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Abstract
Missing not at random (MNAR) post-dropout missing data from a longitudinal clinical trial result
in the collection of “biased data”, which leads to biased estimators and tests of corrupted
hypotheses. In a full rank linear model analysis the model equation, E[Y] = Xβ, leads to the
definition of the primary parameter β = (X′X)−1X′E[Y], and the definition of linear secondary
parameters of the form θ = Lβ = L(X′X)−1X′E[Y], including for example, a parameter representing
a “treatment effect”. These parameters depend explicitly on E[Y], which raises the questions: what
is E[Y] when some elements of the incomplete random vector Y are not observed and MNAR, or
when such a Y is “completed” via imputation? We develop a rigorous, readily interpretable
definition of E[Y] in this context that leads directly to definitions of

, and the extent of hypothesis corruption.
These definitions provide a basis for evaluating, comparing, and removing biases induced by
various linear imputation methods for MNAR incomplete data from longitudinal clinical trials.
Linear imputation methods use earlier data from a subject to impute values for post-dropout
missing values and include “Last Observation Carried Forward” (LOCF) and “Baseline
Observation Carried Forward” (BOCF), among others. We illustrate the methods of evaluating,
comparing, and removing biases and the effects of testing corresponding corrupted hypotheses via
a hypothetical, but very realistic longitudinal analgesic clinical trial.
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1. INTRODUCTION
Many clinical trials utilize multiple, scheduled, longitudinal outcome assessments, often
including some or all of: screening period evaluations, baseline evaluations, and post-
randomization or “on treatment” evaluations. Typically some subjects withdraw from the
study prior to completing all scheduled evaluations; some of these “dropouts” withdraw for
reasons that are not stochastically independent of their assessment values, such as lack of
efficacy (“LOE”), side effects of a treatment (“intolerability”), or similar. Missing data from
post-dropout scheduled evaluations are generally regarded as “missing not at random”
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(“MNAR”, Little and Rubin, 2002, Chapter 15). When likelihood or quasi-likelihood
estimation procedures are applied to MNAR data, as might happen, for example when a
mixed (random effects) model is used for analysis, the estimators are generally biased and
the direction and magnitude of the MNAR-induced bias may be difficult to assess (Little and
Rubin, 2002). “Selection models” and “pattern mixture models” have been posed to cope
with MNAR-induced difficulties, but the practical application of these methods typically
require sample sizes that far exceed the number of subjects in a typical clinical trial.

Prior to the ready availability of mixed model methods statisticians often used a univariate
(one value per subject) change-from-baseline primary outcome variable that was the
evaluation of the primary outcome at the final scheduled evaluation occasion minus the
corresponding value at baseline (pre-randomization, pre-treatment). Although multiple post-
randomization evaluations were available, these were generally correlated and before mixed
models were available the analysis was problematic, especially when the data were
incomplete. Dropouts led to a quandary. They could not be ignored as that would violate the
important intention-to-treat principle. Dropouts could not be included directly in the analysis
– no data were available from the final scheduled evaluation occasion. In desperation
statisticians created data: they imputed data for the final scheduled evaluation.

Demonstrating that imputation introduces bias into the data seems to be easy, as we will
illustrate in the next section. The illustration will also make the point that the bias
“demonstration” is based on assumptions about expected responses of subjects after they
drop out, assumptions that are not universally accepted. One FDA reviewer humorously and
effectively articulated this point by referring to the assumptions as “… what might have
happened in some parallel universe, but not in this universe” (Helms, 2009a). Nonetheless,
in an attempt to be conservative, some statisticians, including some in regulatory agencies,
have sometimes insisted that researchers use imputation methods that appeared to bias the
treatment effect toward the null hypothesis (usually: smaller treatment effect), sometimes
drastically so. In some cases simulations have demonstrated that the imputation-induced bias
from the specified method appeared to be substantially larger than the actual effect of any
known drug, while other imputation methods could have introduced less bias (Helms,
2009b). The tools presented in this paper allow direct calculation of imputation-induced
bias, eliminating the need for simulations.

Section 2 of this paper sets the stage for subsequent development by introducing a
hypothetical, realistic example longitudinal clinical trial afflicted with MNAR post-dropout
missing data. Section 3 replaces the assumptions from “some parallel universe” with
mathematically sound derivations of expected values of available data E[Y], in the context
of post-dropout, MNAR missing data. Section 4 introduces a typical mixed model for
analysis of a continuous outcome from a longitudinal clinical trial, gives a definition of the
primary parameter, β, as a linear transformation of E[Y], and defines a general linear
secondary parameter and a special case secondary parameter representing a treatment effect.
Bias is then defined in terms of these definitions and a straightforward procedure is shown
for eliminating the bias, leading to estimators without imputation-induced bias and to
corresponding uncorrupted hypotheses. We will discuss several types of linear imputation in
this context and demonstrate the evaluation of bias introduced by each. A realistic example
illustrates the use of the methods.

2. HYPOTHETICAL ILLUSTRATION OF IMPUTATION-INDUCED BIAS
We use a hypothetical – but very realistic – example to introduce the “real world” nature of
imputation-induced bias.
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2.1. A Realistic Clinical Trial Example
Consider a superiority clinical trial conducted to demonstrate that an analgesic, the “active
treatment,” is superior to placebo for treatment of chronic pain. (The type of pain, e.g., from
osteoarthritis, from diabetic neuropathy, etc., would be specified in the protocol; we do not
specify the pain type here.) The trial has typical characteristics: multicenter, randomized,
placebo-controlled, doubly-masked, and longitudinal. The primary outcome is a pain score.
A score of 0 represents “no pain” and a score of 10 represents “the most horrible pain you
can imagine”. Intermediate scores represent intermediate levels of pain. (We omit numerous
details that are not important here.)

Medical histories are used to screen potential subjects. Selected, willing patients give
informed consent, at which point they are enrolled and become subjects, and the clinical
staff obtains baseline information (demographics, medical history, etc.), including a baseline
pain evaluation score.

