2) the probability in pA(w) is similar to a p-value for testing the null 

hypothesis H0 : vA(w) = vB(w) against Ha : vA(w) > vB(w). According to the definition of the 

counterfactual p-values, if plan A is better than plan B, then we would expect pA(w) to be 

more likely less than 1/2 and pB(w) larger than 1/2; if plan A is equivalent to plan B, then 

both probabilities will be equal to 1/2 on average.

Under the normality assumption, we know that if all nA subjects in treatment plan A were 

treated in plan B, the group mean of the weighted values should have an approximate normal 

distribution with mean  and variance . Therefore, we can actually 

estimate these counterfactual p-values as
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where Φ(·) is the cumulative distribution function of the standard normal distribution.

2.2 Graphical display of counterfactual p-values

For any weight vector w ∈ Ω, where Ω is the feasible region of weights incorporating prior 

weight information, we can calculate the pair . We then plot 

 for all feasible w. We call such a plot a CP region. Therefore, we expect 

that if plan B is better than plan A, then most of the points should be in the quadrant {(x, y) : 

x < 0.5, y > 0.5}.

One major question is how to choose the weight vector. When no prior information on the 

importance of each endpoint is available, one non-informative choice is to sample the 

weight vector uniformly from its feasible space. However, if one knows apriori the relative 

importance and denotes it as a prior weight vector w0, then one possibility is to sample the 

weights w from a Dirichelet distribution with parameter w0. See [5, 6] for discussions on 

approaches to determining the prior weight. In another scenario, when the prior importance 

is not known exactly but the importance order of the endpoints is known, then a uniform 

distribution from the ordered region can be used to sample weights. The following algorithm 

is thus given to obtain the CP-region:

1. Using the raw data, we estimate  and their estimated covariance 

matrix ; similarly, we estimate  and their estimated 

covariance matrix .

2. We sample a vector w from a prior distribution fW(w).

3.
We obtain  and .

4. We calculate the CP-values

and

5. Repeat Steps 2-4 many times and then plot the calculated  versus .
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2.3 Example

Motivated by a phase III clinical trial of an experimental oncology drug, we simulated a 

dataset including 2 efficacy endpoints, progression free survival (PFS) and overall survival 

(OS) time, and time to the first occurrence of 2 adverse events of interest (AE1 and AE2) for 

500 patients each on two treatment arms, placebo (plan A) or active treatment (plan B). The 

simulated data assumes a treatment effect on the progression free survival and a similar 

overall survival outcome between the two treatment arms. Among the two AE’s of interest, 

the treatment increased the incidence of the first adverse event and was associated with the 

occurrence of another adverse event (ie, 0% incidence for the placebo arm). We use the 

survival probabilities of these four endpoints at month 10 for illustration. We estimate these 

probabilities using the Kaplan-Meier estimates and estimate the covariance matrices using 

the bootstrap. The estimated probabilities and their estimated covariance matrices 

 for the two treatment arms are given in Table 1. For example, at month 

10, the proportions of the patients who did not have disease progression are similar in the 

two treatment groups (90.5% for A and 91.4% for B). The mortality rate within 10 months is 

significantly lower in treatment B but the adverse event rates are higher.

In this example, some prior information on the relative importance of these four endpoints is 

available and the prior weights after consulting clinicians are 0.48, 0.29, 0.01 and 0.22 for 

PFS, OS, AE1 and AE2 respectively. Therefore, to produce the proposed CP-region, we 

generate weights from the Dirichlet distribution with parameter vector w0 = (0.48, 0.29, 

0.01, 0.22) so that the average weights are exactly the same as their relative importance. We 

randomly draw 5,000 weights from this distribution and calculate the CP-values for both 

treatments. For each draw of weight, we plot the derived CP values and the obtained points 

are given in Figure 1. To reflect the weight contribution for each plotted point, we add a 

vertical line from each point to x-axis where the vertical line has four colors, with the length 

of each color segment reflecting the weight of the corresponding endpoint from this 

particular draw. Furthermore, since the covariances for the endpoints are similar between the 

two groups,  and the points are close to a diagonal line as seen in 

Figure 1.

