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Abstract
It is not uncommon to have experimental drugs under different stages of development for a given
disease area. Methods are proposed for use when another treatment arm is to be added mid-study
to an ongoing clinical trial. Monte Carlo simulation was used to compare potential analytical
approaches for pairwise comparisons through a difference in means in independent normal
populations including 1.) a linear model adjusting for the design change (stage effect), 2.) pooling
data across the stages, or 3.) the use of an adaptive combination test. In the presence of intra-stage
correlation (or a non-ignorable fixed stage effect), simply pooling the data will result in a loss of
power and will inflate the type I error rate. The linear model approach is more powerful, but the
adaptive methods allow for flexibility (re-estimating sample size). The flexibility to add a
treatment arm to an ongoing trial may result in cost savings as treatments that become ready for
testing can be added to ongoing studies.

Introduction
Analytical methods for adding a new treatment arm to an ongoing clinical trial have not
been addressed in the literature. Consider the scenario of a randomized, double-blind
parallel arm clinical trial of treatment A versus placebo. This study may be large and long-
term. At some point after randomization has begun, but prior to the end of enrollment, a new
treatment B showing promise is identified. Investigators and Sponsor desire to add treatment
B to the ongoing study in order to reduce the number of placebo subjects that would be
needed if two separate clinical trials were to be conducted. Thus, without re-randomizing
previously enrolled subjects, the decision is made to randomize all new patients to one of
three arms: A (with placebo for B), B (with placebo for A), or placebo for both A and B.

One example where such a scenario may be applied is the NINDS Exploratory Trials in
Parkinson’s Disease (NET-PD) initiative. This program funds a series of clinical trials of
potentially disease modifying agents(NINDS NET-PD Investigators, 2006; NINDS NET-PD
Investigators, 2007). These agents (believed to impact different biological mechanisms of
action) are at different stages of development; some require Phase II testing, while others are
ready for Phase III testing. In Parkinson’s disease, a definitive Phase III trial is costly and
requires five or more years of follow-up to evaluate improvement in clinical progression.
This work was originally motivated by the possibility of adding active arms to an ongoing
Phase III randomized trial of creatine versus placebo in Parkinson’s disease (the LS-1
study).

When more than one promising treatment are available for a Phase III clinical trial,
conducting a multi-arm study is more efficient than conducting separate studies of each
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intervention; less placebo patients are needed and savings on infrastructure costs (such as
coordinating centers) can be expected. However, delays in the drug supply chain for one
drug, or the need to obtain supporting clinical or pre-clinical data can make it more difficult
to start a multi-armed clinical trial compared to separate studies of each intervention. For
example, one drug may not have adequate preliminary data (although it is being used in
practice) compared to the other(s). Once a safety profile has been established, the
investigators wish to add this drug to an ongoing trial, lest the trial become obsolete, in that
it does not reflect real-world practice, before it is completed.

There are other situations in which, for external reasons, it may be practical to begin a
clinical trial with the possibility that another arm may be added mid-course. One such
example is a multi-dose study where for safety reasons, investigators do not wish to include
a higher dose arm at the outset before a lower dose has been administered(Peace & Koch,
1993). Another example is the multi-arm clinical trial of the effectiveness of several
antipsychotic drugs in patients with schizophrenia (the CATIE trial). At the outset of the
CATIE trial, ziprasidone was pending regulatory approval. A ziprasidone arm was added
after approximately 40% of patients had been enrolled, once it had been approved by the
FDA (Lieberman et al., 2005). One can envision other examples in comparative
effectiveness trials, in which new agents (biologics) become available mid-course of an
ongoing trial.

When an arm is added to an ongoing trial there are several statistical considerations. Here,
we focus on the family-wise type I error rate, power, sample size, and the choice of
analytical methods. It is assumed that it is possible to ensure adequate blinding, that re-
randomization of existing subjects cannot and will not be done, and the optimal allocation
ratio will be applied. (The allocation scheme would be unequal after the new treatment arm
is added and would minimize the time to total enrollment.) In this paper, analytical methods
for both single-stage and group sequential designs are addressed for this novel scenario. The
power and type I error rate are compared for several analytical methods for a design with a
fixed sample size. We will restrict our attention to the case in which the main interest in
multi-arm studies is to identify any and all drugs that are better than placebo (not to identify
the best drug) as is the case for the NET-PD project. Note the decision to add treatment B is
driven by external considerations independent of any impression for performance of A in the
trial.