A baseline pain score of at least 5 is an inclusion criterion; subjects who meet this and other
inclusion/exclusion criteria proceed to randomization; others are withdrawn. Immediately
after the baseline evaluation, eligible subjects are randomly assigned to placebo or active
treatment. The clinical trial material along with appropriate instructions are given to the
subject, and the subject is scheduled to return for 12 consecutive weekly post-
randomization, on-treatment clinic visits (visits 2–13) during which pain score evaluations
are made. The intention-to-treat group is the set of all randomized subjects who received at
least one dose of clinical trial material and completed at least one post-randomization pain
evaluation.

The statistical mixed model will treat all pain scores, including baseline, as random
variables. The notation1 is

Yctsv = pain score at visit v, from subject s who was enrolled in clinic c and assigned to
treatment t (t=“C” for placebo control, t=“A” for active treatment).

This clinical trial has:

c = 1, 2, …, 20 = C = number of clinics;

s=1, 2, …, N = number of subjects;

NC = 148 subjects in the control group and

NA = 151 subjects in the active treatment group;

v=1, 2, …, 13=V visits;

v=1 for the baseline visit.

The population mean parameters are

μtv = E[Ystv], subject to restrictions that clinics are “blocks” in experimental design
terminology, that is, the restrictions are that clinic main effects are random and all
interactions involving clinics are zero.

The population treatment effect parameter is

1Typographic notation: A random variable is represented by an italicized capital letter (e.g., Y) and its realized value is represented by
the corresponding lower case non-italicized letter (e.g., y). A non-italicized Latin letter indicates a known constant (e.g., “V”); a non-
italicized Greek letter indicates an unknown constant (e.g., μ). Bold indicates a vector (e.g., β, Y) or matrix; non-bold indicates a
scalar. A lower case subscript (e.g., “v”) is an index variable; the same letter in upper case is its maximum value (e.g., v=1, 2, …,
13=V); “s” and “N” are exceptions (s=1, 2, …, N).
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In the definition of τ, (μA,13 − μA,1) is the (population) mean pain score change-from-
baseline to final scheduled visit for the active treatment group and (μC,13 − μC,1) is the
corresponding (population) mean pain score change-from-baseline for the placebo treatment
group. The primary null hypothesis is H0: τ ≥ 0 and the alternative hypothesis is HA: τ < 0.
(An effective treatment will lead to a greater reduction in mean pain score than placebo.) We
will use this hypothetical-but-realistic example clinical trial throughout the paper.

2.2. The Parallel Universe Issue
When there are MNAR dropouts the model equation, which implies some assumptions,
namely μtv = E[Ystv], has been controversial. (See the “parallel universe” comment above).
The issue can be briefly summarized as follows. Consider a specific dropout subject, say,
subject s=1 who received treatment C and who dropped out after visit v=3 for lack of
efficacy. We assume all data from subsequent scheduled visits are MNAR missing. The
random variable for visit 4, Y1,C,1,4, was never realized. What does E[Y1,C,1,4] mean? That
is, what is the expected value of a random variable that could never be realized because the
subject dropped out before the random variable could be realized? This topic will be
addressed in a subsequent section.

2.3. LOCF Imputation Illustration
In this type of study a subject who receives treatment (active or placebo) will typically
experience a decline in pain scores over several weeks, typically stabilizing around a value
somewhat below the baseline value, as illustrated in Figure 1, which displays a situation in
which the active treatment is more effective in reducing pain than placebo. The numeric
values used to generate Figure 1 are shown in Table 1.

Consider a scenario in which placebo subjects tend to drop out earlier than active-treatment
subjects. Some placebo subjects find the treatment to be less effective than what they had
been taking before entering the study and decide to withdraw, often relatively early in the
study, for lack of efficacy (LOE). In Figure 1, hypothetical control “Subject C” drops out
after visit 3. Active treatment subjects may tend to experience intolerable side effects and
drop out somewhat later than LOE subjects, illustrated in Figure 1 by Subject A2, who
dropped out after visit 9. From baseline to the point of dropout each of these two
hypothetical subjects tended to track slightly above their treatment group’s population
means.

The open circles and squares in the Figure illustrate how last-observation-carried-forward
(“LOCF”) imputation would work for the hypothetical placebo and active-treatment
subjects, respectively. These two cases illustrate how, but do not demonstrate that, in this
case LOCF imputation introduces a bias away from the null hypothesis. When placebo
subjects tend to drop out earlier, they have experienced less placebo effect, i.e., less pain
relief, than placebo subjects who complete the study. LOCF tends to impute relatively high
pain scores for such subjects, well above the population means (large solid dots). An active-
treatment subject who drops out later (for intolerability) tends to have experienced a decline
in pain scores before dropout. As illustrated by the hypothetical active-treatment subject A2
in Figure 1, LOCF imputation tends to impute lower pain score values. These two subjects’
LOCF imputation values illustrate a larger “treatment effect” (dotted vertical arrow) than the
difference between the population means at the last visit (solid vertical arrow), a bias toward
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larger treatment effect, which is a bias away from the null hypothesis. If LOCF imputation
were used in this situation the Type I error rate might be inflated.

This subject A2 scenario also illustrates what some FDA reviewers call “imputing a good
result [a big improvement in pain score, compared to baseline] to a bad outcome” [dropout
for intolerability], which they find objectionable. The objection has face validity even
though it is not based on statistical principles. On the other hand, minimizing bias is a
widely accepted statistical principle, which one might use effectively to argue against some
types of imputation in such a case.

3. EXPECTED VALUES AND DEFINITIONS OF PARAMETERS
3.1. Expected Values of Informatively Censored Data Variables

Our goal is to resolve the “parallel universe” issue by deriving interpretable definitions of
E[Y] subject to MNAR post-dropout missing data. We will explain the derivations via a
device that Einstein and others called a “thought experiment” (or “Gedankenversuch”; see,
e.g., Brown, 1993).