In Figure 1, the upper-left square contains all the draws where the counter-factual p-value 

for treatment B is smaller than the one for treatment A; the bottom-right square contains the 

opposite. From the expression of the CP values, if  then 

so . The opposite is also true. So there are no points in either the upper-right 

and the lower-left regions. From this figure, the general message is that if OS or PFS is 

weighted most, then the p-value for treatment B is smaller than that of treatment A; in 

contrast, if adverse event 2 is weighted most, then the p-value for treatment A is smaller. 

This is consistent with the estimates provided in Table 1. In the plot, we also present some 

summary statistics including the area under the CP region, the B-preferred probability, etc. 

Definitions and details of the calculation of these quantities are given in the next section.
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2.4 Statistics based on CP-values

The area under the CP region (AUCP) is defined as the signed area from the plotted CP-

values, where the measure along the horizontal axis is taken as the probability measure 

corresponding to pB’s distribution. Formally, we define it as

where FB(w) denotes the distribution of pB(w) given the data. Empirically, we can estimate 

AUCP as

where w1, …, wm are m random draws from the prior distribution of w. The AUCP not only 

depends on the frequency of one preferring plan A, but also depends on how large the 

weighted value for plan A is as compared to plan B. The larger the AUCP is than zero, the 

more likely we will see the plotted p-values to appear in the upper-left region and the more 

treatment plan B is favored. Another summary quantity, called the B-preferred probability 

(BPP), is simply the proportion that pA(w) > pB(w), i.e., Pr(pA(w) > pB(w)|Data) = Pr(pB(w) 

< 0.5|Data). BPP can be estimated as the proportion of the pairs within the upper-left region. 

The larger the BPP is above 0.5, the more likely we will see small counter-factual p-value 

for treatment B.

Although the color pattern in Figure 1 indicates how importance of each endpoint influences 

the p-value, one may be interested in the overall or central weight in either B-preferred 

region or A-preferred region. For this purpose, as indicated in the upper-right corner of 

Figure 1, we present the average weights in either region to summarizing the weight 

information in the region of preferring A or preferring B. These weights are closely related 

to the central weights in the SMAA approach but are not equivalent. This clearly indicates 

that (a) if we give more weights to OS or PFS, then treatment B tends to have a better 

benefit-risk balanced value than treatment A; (b) if we weight adverse event 2 the most, then 

treatment A is preferred (note that treatment A has 0 such events); (c) the endpoint of 

adverse event 1 seems to have little influence on which treatment to be preferred because 

minimal prior weight was given to it.

Both AUCP and BPP are calculated conditional on the given data. Statistically, it will be 

interesting to know whether AUCP is significantly larger than zero or whether BPP is larger 

than 0.5. In other words, we need to account for data randomness to make appropriate 

inference based on these statistics. Note that AUCP and BPP both depend on survival 

estimates, and their covariance estimates which are assumed to be asymptotically normal. 

The delta method then implies that these statistics will be also asymptotically normal. 

However, estimating their asymptotic covariance matrix is difficult due to complex variance 

estimation of the estimated covariance matrices in the counterfactual p-values. Therefore, 

we suggest to use the bootstrap to obtain the inference for these two statistics. For the 
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example, the bootstrap result indicates a significant preference for treatment B between time 

5 to 15 months; that is, AUCP>0 and BPP>0.5 in that interval.

2.5 Generalization to time-dependent endpoints

Many endpoints such as the four endpoints in the above example are temporal so it will be 

interesting and important to incorporate a time component in a benefit-risk analysis. The 

definition of the counterfactual p-values can be easily generalized to time-dependent 

endpoints by allowing both values and their covariance matrices to depend on time t. Thus, 

we obtain a time-dependent AUCP(t) and BPP(t), which can be unsmooth due to the use of 

the Kaplan-Meier estimates of the survival probabilities. Similarly, the bootstrap method can 

be used to obtain their pointwise confidence bands. For the example, the estimates of these 

functions and their confidence bands are plotted in Figure 2. One way to summarize time-

dependent AUCP or BPP curves is to do a weighted integration of the curves, where the 

weights can be chosen to be time-dependent to reflect either clinical importance or study 

sample variability over time.

3 Sensitivity Analysis

We conduct additional numerical studies to examine the performance of the proposed 

method using the same data example as before. Specifically, we study the sensitivity of the 

CP method to the choice of prior distributions for w. We also compare the CP method with 

the SMAA method proposed in [11].