Methodology
Two-stage design with fixed sample size

The choice of test statistic to be applied depends on the original design of the comparison of
treatment A versus placebo, and the potential for a cohort or stage effect. Let y1A, y2A,….
and y1P, y2P,…. be sequences of independent observations receiving treatment A and
placebo, respectively, in a two armed clinical trial. Restricting our attention to the test of
normal means, assume their respective means are μA and μP with variance unknown. The
one-sided null hypothesis of interest for the comparison of two normal means with variance
unknown is HA : θA ≤ 0, where μA − μP = θA and a positive difference represents a treatment
benefit. Later, a new treatment B is added (y1B, y2B,….), where the null hypothesis of
interest is : HB : θB ≤ 0. Now we have the new overall null hypothesis HAB: HA ∩ HB.

Linear Model Method
There are several methods that could be used to test HAB : HA ∩ HB. We will use the
terminology stage 1 to refer to the time period prior to the design change and stage 2 to refer
to the time period after the design change. A linear model adjusting for a stage/cohort effect
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could be applied. The linear model of interest is yijk = μ + τj + ck + eijk for j=A,B,P for
treatments; k=1,2 for cohorts; i = 1,2,...., = njk for patients in cohorts. Also, nA1 = nP1 = n1

with nB1 = 0 and nA2 = nP2 = (n − n1), nB2 = n. The eijk are iid  random errors. The

ck can be fixed or independent  for k=1,2. If ck are fixed then this model is an
ANOVA, where by convention τP = 0 and c1 = 0. In the random effects case,

, where i′j′ ≠ ij for subjects in cohort k. Also, cov (yijk,
yi′j i′k′) = 0 where k ≠ k′.

For the linear model with the fixed cohort effect (ANOVA) where

In a weighted regression, let . Then it can be shown that

.

Of note, var(τ̂B − τ̂P) < var(dBP,2). Thus, for the B versus P treatment comparison, the
variance of the linear model (in the fixed effects case) is smaller than variance of the second
cohort alone even though no patients receive treatment B in stage 1. This can be explained

by the Rao-Blackwell theorem since, .

For the linear model with the random cohort effect 
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Pooled Data Method
Alternatively, one could ignore that the subjects randomized to placebo in stage 1 did not
receive the placebo for drug B, and then naively pool the data across stages. In the pooled
analysis, the usual two-sample t-statistic for independent samples with pooled estimate of
variance is performed. The pooled estimate of variance (across treatment group and cohort)

can be found using the estimates of variance .

 has .

Likewise, for .  has .

For the pooled analysis of treatment A versus P, E(ȳ*A* − ȳ*P*)= τA − τP and

, whereas . Hence, the pooled
estimate of variance from the pooled cohort analysis overestimates the variance when fixed
cohort effects are present. Thus the pooled analysis would have lower than nominal type I
error and somewhat reduced power as cohort effects are larger (compared to an analysis that
adjusts for the cohort effect).

For the pooled analysis of treatment B versus P, the following estimator is used

. , Hence  is a biased

estimator. Also  whereas , so
the pooled estimate of variance also somewhat overestimates the variance when fixed cohort
effects are present.

If c1, c2 are independent  then E(ȳ*A* − ȳ*P*)= τA − τP and  there is
no longer bias. Nevertheless, for A versus P comparison

, whereas , and so the pooled
analysis of A versus P would still lead to overestimation of variance and slightly lower than
nominal type I error and slightly reduced power.

For the B versus P comparison, , whereas

, and so variance is substantially underestimated, which can lead
to inflated type I error.

Adaptive Procedure
A third approach is to apply an adaptive combination rule for the data from the two stages.
By introducing an additional treatment arm, all methods have a penalty from the need to
adjust for two comparisons. Moreover, as shown later, the penalty in the context of the fixed
sample size is somewhat more for the adaptive methods, although in other paradigms they
will offset this penalty with added flexibility.