Although one can “see” the LOCF-induced bias in Figure 1 we will need some notation and
derivations to manage these issues objectively. We will use a variety of types of variables
and parameters and will use the following typographical conventions.

Following notation in Scheffè’s 1959 classic text, we use mnemonic letters for index
variables, e.g, v for “visit”. An index variable and its upper limit are the same Latin letter in
lower case and upper case, respectively, e.g., for visit, v = 1, 2, …, V. Other typographical
conventions are described in a footnote.

3.1.1. Thought Experiment 1: Complete Longitudinal Data—We conduct a thought
experiment, different from but related to the clinical trial, that produces realizations y1v, v =
1, 2, …, V, of V longitudinal random variables Y1v, v = 1, 2, …, V, representing values of a
continuous “score” from one subject on a fixed, finite scale (e.g., 0 ≤ Y1v ≤ 10), with no
missing data. (The notation in this section differs from the notation for the hypothetical
clinical trial. The first subscript, 1, specifies that these variables are from Thought
Experiment 1.) The y1v are not just realized values of the Y1v, but the realized values have
also been rounded to a small number (e.g., 1 or 2) of significant digits. We define the vectors

We let

all elements of which are assumed to be finite, a reasonable assumption here and for most
clinical trial outcome variables.

Although most of us have an intuitive understanding of μ1 = E[Y1], it is useful to develop a
frequentist interpretation of μ1 for use in our subsequent Thought Experiments. We replicate
Y1 independently R times, creating a sequence of random vectors
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and realizations

After the R-th replication, we compute the mean vector,

For each v,  is a finite constant for every r. Thus

By the Kolmogorov strong law of large numbers (Sen and Singer, 1994, Theorem 2.3.10)

for each v = 1,2, …, V,  almost surely (a.s.) and, in vector form,

 a.s.

Thus, the frequentist interpretation of μ1 in this complete-data thought experiment: if we
were to repeat the original one-subject “experiment” many times, e.g., enroll “many”
subjects with the same mean vector and covariance matrix, the sample mean vector would
converge strongly to the population mean vector, μ1.

3.1.2. Thought Experiment 2: MAR Post-Dropout Incomplete Longitudinal Data
—We repeat Thought Experiment 1 with the following modification. When  is realized

its value, , is not revealed to humans but rather both are submitted to “Missos”, the
mythological goddess of missing data. Missos uses the following procedure to simulate the
deletion of data when a subject drops out of a study. Missos uses a random number
generator that generates a random last visit number, V(r) ∈ {1, 2, …, V}. V(r) is

stochastically independent of  and functionally independent of μ1 and Σ1, although the
parameters of the distribution of V(r) may depend upon μ1 and/or Σ1. To avoid pathological
cases of no interest here we assume 0 < Pr[V(r) =v] < 1, v = 1, 2, …, V. The realized value of

the random variable V(r) is v(r), r = 1, 2, …. Missos then creates  and  by deleting all

 with v > v(r) and deleting all  with v > v(r), respectively, and reports the remaining

elements of  to the experimenter as . Clearly the missing values are Missing at
Random (“MAR”).

The values that Missos reveals to the experimenter are the realizations of the conditional
random variables
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We define the corresponding random vector with v(r) elements,

 is the realization of , v = 1, 2, …, v(r).

3.1.3. Reminder about Conditional Random Variables—To facilitate understanding
of these random variables please recall the following from the multivariate normal
distribution and a subsequent conditional normal distribution. Let Z~Np (μ, Σ), where p > 1
and the mean vector and covariance matrix, μ and Σ are not related to the similarly-named
parameters above. Consider the familiar conditional random variable that is the first element
of Z conditional on the observed values of all the other elements. The “full name” of the
conditional random variable is (Z1|Z2 = z2) and the typical abbreviated name is (Z1|z2). The
distribution of the conditional random variable is

Now, a priori we all know that Pr[Z2 = z2] =0, i.e., realizing Z2 = z2 is essentially an
impossibility, but virtually all of us have no difficulty using this conditional random
variable, (Z1|Z2 = z2), as the dependent variable in a multiple regression analysis, regressing
the dependent variable Z1 on the vector z2 of realized values of the elements of Z2. In this
case we simply utilize the conditional random variable; we do not overly concern ourselves
with hypothetical conditional random variables that would have been observed if a different
value of Z2 had been realized.

3.1.4. Thought Experiment 2, Continued—Back in Thought Experiment 2, we have

the conditional random variables , r = 1, 2, …. These conditional
random variables are somewhat simpler to grasp than the multivariate normal because here
the conditioning event has Pr [V ≤ v(r)] > 0 (i.e., not an “impossibility”). Nonetheless, we
cannot simply ignore the hypothetical random variables that would have been observed if a
larger value of v(r) had been observed because we must explicitly exclude the non-realized
missing values from analyses. This becomes even more important when, as in studies of
analgesics for chronic pain for example, the hypothesis of primary interest involves mean
pain at the last few scheduled visits, which tend to be the visits with the most missing

values. Nonetheless, we have demonstrated that in the MAR case  exists for all v =
1, 2, …, V and r=1, 2, ….

Because V(r) is independent of  and the missing data are MAR, we assume the existence
of, define, and evaluate
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By analogy with Thought Experiment 1, for each v=1, 2, …, V, we compute the mean of all

nonmissing random variables through the R-th iteration: 

where the mean is computed over the available (non-missing) values of , and

. Some of the means, , may be missing when R is not large,
but when R is sufficiently large our assumptions guarantee that all such means will be
available.

As before, under these circumstances by the Kolmogorov strong law of large numbers (Sen
and Singer, 1994, Theorem 2.3.10 applied to each element of the vector) we conclude that

 a. s.

It would be nice to be able to have a series of random vectors  so that we could write

. Unfortunately, because the number of elements in

 varies with r, such a simple definition of  does not exist.

However, for each value of v = 1, 2, …, V,  a. s., which ensures that the vector

sequence  a. s.