We consider generating the weights from a prior distribution which is a mixture of the 

original Dirichlet distribution and a uniform distribution with varying mixing probabilities. 

For each given prior distribution, we calculate the probabilities of preferring treatment B 

based on the four endpoints at each time point t using the proposed counterfactual approach 

and the SMAA method. The obtained preference probability curves are given in Figure 3.

From Figure 3, it is clear that the preference curves of treatment B have very similar shapes 

and patterns between our approach and the SMAA method. However, our method tends to 

give a larger preference probability for treatment B, mainly due to the fact that our approach 

uses more data information in addition to the ranks in the combined endpoints. These 

observations are consistent no matter what mixing probabilities are used in the prior 

distribution for w. As indicated in Figure 3 (a)-(d), the preference probability for treatment 

B appears to be sensitive to the choice of the prior distribution for w. Furthermore, we 

obtain the center weights of preferring treatment B for each endpoint, which are defined as 

the average of w that yields the preference to treatment B. The center weights for the four 

endpoints are plotted over time in Figure 4 and they look similar between the two 

approaches.

For illustration, we also carry out the calculation using the uniform prior for all the weights, 

i.e., there is no preference as to which endpoint is more important. The obtained preference 

curves over time and center weights are given in Figure 5. The conclusions are similar to 

Figure 4 but the differences between our approach and the SMAA are very little. The latter 
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fact also indicates that the decision of preferring one treatment plan over the other can be 

largely influenced by the prior distribution of w.

Finally, we perform simulation studies to examine the operating characteristics of the 

proposed CP-value method. In the simulation study, we generate two survival endpoints T1 

(overall survival time) and T2 (time to adverse event) from a gamma frailty model where the 

frailty distribution has mean one and variance σ2. There are 500 subjects in treatment A 

group and the same number subjects in treatment B group. Let r1 denote the hazard ratio 

between B and A for T1 and let r2 denote the hazard ratio for T2. We consider different 

scenarios including (1) there is no difference between treatment A and B (r1 = r2 = 1) ; (2) 

treatment B moderately prolongs overall survival but increases the risk of adverse event (r1 

= 0.75, r2 = 1.25); (3) treatment B significantly prolongs overall survival but increases the 

risk of adverse event (r1 = 0.5, r2 = 1.25). The prior weights for T1 and T2 are set to be (0.78, 

0.22). For each simulation, we compare the proposed method to the SMAA method. We also 

calculate the ratios between the number needed to benefit and the number needed to be harm 

(NNTB/NNTH) and report their standard deviations in parentheses. The results from 500 

replicates are given in Table 2. The tables show that the CP method is comparable to the 

SMAA method but the preference probability for treatment B is more sensitive to the benefit 

of treatment B vs A. Both the CP method and the SMAA method are not sensitive to the 

correlation between the two survival endpoints. Instead, the NNTB/NNTH ratios is very 

variable.

4 Concluding Remarks

We have proposed a graphical method based on different counterfactual p-values to quantify 

the benefit-risk assessment among different treatments. The proposed method has the 

following advantages: (1) it incorporates more quantitative information in data, such as the 

actual mean and variability of the values from all endpoints, than the rank-based methods; 

(2) the proposed CP region provides an intuitive summary of the weights associated with the 

preference of one treatment over the other; (3) compared to existing multi-criteria decisions, 

the proposed method provides a spectrum of weights in benefit-risk analysis thus will be 

useful for investigators to understand a complete picture of how weights characterizes 

benefits and risks balance; (4) the area under the CP (AUCP) and the B preference 

probability (BPP) have been proposed and they can be easily used for comparing treatments; 

and (5) we have also proposed a temporal CP region which enables us to examine the 

change of benefits and risks trade-off over time. As a note, we do not claim the superiority 

of the proposed approach to existing methods due to the use of a single data set and the lack 

of gold standard in benefit-risk analysis. Instead, one highlight of the proposed method is its 

connection to causal inference, the flexibility of incorporating prior weight information, 

extension to incorporate temporal relationship and graphical visualization.