Given another arm is added mid-study, multiple comparison procedures must be utilized in
order to control the family-wise error rate (FWE) at the pre-specified rate. Although it has
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been argued that those performing multi-armed studies are penalized by having to maintain
the FWE rate at alpha while two separate studies could each be performed at level
alpha(O'Brien, 1983), we will restrict our attention to methods for controlling the FWE rate
strongly, as this is standard practice for confirmatory clinical trials. Although all pairwise
comparisons or many-to-one comparisons could be of interest, we will restrict our attention
to many-to-one comparisons. A simple approach valid for any test is the Bonferroni-
adjustment, although other approaches such as Holm(Holm, 1976), Hochberg(Hochberg,
1988), or stepwise closed testing methods(Hochberg & Tamhane, 1987; Marcus, Peritz, &
Gabriel, 1976) may be less conservative. For the linear model adjusting for stage, closed
testing may be done by performing an overall F-test with 2 degrees of freedom and then
stepping down to test each pairwise comparison, if only 1 arm is added.

When an arm is added to an ongoing trial, a change has been made to the study design. The
primary hypothesis changes from a pairwise test of A versus placebo to a global
(intersection) hypothesis of two pairwise tests (or to an F-test). An adaptive design may be
well suited for this application, as a way of splitting the study into two stages (before (k=1)
and after (k=2) introduction of the new arm).

Let dAP,1 = (ȳ*A1 − ȳ*P1), dAP,2 = (ȳ*A2 − ȳ*P2), dBP,2 = (ȳ*B2 − ȳ*P2), where .

Then  and .
For the two adaptive methods that will be considered in this paper, use is made of dAP,1 and

 when k=1, and dAP,2, dBP,2 and  when k=2 to form two-sample t-statistics for each
stage. Then the stagewise p-values of the t-statistics are used in an adaptive combination
test.

Adaptive combination tests, such as the two-stage Inverse Chi-square (Fisher’s) combination
test (ICHI) and weighted inverse normal combination test(Mosteller & Bush, 1954)
(INORM), can be used to combine data across the two stages(Bauer & Kohne, 1994). The
combination rule must be pre-specified at or before the time of the design change (or any
study unblinding).

If Inverse Chi-square (Fisher’s) combination test (ICHI) is specified as the adaptive
combination test, then HAB is rejected if

where p1 is the p-value from stage 1 and p2 is the p-value from stage 2 and  is the
(1−α)-quantile of the central χ2 distribution with 4 degrees of freedom(Bauer & Kohne,
1994).

If the weighted inverse normal (INORM) rule is specified as the adaptive combination test,
then this can be written as

Elm et al. Page 5

J Biopharm Stat. Author manuscript; available in PMC 2013 September 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



and nk is the total number of observations at the kth stage. Then the null intersection
hypothesis HAB is rejected at level alpha if C(p1,p2) > Φ−1(1-α) (Mosteller & Bush, 1954). It
is advisable to perform one-sided rather than two-sided tests to avoid conflicting decisions
when the intermediate test-statistics (for each stage) go in different directions.

The test of HAB is as follows. We denote the intermediate p-values as pk,m for k=1, 2 stages
and m=A, B, AB hypotheses. For stage 1, the HA null hypothesis would be tested via the
usual one-sided, two-sample t-test, using all observations from stage 1 to obtain the
intermediate p-value p1,A. Using the observations from stage 2 only, the intermediate p-
value for HA as the test of treatment A versus placebo is p2,A obtained via a one-sided, two-
sample t-test. Likewise, the intermediate p-value p2,B for HB (the test of treatment B versus
placebo) is obtained. The stage 2 p-value for HAB using Simes’ method(Hochberg, 1988;
Simes, 1986) is defined as p2,AB = min[2min(p2,A, p2,B), max(p2,A, p2,B)]. Finally, the
intermediate p-value from stage 1 and the (multiplicity-adjusted) intermediate p-value from
stage 2 form a combination test of HAB : HA ∩ HB.

Several authors have shown the usefulness of closed testing (closure) methods for
controlling multiplicity in complex adaptive designs(Hommel, 2001; Kieser, Bauer, &
Lehmacher, 1999). These methods are reviewed and examples are worked by Jennison and
Turnbull(Jennison & Turnbull, 2007). Closed testing methods are applied to test HA and HB
across stages. By closure methods, any individual hypothesis can be rejected at global level
alpha if the set of all possible intersections is rejected at an appropriate alpha-level test.
Thus, HA can be rejected given HAB is also rejected, where HAB and HA are both rejected
via combination tests over stages 1 and 2. Similarly, HB is rejected at global level alpha if
HAB and HB are both rejected(Marcus et al., 1976), where HB is tested using just the stage 2
data via p2,B (since there is no data for treatment B in stage 1).