3.1.5. Thought Experiment 3: MNAR Post-Dropout Incomplete Longitudinal
Data—We repeat Thought Experiment 2 with the following modification: Missos uses a
specified algorithm for generating V(r) that leads to MNAR missing data. The algorithm is
the same for all replications, i.e., for all values of r, but of course, V(r) will typically vary
from one rep to another. The algorithm may include the use of random variables that are
either stochastically independent of all Y(r), as in Thought Experiment 2, or stochastically
dependent on some or all elements of Y(r). However, Y(r) is independent of Y(q). for r ≠ q and
V(r) is independent of V(q) for r ≠ q. The algorithm could involve functions of the elements
of Y(r), e.g., one part of the algorithm might be: V(r) is either V, or the smallest value of v

such that , whichever is smaller. (The example stems from a clinical trial of an

analgesic in which  is a baseline pain score value,  is a post-baseline pain score (v>1),
and the subject drops out when the level of pain increases by at least 2 pain score units.) We
retain the assumption that 0 < Pr[V(r) = v] < 1, v = 1, 2, …, V, to avoid pathological cases.
Our intent is to generate V(r) so that the missing values (when V(r) < V) are Missing Not at
Random (MNAR).

This process produces the conditional random variables

and the corresponding random vector with v(r) elements,
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The realizations of the random variables are , v = 1, 2, …, v(r), and the realization of the

random vector is .

As before, after R reps, for each v we compute the mean of the available scalar random

variables, , where the mean is computed over the available

(non-missing) values of , and we have the mean vector, .

Again, when R is sufficiently large our assumptions guarantee that all elements of  will
be available. As the variances of all the random variables are all finite and random variables
in separate reps are independent, the Kolmogorov strong law of large numbers applies to

each series , v = 1, 2, …, V, and we can conclude that

where

is the bias at visit v stemming from the MNAR process.

As in Thought Experiment 2 it would be nice to be able to have a series of random vectors

 so that we could write . As before, because the number of

elements in  varies with r, such a simple definition of 

does not exist. However, for each value of v = 1, 2, …, V,  a. s., which

ensures that the vector sequence  a. s.

The point of Thought Experiment 3 is that even in the case of MNAR dropouts, 
exists for each v=1, 2, …, V and has essentially the same frequentist interpretation (although

perhaps not the same value) as in the complete case. This particular set of  values
exists and has a sensible interpretation in this universe, not just in some “parallel universe”.

Statisticians may disagree about whether the equation  is
meaningful or useful because, as a practical matter, λ3 can not be estimated in most clinical
trials, which possibly makes the argument irrelevant. However, we have answered an
important question: even when there are MNAR dropouts, the random variables whose
values may be unavailable because of an MNAR missing value process, are from
distributions that have actual means.
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3.2. Covariance Matrix
Mixed model analyses of longitudinal data require that the covariances exist. Having
demonstrated the existence of the expected values we can turn to the covariances of the

elements of , which, when the equations are meaningful, are defined by:

We assume, as is reasonable for many clinical trial outcome variables, that the expectation
in the preceding equation exists and is finite for each rep, r, and u ≤ v(r) and v ≤ v(r). For
each u=1, 2, …, v; v=1, 2, …, v(r), let

and

where the mean is taken over all existing values of , u=1, 2, …, v; v=1, 2, …, V.

Assuming the fourth moments of  exist, which is reasonable for response variables in
many clinical trials, the Kolmogorov strong law of large numbers applies to each of the

covariances, , u = 1, 2, …, v; v = 1, 2, …, v(r), and we can conclude that 
a. s., u = 1, 2, …, v; v = 1, 2, …, v(r), which defines σ3,uv. We define σ3,vu = σ3,uv and the

symmetric V × V matrix Σ3 = [σ3,uv]. Unfortunately, the equation  is not

meaningful because the number of elements in  varies with r. Rather, we use the
interpretation σ3,uv = Cov (Y3,u, Y3,v) when both are realized.

The conclusion is that under assumptions that are reasonable for many clinical trials the
covariances of the conditional random variables Y3v, v = 1, 2, …, V exist and have the usual
interpretations.

3.3. Extension to Covariates
In the developments above we used constant parameters) μ1, λ1 and Σ1. The development
can be extended, in a straightforward manner, to situations in which the elements of these
parameters are linear functions μ1v(xv) = xvβ, λ1v (xv) = xvξ, of a vector, xv, of covariates.
The covariance matrix Σ1 can also be modeled, as in a mixed model; the only requirement
for extending the Kolmogorov strong law of large numbers is that the first four moments of
the distribution of Y1 are finite, which is reasonable for the outcome variables in many
clinical trials.

Sen and Singer (1994), in comments following the Khintchine strong law of large numbers
(p. 71) describe how to extend the results above to the vector situation, which includes
mixed models.

Helms et al. Page 10

J Biopharm Stat. Author manuscript; available in PMC 2014 January 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4. EVALUATION OF IMPUTATION-INDUCED ESTIMATOR BIAS
Now that we have established the existence of the first two moments of the conditional
random variables that are realized in a clinical trial with MNAR post-dropout missing data,
we turn to investigating imputation-induced bias. To simplify the exposition and notation we
consider the case in which all missing data are post-dropout. In practice the results and
methods are easily applied to datasets with “intermittent” missing data.

We now need a different, but related, set of notation for data from an actual clinical trial, in
contrast to data from the thought experiments.

4.1. Data Notation
We use the following variables to index (identify) subjects, treatments and visits:

s indexes subjects, i.e., s denotes a subject’s number, s = 1, 2, …, N. Subjects are
numbered without regard to treatment group, clinic, etc.

t denotes a treatment group, t = “A” for the “active” treatment, t = “C” for the control.
Note that after randomization, given s the value of t is redundant. That is, one can look
at a table of random assignments to determine the treatment group to which subject s
was assigned. Nonetheless it is often convenient to use t as a subscript.

v is a variable that indexes clinic visits or evaluation occasions. In our example v = 1, 2,
…, V, visit 1 is a baseline visit, and visit V is the last scheduled visit for all subjects.