One limitation of the proposed method is that it is only limited to the comparisons between 

two treatments. When multiple treatments are present, one possibility is to conduct pair-wise 

comparison between any two treatments. Inference then should account for multiple 

comparisons in the procedure. In our numerical studies, the prior distribution for w does not 

affect the temporal pattern of preference but it can change the preference probability of one 
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treatment from 80% to 50%. Therefore, choosing an appropriate prior distribution for w 
remains an important issue, for which obtaining opinion from clinicians or experts is 

essential. Finally, the proposed CP approach and its associated statistics can easily be 

implemented in R. We have provided general R code for implementing this procedure in the 

appendix.

The proposed method can also be generalized to compare two competing treatments from 

different studies, but not without some cautions. The validity of the method relies on the key 

assumption that the patients in one study would have performed similarly as the patients in 

the other study if they were given the other study’s treatment. Obviously, this assumption 

may not be valid when the two studies recruit patients from different sources. One possible 

way to alleviate this issue is to apply the approach similar to inferring causal effect in 

observational studies, for instance, using propensity scores matching so that the matched 

patients from these two different studies are comparable.
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Figure 1. 
Counterfactual p-value region at time 10 for the example: 1–progression free survival; 2–

overall survival; 3–adverse event 1; 4–adverse event 2.

Zeng et al. Page 11

J Biopharm Stat. Author manuscript; available in PMC 2015 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
AUCP and BPP curves based on Counterfactual p-value regions over time in the example: 

the solid curves are the estimates and the dashed ones are 95% pointwise confidence bands.
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Figure 3. 
The curves of preference probabilities for treatment B under different prior distributions for 

w: (a) the prior distribution is the Dirichlet distribution for w with parameters (0.48, 0.29, 

0.01, 0.22); (b) the prior distribution for w is a mixture of the Dirichlet distribution in (a) 

and the uniform distribution in the space 

 with the mixing 

probabilities equal to (0.8, 0.2); (c) the distribution for w is the same as (b) except that the 

mixing probabilities are (0.5, 0.5); (d) the distribution for w is the same as (b) except that the 

mixing probabilities are (0.2, 0.8).
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Figure 4. 
The central weights of the four endpoints in preferring treatment B: (a)–(d) use the same 

prior weight distributions as Figure 3: the solid curves are from the CP-value method and the 

dashed curves are from the SMAA method. The black, red, blue and green curves 

correspond to each of four endpoints in the order of progression free survival, overall 

survival, adverse event 1 and adverse event 2.
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Figure 5. 
The comparison between the CP-value method and the SMAA method under the uniform 

prior distribution for w: The prior distribution is the uniform distribution in the space 

. The curve definitions are the same 

as Figure 3 and Figure 4.
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Table 1

Survival estimates at Month 10 in demo example

Treatment Endpoint Survival prob. Covariance (×10−3)

A (Placebo) overall survival 0.792 0.298 0.043 0.002 0.000

PFS 0.905 0.043 0.177 −0.009 0.000

adverse event 1 0.936 0.002 −0.009 0.139 0.000

adverse event 2 1.000 0.000 0.000 0.000 0.000

B (Active Treatment) overall survival 0.846 0.279 0.033 −0.017 0.000

PFS 0.914 0.033 0.167 0.006 0.006

adverse event 1 0.880 −0.017 0.006 0.245 −0.007

adverse event 2 0.983 0.000 0.006 −0.007 0.036
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Table 2

Simulation results from 500 replicates

    CP method SMAA NNTB/NNTH

σ 2 (r1, r2) AUCP B preference

0.5 (1,1) −0.014(0.236) 0.495(0.437) 0.510(0.217) −9.732(222.581)

(0.75,1.25) 0.071(0.228) 0.640(0.405) 0.590(0.209) 0.786(53.727)

(0.50,1.25) 0.170(0.213) 0.778(0.330) 0.689(0.187) −41.558(1268.20)

1.0 (1,1) −0.018(0.247) 0.479(0.440) 0.525(0.222) 1.126(33.817)

(0.75,1.25) 0.074(0.227) 0.650(0.403) 0.585(0.215) −1.717(120.847)

(0.50,1.25) 0.164(0.209) 0.781(0.332) 0.698(0.186) 14.089(471.06)

2.0 (1,1) 0.009(0.233) 0.538(0.441) 0.502(0.216) −1.435(867.67)

(0.75,1.25) 0.042(0.237) 0.595(0.419) 0.579(0.206) −1.881(89.940)

(0.50,1.25) 0.170(0.213) 0.768(0.314) 0.673(0.188) −2.790(1261.504)
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