Adaptive Procedure within Group Sequential setting
Assume the same design as previous, except now the null hypothesis HA was originally
planned to be tested at k interim looks using a group sequential approach to allow for early
stopping in favor of the alternative hypothesis. Then, to add treatment arm B and test HAB :
HA ∩ HB via an adaptive combination test, one must select an adaptive test that incorporates
the existing group sequential framework (Cui, Hung, & Wang, 1999; Kieser et al., 1999;
Lehmacher & Wassmer, 1999). Optionally, the interim conditional power can be computed
(either for the next interim look or for the whole study), and the sample size can be
increased accordingly based on internal information about the effect size observed at an
interim analysis.

Hypothetical Example of Adaptive Procedure within Group Sequential setting
Assume a phase III clinical trial of treatment A versus placebo is ongoing with an interim
analysis planned after 50% of subjects have completed follow-up. Assuming Haybittle-Peto
stopping boundaries (alpha=0.001 at interim, alpha=0.049 at final) for a one-sided test of
alpha=0.05, the planned maximum sample size is 200 per group. After 40 subjects per group
have been enrolled (20% of the total sample size), then the protocol is amended to include
treatment B, and the planned sample size is increased to 600 total (200 per group) assuming
the original design parameters for A versus placebo. At the first interim analysis (with 300
patients), the data are subset into stages 1 (with 80 patients, 40 receiving A, 40 receiving
placebo) and 2 (with 220 patients, 60 receiving A, 60 receiving placebo, and 100 receiving
B). Using the stage 1 data, the p-value for the test of HA is p1,A =0.20. Given HB is not
available, the p-value for HAB is p1,AB = p1,A =0.20.
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Using the stage 2 data at the first interim analysis, the p-value for HA is p2,A =0.15 and for
HB is p2,B = 0.06. Using Simes’ method the p-value for HAB at stage 2 is p2,AB =0.12. Then
a weighted inverse normal adaptive combination test for HAB at the first interim analysis,
using weights proportional to the original sample size, is

 where 1.442 < 3
the Haybittle-Peto stopping boundary when the information time is 0.50 based on the
original sample size.

Continuing the trial, using the data collected after the first interim analysis, the p-value for
the test of HA is p3,A =0.2 and for HB is p3,B = 0.03. So the p-value for HAB at look 2 is
p3,AB =0.06. Then the combination test at the final analysis for HAB is:

 where
2.119>1.65 where 1.65 is the Haybittle-Peto stopping boundary when 100% of the subjects
have completed follow-up. Since the overall null hypothesis HAB is rejected, we go on to
test HA and HB, via combination tests. For : HA : θA ≤ 0, we fail to reject the null hypothesis
since the Z-statistic for the combination test, 1.539 is less than 1.65. For HB : θB ≤ 0 we
reject the null hypothesis, since 2.429 is greater than 1.65. In this example, treatment A fails,
but treatment B is superior to placebo. For one arm to stop early, one would have to reject
HAB and then HA or HB.

Simulation Study
Monte Carlo simulation was used to compare the power and type I error rate for testing HA
and HB in a two-stage, fixed sample clinical trial. The following statistical analysis
approaches were compared: 1. two-sample t-test with the data pooled across stages (POOL);
2. Linear model adjusting for a fixed stage/cohort effect (LIN); 3. Inverse Chi-Square
(Fisher’s) adaptive combination test (ICHI); 4. Weighted-Inverse Normal adaptive
combination test (INORM).

Two samples were drawn from independent multivariate normal distributions corresponding
to the two cohorts such that each yijk is normal with E(yijk) = μj for j=A, B, P for treatments,

, and , where i′j′ ≠ ij for subjects in cohort k. The sample
size per group was set to n=120 for a two sample t-test of HA or HB for detecting an effect
size θ = 0.38 given σ2 =1, α = 0.05(one-sided), and power=0.90. The data were simulated

assuming different sizes of  and tP {0.1, 0.3, 0.5}, where 0 < tP < 1 is the
time that the design change is made in terms of the fraction of the sample size.

In order to generate data from the multivariate normal distribution given above, the
drawnorm function in STATA was used specifying the following structure for each cohort:

 where 1r is a (r × 1)
vector of ones and Ir is a (r × r) identity matrix. Using this function, 2 independent
observations of y1-y360 were generated defining a complete set of data from each cohort; y1-
y120 with mean μA, y121-y240 with mean of μB, and y241-y360 with mean of μP, and all with

covariance of . The values of μA and μB were either 1 (under the null) or 1.38 (under the
alternative) and the value of μP was 1. From these 2 independent cohorts of observations of
y1-y360, observations were deleted as appropriate for the value of tp under consideration, and
the observations for y121-y240 corresponding to observations under treatment B were deleted
for stage 1.