We use the following notation for dropout information.

Vs = the number of the last visit completed by subject s. Vs is a random variable with
values in {1, 2, …, V}. Vs may depend upon (be not independent of) one or more
primary outcomes.

vs = the number of the last visit completed by subject s. vs is the realized (known,
constant) value of the random variable Vst; with values in {1, 2, …, V}.

Following the notions in the thought experiments we hypothesize a set of underlying random
outcome variables, some of which are realized and some of which are scheduled to be
realized but follow a dropout event and are never realized.

Let Y1,st denote the complete V × 1 vector of underlying outcome random variables at all
visits, for subject s, who received treatment t. We assume that at least the first four moments
of Y1,st are all finite, a reasonable assumption for many clinical trial outcome variables. This
assumption is sufficient for application of the Kolmogorov strong law of large numbers to
imply the existence of the means, and, variances and covariances of the realized, pre-
dropout conditional random variables.

We have the pre-dropout random variables and their realizations:

Ystv denotes the conditional random variable that is the primary outcome variable (pain
score in the illustration) from subject s, who is randomly assigned to treatment group t,
at visit v, for those combinations of t, s, and v for which the outcome variable is
realized. In Thought Experiment 3 above, in the r-th rep Ystv was denoted

, v = 1, 2, …, v(r).

ystv denotes the realized value of Ystv in those cases when Ystv is realized, rounded to a
small number of significant digits.

The variables above may be collected into convenient vectors:
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Ys = (Yst1, Yst2, …, Ystvs)′ is the vector of conditional random variables for subject s.

ys = (yst1, yst2, …, ystvs)′ is the vector of realized values of the conditional random
variables for subject s.

 is the vector of all conditional random variables for all subjects.

 is the vector of realized values of all the conditional random
variables for all subjects.

4.2. A Mixed Model, Parameters, and Hypotheses
The following paragraphs define notation and specify some of the assumptions for a mixed
(random effects) model for data from the hypothetical-but-realistic clinical trial described
above. A similar model can be defined for data from many longitudinal clinical trials.

A mixed model has two components that may be called the “Expected Value (part of the)
Model,” which specifies assumptions about E[Y], and the “Covariance (part of the) Model,”
which specifies assumptions about V[Y], the covariance matrix of Y. Typically variation in
the Covariance Model has no effect on the definition of bias. We shall therefore assume only
that the Covariance Model specifies that random vectors from distinct subjects are
stochastically independent and that V[Y] is nonsingular. We focus on the Expected Value
Model.

The generic mixed model Expected Value Model equation is E[Y] = Xβ. We will use this
general formulation, but for simplicity of exposition of the illustration we also define a cell
mean model, a special case of the general model that, in this case, has no covariates:

μtv =E[Ystv] for t ∈ {“A”, “C”}, v = 1, 2, … V, and for each combination of s, t, and v for
which at least one Ystv was realized.

Note the implicit model assumption that for a given treatment group, t, and visit number, v,
the expected value is the same for all subjects.

We collect the means into convenient vectors:

the vector of treatment group population means. The mixed model β is partitioned as:

4.2.1. Baseline Variables: Dependent Variables, Covariates, Change-from-
Baseline—This model may be somewhat non-traditional in that the model treats each pre-
randomization primary outcome variable as a random variable, on the dependent variable
(“Y”) side of the model rather than as a fixed covariate on the “X” side of the model.

A model with baseline values as covariates is based on the conditional distribution of post-
randomization variables conditioned on the realized values of one or more baseline
variables. The covariates help to achieve two objectives: (1) adjust for baseline imbalances
between treatment groups and (2) reduce standard errors of estimators and consequently
increase power of hypothesis tests. In principle, the use of the conditional distribution
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restricts the “inference space,” i.e., the population of patients to which the results of the
study may be extrapolated. This point is often ignored in practice.

Some other models use a change-from-baseline outcome variable, , or
similar, as the model’s dependent variable. These models also, to some extent, accomplish
(1) and (2) and are not based on the conditional distribution. The structure of  is
typically more complicated than the structure of V[Ys].

The present model accomplishes (1) in the definition of the treatment effect, below, and (2)
via the typically positive correlations between post-baseline measurements and baseline
measurement. The methods we describe here can also be used in a straightforward manner
for both of the other types of models.

4.2.2. Definition of β in terms of E[Y]—In the generic Expected Value Model equation,
above, one can think of E[Y] as a fundamental quantity and β as the Expected Value
Model’s “primary parameter.” (We will define interesting “secondary parameters” in the
general linear form θ = Lβ.) It is useful to solve the Expected Value model equation for β,
which produces a definition of β as a linear transformation of the more primitive parameter
vector, E[Y]. Without loss of generality we assume X has full column rank; the solution of
the generic equation is:

We will use this definition equation per se and also apply it generically to other linear
models below.

4.2.3. Treatment Effect Parameters and Hypotheses—We define a general linear
secondary parameter of the form θ = Lβ. The treatment effect is a special case.

There are multiple approaches to defining “treatment effect” in a longitudinal clinical trial.
For the present purposes we adopt just one method. Within each treatment group we
compute the average of the population means from the last 4 visits and subtract the baseline
population mean:

We define the treatment effect, τ, as the difference of these two “change from baseline”
parameters:

where the 1 × (2V) vector L has elements that take the specified linear combination of the
elements of β. We use the mnemonic symbol τ in place of the generic θ for this “special”
parameter.
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In this pain study τ < 0 corresponds to the active treatment arm experiencing greater efficacy
(lowering mean pain scores by a larger amount) than the control treatment arm.

The corresponding null and alternative hypotheses are, in the traditional notation: H0: τ ≥ 0
vs. HA: τ < 0. The example study, like many pharmaceutical clinical trials, is a superiority
clinical trial: the objective is to demonstrate that the “active” treatment has superior efficacy
in comparison to the control treatment. Consequently, HA is a “one-tail” hypothesis. A “two-
tail” HA would be appropriate for some clinical trials, such as for example, a head-to-head
comparison of two active treatments in which the objective is to demonstrate that one (either
one) of the two treatments is superior to the other.