This is the same as generating tP × 2n = 2n1 random variables in cohort 1 (for treatment A
and placebo) and 3n − 2n1 random variables in cohort 2 (for treatments A, B, and placebo).
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For example if tP =0.3, then for cohort 1, one could generate 72 random variables from a

multivariate normal distribution where .
Likewise, for cohort 2, one could generate 288 random variables from a multivariate normal

distribution where .

One analysis was performed at the end of the study (with no interim analyses). For the
adaptive combination tests, at the end of the study the data were subset into stages 1 and 2
prior to forming the combination test.

For all approaches closed testing multiple comparisons procedures were applied, as this
approach is more powerful than single-step approaches, but do not provide confidence
intervals(Westfall, Tobias, Rom, Wolfinger, & Hochberg, 1999). For consistency across
methods, Simes’ Modified Bonferroni procedure(Simes, 1986) was used to obtain an
adjusted p-value for the global null hypothesis HAB . All simulations were done in STATA.
The number of replications was set at 6000. With 6000 replications, a two-sided 99% CI
around the expected type I error rate of 0.05 will extend ±0.007, and a two-sided 99% CI
around for the expected power of 0.90 will extend ±0.01.

Simulation Results
Table 1 gives the results for the empirical power to reject HA and HB when both treatments
are superior to placebo (μA = μB > μP), the power to reject HA when only treatment A is
superior to placebo (μA > μB = μP), and the power to reject HB when only treatment B is
superior to placebo (μB > μA = μP). The empirical power is defined as the proportion of
times a hypothesis is rejected given the alternative hypothesis is true. Under the closed
testing procedure, a particular hypothesis is rejected if all intersection hypotheses containing
it are rejected (e.g. HA is rejected if HAB and HA are rejected).

In general, when both treatments are superior (μA = μB > μP) and when the time at which
Arm B is added in terms of the fraction of the sample size is early (tP=0.1), then all methods
obtained nearly 90% power (the nominal level). As expected, when there is no stage effect

( ), then the pooled method has the highest power for testing both HA and HB. The
linear model with a fixed cohort effect loses power as tP increases for the test of HB, but is
still superior to the two combination tests. Fisher’s combination test (ICHI) performs worst

for both HA and HB. When the within stage (intracluster) covariance , then the pooled
method performs worst for both HA and HB across all time points (tP), while the linear
model approach is superior. Averaging across all time points (tP), the amount of covariance
does not affect the power for the linear model or the combination tests, but power decreases
as covariance increases for the pooled method.

If treatment A is superior and treatment B is null (μA > μB = μP), the power to reject
treatment A is somewhat reduced for all methods considered. This is because of the use of
the closed testing procedure, such that in order to reject HA, HAB must also be rejected. If
only treatment B is superior to placebo (μB > μA = μP), then the loss of power to reject HB is
more pronounced for the adaptive combination tests considered here. The loss of power is
demonstrated in Table 1 for these scenarios.

Table 2 shows the results of the familywise type I error rate for the four methods. For all

methods the familywise type I error rate is controlled strongly when covariance .
However, the t-test (with data pooled across cohorts) produces larger than nominal type I

error when , as high as 0.22 when the design change is made after 50% of the sample
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size for arms A and placebo have already been enrolled. The inflation of the familywise
error rate is due to the treatment B versus placebo comparison, rather than the treatment A
comparison.

Discussion
Adding an arm to an ongoing clinical trial provides a savings in sample size because fewer
patients are randomized to placebo compared to two trials with separate placebo groups (A
vs. placebo and B vs. placebo). When a new treatment arm (B) is added to an ongoing
clinical trial (of A versus placebo), the placebo group will be different before and after the
design change. The whole placebo group received placebo for drug A. However, this is not
the case for the B versus placebo comparison. The placebo group in the first stage receives
only the placebo for treatment A, while the placebo group in the second stage receives
placebo for treatment A and treatment B. Thus, it is questionable whether it would be
appropriate to pool the placebos from before and after the design change, since not all
placebo subjects received the placebo for B. This may not be a concern when treatment B is
an increased dose of treatment A (given the placebo looks the same and is taken in the same
daily frequency). However, given the situation in which treatment B looks different than A,
there may be ambiguity about the conclusions if the data are simply pooled. There is the
potential that the original treatment versus placebo comparison could be perturbed due to
enthusiasm over the new drug or a cohort effect(Feng, Shao, & Chow, 2007).

From a statistical standpoint, these simulations show that pooling the data without any
adjustment for stage is not advisable. When the observations within stage are correlated,
then pooling the data across stages will result in a loss of power for both treatment group
comparisons, but particularly for the treatment B comparison. Under the random effects set
up, for the A versus placebo comparison the pooled estimate of variance leads to an
overestimation of variance, resulting in slightly lower than nominal type I error and slightly
reduced power. The results of the simulation for the pooled t-test method for the B vs
Placebo comparison seem paradoxical in that type I error is inflated (under the null) and

power is reduced (under the alternative) as tp and  increase. This is not a consequence of
the closed testing procedure, because power is still reduced when there is no adjustment for
multiple comparisons. Derivations suggest that power would be increased for the test of HB
because the pooled estimate of variance is an underestimate, but instead, the influence of the
unaccounted for true variation is responsible for the marked decrease in power for HB. If the
data had been derived as a result of a fixed cohort effect (rather than random), then inflation
of the type I error rate for the B versus placebo comparison would occur as a result of bias.

When both treatments are superior to placebo, the power for the linear model approach and
the weighted-inverse normal adaptive test were only slightly less than the nominal level for
the test of treatment A. However, both of these methods lose power for testing HB as tP
increases, especially the adaptive test (INORM). Since the adaptive tests are not based on
sufficient statistics, the observed loss of power was expected. In all cases Fisher’s
combination test is outperformed by the weighted-inverse normal combination test. Both the
fixed-effect linear model method and the adaptive method control the type I error rate in the
presence of a random stage effect.

At what point do the cost savings of introducing a new treatment arm into an ongoing trial
rather than starting a new trial become negligible? These simulations did not consider the
case when more than 50% of patients have already been enrolled. As we have seen, there is
a loss of power by as high as 15 percentage points (75% rather than 90% power) for the test
of HB as the proportion of patients already enrolled increases to 50%, when an adaptive
combination test is applied (regardless of the covariance).
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These results show that the sample size for the treatment B versus placebo comparison
would need to be increased in order to achieve the desired power. For the test of HB, the
linear model is more powerful, but adaptive allows for more flexibility to re-estimate the
sample size mid-study. The reduction in power we observed in these simulations is partially
due to the use of non-standard test statistics (adaptive methods), but primarily due to the use
of unequal sample sizes since only the stage 2 placebo is used to test HB. One solution to
attain the desired power for the linear model or adaptive approaches is to enroll n new
patients into the stage 2 placebo group. Further simulations (not shown) indicate that this
will mitigate the loss of power for the INORM and linear model approaches as tP increases.
We can see that enrolling tP × n + n subjects into the placebo group is still less than the 2 × n
subjects enrolled into placebo across two separate trials. However, if two separate trials are
conducted, each will be designed with a higher type I error rate, and therefore the sample
size for each is smaller than n. While it is undesirable to have a total number of subjects
enrolled into placebo greater than either treatment arm, the probability of being allocated to
the placebo group need not be greater than the chance of allocation to a treatment arm at any
point in time. Further research is needed to adequately address approaches to increase the
sample size, including the potential benefit of re-estimating the sample size. If an adaptive
test is to be used, the sample size could be re-estimated using the observed effect size from
stage 1 for the treatment A versus placebo comparison, without any risk of inflating the type
I error rate.

There may be other considerations for selecting between methods. Adaptive methods began
to be developed in the 1990s, but have only recently come into practical use. In general,
mid-course design changes driven by internal information are more controversial than those
driven by external information. Internal information refers to information within the study
(such as the interim effect size or a sub-group analysis) that prompts a change in the design
(change in sample size, change in target population, etc.). However, when the design change
is made based on observed data, then the type I error for the final (pre-specified) analysis
will be inflated. By applying adaptive methods (e.g. combination rule) then the pre-specified
alpha can be constrained.