4.3. Imputation Notation
Consider an imputation method in which we “complete” a vector for each dropout subject
by imputing values for unrealized variables that are linear combinations of the available data
from that subject, i.e., can be written in the following form for subject s:

When subject s has incomplete data, YI,st is the imputation-completed vector of outcome
variables for subject s, hence the subscript I. However, we define a YI,s vector for every
subject; when subject s has complete data, YI,s = Ys. Baseline-observation-carried-forward
(BOCF), LOCF, and some other imputation methods can be written in this form. Table 2
illustrates the As matrices for LOCF and BOCF for “subject C” in the example in Table 1 (s
is not specified), where t=“C” and vsC=3.

Some clinical trials include substantial investigation and documentation of the reasons why
subjects drop out. With FDA’s approval, in some cases, sponsors of such studies have used a
“hybrid” imputation scheme. For example, BOCF may be used for a subject who drops out
for lack of efficacy, LOCF might be used for a subject who drops out for intolerability and
the hybrid method might use no imputation for a specific subject whose post-dropout
missing data are reasonably believed to be MAR. All of these methods can be implemented
using the approach above by using an appropriate As matrix. When a subject has complete
data (vs=V) or if no imputation is being performed for subject s, As = Ivs, a vs × vs identity
matrix.

Let XI,s denote the mixed model “design matrix” for subject s, where the subscript “I”
indicates this is the design matrix for a dependent vector YI,s that is either complete (subject
did not drop out) or contains imputed elements. XI,s is the complete design matrix one
would have for subject s if subject s had complete data. In the special case of the cell mean
model above:

The boldface IV denotes a V × V identity matrix. An XI,s matrix is defined for every subject,
whether the subject’s data required imputation or not.

Let Xs denote the vs × 2V design matrix for a mixed model for the available data, Ys, from
subject s (who is in treatment group t). An Xs matrix is defined for every subject. In the
special case of the cell mean model above:
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The (Ivs, 0) matrices, and the 0 matrices not in parentheses, are vs × V. We assume at least
one subject in each treatment group has complete outcome data through the final scheduled
visit, visit V; this insures that no columns of X (the vertical concatenation of all the Xs
matrices) are zero and that X has full column rank.

The notation above leads to

where βI ≠ β and when subject s has incomplete data, XI,s ≠ As Xs.

We combine Y-vectors and A- and X-matrices from all subjects:

4.4. Imputation-Induced Estimator Bias
The Expected Value Model of the form E[YI] = XIβI, when solved for βI produces a
definition of βI:

Fitting this model produces the unbiased estimator β̂I for βI, i.e., E[β̂I] = βI. However,
because βI ≠ β, β̂I is a biased estimator of β. The imputation-induced bias in β̂I (as an
estimator of β) is:

The “bias coefficient matrix,” CBCM, conveniently summarizes all the calculations vis-à-vis
Bias(β̂I) and the

matrix represents the relationship between βI and β:
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The treatment effect (parameter) from fitting the model to the imputation-completed data is
τI = LβI, with estimator τ̂I = Lβ̂I, which has imputation-induced bias

The “bias coefficient vector”

conveniently summarizes all the calculations vis-à-vis Bias(τI).

The matrices in the equations above can become quite large. Here are some convenient
computational forms:

4.5. Imputation-Induced Hypothesis Corruption
The null and alternative hypotheses that are tested in the mixed model for imputation-
completed data are “corrupted hypotheses,” the “corruption” arising from the bias in τ̂I as an
estimator of τ. We write the original hypotheses above as H0 (τ): τ ≥ 0 and HA (τ): τ < 0.
The corrupted hypotheses are:

Suppose, for example, that HA is true, τ = −0.7 and Bias(τ̂I) =0.5. Then the corrupted null
and alternative hypotheses tested in the model for the imputation-completed data are:

The bias reduces the “effective treatment effect” from τ=−0.7 to τI =−0.7−(−0.5)=−0.2. The
much smaller “effective treatment effect” means the power is much smaller than would have
been the case if uncorrupted hypotheses had been tested.

4.6. Removing Imputation-Induced Bias and Hypothesis Corruption
Note that βI = Tβ and, as T is generally nonsingular (because we are using full rank models),
β = T−1βI. Therefore β̂U = T−1β̂I and τ̂U = Lβ̂U are unbiased estimators of β and τ,
respectively, from the imputation-completed data. Using these estimators (and appropriate
covariance matrix and variance estimates, respectively) in the calculation of test statistics
leads to tests of hypotheses that are not corrupted by imputation-induced bias. Thus one can
use the imputation-completed data and also use estimators that are free of imputation-
induced bias and corresponding uncorrupted hypothesis tests.
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4.7. Illustration of Imputation-Induced Estimator Bias and Hypothesis Corruption
We applied the methodology above to the hypothetical clinical trial. The trial had a target of
150 randomized subjects per treatment group; the actual numbers were 148 in the control
(placebo) group and 151 in the active treatment group; N=199 total. The dropout patterns
came from an actual clinical trial and are characterized in Table 3.

The “Number of Subjects for whom this was the Last Visit” columns display the numbers of
subjects whose last visit was the visit number in the first column. For example, in the
Control group, 7 subjects dropped out after visit 1 and before visit 2. The row for visit 13
displays the numbers of subjects who completed the study, as their last visit was the last
scheduled visit. The “Percent of Subjects for whom this was the Last Visit” columns show
the percentages of subjects whose last visit was the visit number in the first column. The
percentages add to 100% in each of the two columns. These percentages are displayed in
Figure 2. The information in Table 2 came from an actual clinical trial; that both treatment
arms had approximately the same (66.2%) completion rate is coincidental.

The “Number of Subjects Remaining in Study after Visit” columns of Table 3 display the
numbers of subjects who had not yet dropped out by the visit number specified in the first
column. The first row displays the total numbers of subjects who completed visit 1 and were
randomized. The row for visit 13 displays the numbers of subjects who completed all visits.

The imputation-induced bias in β̂I is a vector-function of β which is, of course, unknown. To
apply the method one evaluates the coefficient matrix CBCM and vector LBCV defined above
and multiplies each by a hypothesized β. To illustrate the calculations we used the matrices
for the cell mean model and the values of β from Table 1, as if the “population means” in the
table were the population means of the conditional random variables, Ystv. Separate matrices
and vectors were computed for BOCF and LOCF. Each CBCM is 26 × 26, too large to
display here.

The BOCF-induced bias in β̂I is displayed in Table 4 and Figure 3. As one can see in the
lower part of the figure, the bias is 0 at visit 1 and increases steadily through visit 13. By
visit 13 the bias in the active treatment group mean, 1.86, is almost as big as the actual
coefficient, 2.0, while the bias in the control group is 1.18.

The LOCF-induced bias in β̂I is displayed in Table 5. As with the BOCF bias, the LOCF
bias is 0 at visit 1 and increases steadily through visit 13, with a maximum for both
treatment groups just under 1.0. In the initial discussion of this hypothetical example we
hypothesized that LOE subjects, mostly in the control (placebo) group, might tend to drop
out earlier than subjects withdrawing due to side effects, resulting in LOCF imputation
introducing an anticonservative bias towared HA. The reasons for dropout are not included
in the present data but one can see that, in this case, LOCF introduced a conservative bias
toward the null hypothesis.

The elements of the treatment effect bias coefficient vectors, LBCV, for BOCF and LOCF
are shown in Table 6. The zero BOCF coefficients for visits 2–9 stem from the fact that the
imputation carried forward baseline values. The non-zero BOCF coefficients for visits 10–
13 stem from the comparison of the mean of the last 4 visits to baseline.

Evaluating the treatment effect biases from BOCF and LOCF directly as Bias(τ̂I) = LBCVβ
gives values of τI − τ = 0.49 and 0.13, respectively.

Table 7 displays a more intuitively appealing calculation of these biases. The first row
shows the baseline population means, which are all 7.5 in this hypothetical example. The
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second row displays the means of the population means, averaged over visits 10–13. The
columns headed “β” show calculations using β, the (hypothesized) population means. The
columns headed “βI” show calculations using BOCF and LOCF βI, respectively. Row 3
shows the changes from baseline to mean from visits 10–13 for each treatment group. The
treatment effect, τI, in each pair of columns (row 4) is the differences in the changes-from-
baseline. The biases in row 5 are values of τI − τ for the two imputation methods. The
equation Bias(τ̂I) = LBCVβ is easy to program in software such as SAS PROC IML, but the
table calculations may be more intuitive and are easy to “program” in spreadsheet software.

The BOCF treatment effect bias of 0.49 is approximately the same magnitude (opposite
direction) as a small but “clinically meaningful” treatment effect in some pain studies. Our
objective here is to illustrate the application of the method, not examine the characteristics
of imputation-induced bias in this hypothetical study. If we were examining BOCF bias for
this study we could modify β to create a treatment effect of about 0.49 and recalculate
Bias(τI) = LBCVβ the calculations are simple because LBCV does not change. [Indeed, in just
under 10 minutes the author modified the spreadsheet used to create many of the tables to
change β to represent a treatment effect of −0.49. (Only active treatment means were
changed.) The BOCF treatment effect bias is unchanged at 0.49, exactly cancelling the
treatment effect.]

In this example using BOCF the imputation-corrupted hypotheses are

In some cases a treatment effect of −0.49 is clinically meaningful; here the corrupted null
hypothesis would include an actual, clinically meaningful treatment effect. Thus if it turned
out that the active treatment produced a clinically meaningful effect, 0.49 unit larger
decrease in mean pain score relative to the control (τ=−0.49), using the imputed data the
corrupted null hypothesis would be true! One can show that the bias is intrinsic: increasing
the sample size would not make this problem go away.

The point can also be made by examining the test statistic. When this is a t-statistic, for
example, performing the test with τ̂I is as follows:

Here, of course, t and τ̂ are computed from available data, as for example, by fitting a mixed
model to the available data with no imputation. As H0 is rejected for large negative t values,
the rightmost term in the equation above represents, approximately, a penalty induced by the
imputation. If the bias does not change with total sample size and s. e. (τ̂I) decreases with
total sample size, conducting a larger study – increasing the sample size – would increase
the imputation-induced bias penalty in the test statistic.

4.8. Comparing Biases of Various Linear Imputation Methods and Non-Imputation
Bias(τ̂I) is a function of τ, whose value is unknowable. An analogy is useful: power is also a
function of unknowable τ, and power calculations are an important component of the design
of clinical trials. As in the case of power calculations, we investigate the effect of Bias(τ̂I)
by calculating Bias(τ̂I) for an “interesting” range of τ values, including τ=0, the H0 value,
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and for imputation methods of interest. One can graph Bias(τ̂I) vs. τ, including multiple
“curves,” one for each method. In our experience such a graph typically displays clear
differences in the bias characteristics of the imputation methods.

This type of comparison does not evaluate MNAR-induced bias in the data, which afflicts all
the methods, with or without imputation, but which Siddiqui, Hung, and O’Neill (2009)
found to be quite small in most of the clinical trials they considered.

5. DISCUSSION
On both the execution side and the regulatory side, our objectives as public health
professionals and as drug development clinical trialists include: (1) to protect the safety of
clinical trial subjects, (2) to kill bad drugs – ensure that they are not marketed – and do so as
quickly and inexpensively as practical, (3) to bring good drugs to market as quickly as
practical while minimizing the required investments – consistent with the other objectives.
And yes, objective (3) is an appropriate objective for regulatory authorities.

Most clinical trial statisticians seem to agree: In general, bias is bad and corrupted
hypotheses are bad. Typically we are not choosing between zero bias and non-zero bias, but
rather we are choosing among several biased procedures, each with its own characteristics.
We want to minimize estimator bias and hypothesis corruption, consistent with our
objectives.