When external information (independent from the study) prompts a design change for a
study, then the integrity of the study may be questioned because it is difficult to prove that
internal information did not play a role in the design change. Thus adaptive methods are also
suitable for this situation. In this case, adding a new treatment arm to an ongoing study is an
example of a design change based on external information. In this context, the type I error
probability will not be inflated due to an internal look at the data since the design change is
externally-driven (not involving an unplanned look). However, if a new dose, or dose
regimen, is added to an ongoing trial, it may be advisable to adjust for the change in design
by a combination test, because it is difficult to show that inside knowledge of the treatment
effect for the current dose, did not impact the decision to increase the dose, unless perhaps
the treatment arm that is added is a lower dose. Trial integrity can be safeguarded with
standard operating procedures for blinding and firewalls, such that it is documented when
interim looks occur and by whom. This may allay concerns about the role of internal
information in design changes.

There are situations where a regression approach (adjusting for stage/cohort) is perfectly
acceptable. One such scenario is when the arm that is added is an active comparator. For
instance a clinical trial may be initiated in the US, and shortly thereafter investigators may
realize that in order to meet European Regulatory authority (EMEA) approval, the current
study treatment would need to be shown non-inferior to the standard of care in Europe.
Then, it may make sense to modify the ongoing trial to add this standard as another arm. In
this case the investigators wish to show study treatment superiority versus placebo (for the
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FDA) and non-inferiority of the study treatment versus the standard (for the EMEA). In this
case, since the arm that is added is a standard and the rationale is clearly externally driven,
there seems to be no need to adopt an adaptive analysis approach. An approach such as that
given by Denne and Koch would be well suited for this scenario since the hypotheses
(superiority, noninferiority) are nested(Denne & Koch, 2001). In the context of non-adaptive
designs, Denne and Koch have shown that it is possible to test both non-inferiority and
superiority sequentially without adjusting for multiplicity because they are nested
hypotheses; closed testing methods are applied(Marcus et al., 1976).

When the decision is made to add an arm to an ongoing clinical trial, the original design
considerations must be taken into account. According to Follman et al. there should be equal
criteria used to evaluate each treatment arm(Follmann, Proschan, & Geller, 1994). In order
to add a treatment arm, the protocol must be amended. The timing of the protocol re-design
may affect the degree to which design changes can be made. It may be more difficult to re-
design a trial after an interim analysis has been performed.

When adding another treatment arm, it is important to adjust the randomization allocation
ratio to ensure that all three treatment arms complete enrollment at roughly the same time.
Firstly and above all, this is necessary to ensure blinding, such that the last patients enrolled
are not all receiving treatment B. Secondly, if the randomization allocation ratio is 1:1:1,
then, once all patients are enrolled into treatment A, there is a possibility of a observing a
third cohort set, who are all enrolled in treatment arm B, having different characteristics than
those patients in stage 1 or stage 2.

These results suggest that the linear model method will always outperform the adaptive
methods as tP increases, even in group sequential setting, unless the effect size is smaller
than expected for one or both treatment arms or the variance is larger than expected. In this
case an adaptive method allows the sample size to be increased due to internal information
observed at the first interim analysis, and thus the desired power can be attained.

In Parkinson’s disease clinical trials, there is a chance that there will be increased
enthusiasm about a new drug. Publicity concerning phase II studies for certain drugs can
impact the rate of enrollment into a Phase III study of the same drug, and this is likely to
have an impact on subjective self-reported outcome measures. For Parkinson’s disease
clinical trials the cohort effect may be a legitimate concern. Prior NET-PD studies have
shown that changes in clinical practice over time have a major impact on outcome
measures(NINDS NET-PD Investigators, 2006; NINDS NET-PD Investigators, 2007).
Another important point is that tP and the covariance within stage are likely to increase
together. That is, the longer you wait to add the new treatment arm, the higher the tP will be
and the more likely things are to have changed (new standards of care, etc.) introducing
cohort effects.

The NET-PD investigators continue to pursue Phase II trials of additional agents for the
treatment of Parkinson’s disease. If new agents become ready for Phase III testing by the
NET-PD group, design modification to the current ongoing Phase III trial is a possibility.
These results suggest that it would be inadvisable to simply pool the treatment groups across
the stages, since the type I error will be inflated and power will decrease if the intra-stage
correlation is greater than zero. In the presence of possible intra-stage correlation, the linear
model approach is more powerful, but the adaptive method allows for more flexibility to re-
estimate the sample size. Both analysis approaches (regression and adaptive) control the
type I error rate when no internal study information is used in the decision to add a new
treatment arm mid-study.
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