A bias toward HA is undesirable because it inflates the Type I error rate and increases the
probability of either not killing a bad drug or continuing to invest research resources and
calendar time in a bad drug (not killing it quickly).

A bias toward H0 is undesirable because: (a) to achieve acceptable power a sponsor must
expose more subjects to experimental procedures (contrary to the objective of protecting
safety of clinical trial subjects), (b) it increases calendar time in clinical trials, which leads
to: (c) delaying making good treatments available, (d) killing more good drugs, (e) spending
more money and other resources, and (f) reducing the amount of time between marketing
approval and expiration of patent, all of which are inconsistent with objective (3).

We have focused on methodology for evaluating linear-imputation-induced estimator bias
and hypothesis corruption. These methods include the widely-used BOCF and LOCF but not
some other important methods, such as mixed-model-based methods, that make use of all
available data from all subjects. We can use the tools in this paper to evaluate alternative
linear imputation methods (including no imputation at all) in an attempt to minimize this
part of the total bias, which is under our control.

We must not minimize the importance of MNAR-induced bias in the data, as discussed in
the first part of the paper. Unlike imputation-induced bias, some level of MNAR-induced
bias may be inevitable but it is important to understand that the bias is in the data, not the
statistical method. Under current ethical standards (that we support) subjects must be
permitted to withdraw from clinical trials when they wish, regardless of the reason. In many
therapeutic areas, including analgesics for chronic pain, most dropout subjects’ post-dropout
data must be presumed to be MNAR.

One can assert that the MNAR bias is irrelevant because the expectations of the conditional
outcome variables are the most appropriate means for our models. Consider a non-research
situation when a physician and a patient decide to try a new (to the subject) therapy, such as
a new analgesic. After an appropriate discussion (that depends upon the patient’s ability to
comprehend the information) of the product’s advantages and disadvantages, the physician
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issues a prescription (perhaps giving the patient some “samples”), the patient acquires the
product and begins taking it in a manner more-or-less similar to how subjects take the
product in a clinical trial. In some cases – real life and clinical trial – titration to a
therapeutically effective dose is required. Both patient and subjects may experience relief
and/or side effects. When the relief is inadequate or the side effects intolerable both the
patient and subject will typically return to the physician and decide whether to terminate that
treatment or continue for a while. Over a time interval similar to the duration of treatment in
a clinical trial, a patient either discontinues that therapy or perseveres, much as in the
clinical trial. The overall point is that subject dropout behavior may closely approximate real
life patient dropout behavior. To the extent that that is the case, the conditional distribution
of available data in a clinical trial is similar to the distribution that would be obtained in
“real life” and an unbiased analysis of the available data would be substantially preferable to
imputation-based alternatives. Of course, reasonable people may disagree on the extent to
which the conditional clinical trial distributions are equivalent to “real life” distributions.

These facts should energize clinical trialists, not discourage us. The situation is not totally
beyond our control. Reducing the proportion of dropout subjects leads to less MNAR bias
and less imputation-induced bias. We control study design; the use of enriched designs and
related methods, albeit not a panacea, can substantially reduce the proportion of dropout
subjects. Study execution can affect dropout rates. We can train and incent clinic staff
members on the importance of subject retention; experience has shown that properly trained
and incentivized clinic staff members produce better subject retention rates. Retraining
during the course of a long study can be helpful, partially when clinical staff turnover rates
are high. In addition, we can use a variety of ethical methods to encourage and incent
subjects to “hang in there” and complete the entire protocol.

In addition, some post-dropout missing data are MAR (“My girlfriend is moving to
Anchorage and so am I.”) and analyzing the available data from such a subject (e.g., using a
mixed model) does not introduce bias. We have found that carefully designed case report
forms that require careful investigation and recording of comprehensive information on the
reason a subject drops out, can form the basis for an external, expert, treatment-masked
adjudication of whether a subject’s post-dropout data are MAR. When the analysis uses all
available data (e.g., a mixed model analysis) using imputation for a subject with MAR post-
dropout missing data would introduce unnecessary bias into the analysis. The number of
subjects in this category in a typical longitudinal clinical trial is small (about 5% or less in
our experience), but when BOCF is being used the method can be cost effective. For
example, suppose a trial has 10 subjects in this category. If BOCF were used for these 10
subjects they would typically contribute a bias toward the null hypothesis. Using the 10
subjects’ actual data contributes unbiased information that, if HA is correct, increases power
by an amount corresponding to 10 subjects.

We can paraphrase the philosopher Desiderius Erasmus, “Biases: can’t live with them, can’t
live without them.” Longitudinal clinical trials are almost always afflicted by MNAR
missing data, leading to data with biased expected values. Evaluating those biases can be
very difficult. If we use linear imputation (BOCF, LOCF, others) to cope, this paper presents
methods that are useful for evaluating the imputation-induced biases and consequently
corrupted hypotheses.
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Figure 1.
Illustration of LOCF Imputation-Induced Bias from a Hypothetical Longitudinal Clinical
Trial
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Figure 2.
Percentages of Subjects Dropping Out After Each Visit, by Treatment Group
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Figure 3.

BOCF Induced Bias in , Hypothetical Longitudinal Clinical Trial
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Table 6

Treatment Effect Bias Coefficient Vectors

Visit

BOCF LOCF

Control Active Control Active

1 −0.3277 0.2980 −0.0473 0.0728

2 0 0 −0.1554 0.0662

3 0 0 −0.0270 0.0199

4 0 0 −0.0270 0.0199

5 0 0 −0.0135 0.0132

6 0 0 −0.0135 0.0132

7 0 0 −0.0135 0.0132

8 0 0 −0.0135 0.0132

9 0 0 −0.0068 0.0265

10 0.0794 −0.0646 0.0743 −0.0447

11 0.0811 −0.0712 0.0777 −0.0579

12 0.0828 −0.0778 0.0811 −0.0712

13 0.0845 −0.0844 0.0845 −0.0844
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