
Haplotype-based Pharmacogenetic Analysis for Longitudinal
Quantitative Traits in the Presence of Dropout

Jung-Ying Tzeng1,*, Wenbin Lu1,*, Mark W Farmen2, Youfang Liu3, and Patrick F. Sullivan3
1Department of Statistics, North Carolina State University, Raleigh, NC
2Department of Statistics, Eli Lilly and company, Indianapolis, IN
3Department of Genetics, Psychiatry and Epidemiology, University of North Carolina at Chapel Hill,
Chapel Hill, NC

Abstract
We propose a variety of methods based on the generalized estimation equations to address the issues
encountered in haplotype-based pharmacogenetic analysis, including analysis of longitudinal data
with outcome-dependent dropouts, and evaluation of the high-dimensional haplotype and haplotype-
drug interaction effects in an overall manner. We use the inverse probability weights to handle the
outcome-dependent dropouts under the missing-at-random assumption, and incorporate the weighted
L1-penalty to select important main and interaction effects with high dimensionality. The proposed
methods are easy to implement, computationally efficient, and provide an optimal balance between
false positives and false negatives in detecting genetic effects.
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1 Introduction
Pharmacogenetics aims to understand the genetic differences among individuals in drug
response. It shares a large amount of overlap with disease genetics, except that the trait of
interest is drug response instead of disease predisposition. As in disease association studies,
haplotype-based analysis provides an attractive option for understanding genetic effects on
drug response. From a statistical perspective, haplotype-based analysis is asymptotically more
powerful than single marker analysis in detecting association of latent causal variants (Zaitlen
et al., 2007). From a biological point of view, haplotypic polymorphisms are more informative
for studying genetic association, as they preserve the joint linkage disequilibrium (LD)
structure among multiple adjacent markers. Haplotypes also incorporate the joint non-additive
effect of multimarkers, and therefore can better capture the combined effects of cis-acting
causal alleles (Clark, 2004; Schaid, 2004).

However, typical association techniques may not be directly applicable to pharmacogenetic
studies. First, instead of a typical cross-sectional case-control approach, pharmacogenetic study
designs tend to use clinical trials, with repeatedly measured outcomes and important covariates.
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Second, missingness patterns tend to be more complex and non-random (e.g., patient dropout
may depend on an outcome like drug response). Finally, research interests tend to focus more
on gene-drug interactions than genetic main effects. For haplotype analysis, the above
challenges are further complicated by additional issues. The unknown phase creates missing
values in covariates aside from the problem of response-dependent dropouts. Moreover, the
high dimensionality of haplotype-drug interaction (H×D) often causes unstable inference and
decreased power. As a result, while there exist methods that allow for evaluating haplotype
main and interaction effects in theory, the practical implementation is limited to certain pre-
specified haplotypes, and an overall exploration of H×D effects in an unprejudiced manner
tends not to be applicable in reality.

In this work, we propose a variety of approaches that are based on inverse probability weighted
(IPW) generalized estimation equations (GEE) to address these issues encountered in
haplotype-based pharmacogenetic analysis. We adapt the GEE framework (Liang and Zeger,
1986) to bypass the full specification of the likelihood. We use the IPW estimation methods
(Robins et al., 1995) to account for the response-dependent dropouts under the missing-at-
random (MAR) assumption (Little and Rubin, 2002), which refers to the scenario that the
dropout or non-dropout probability depends only on the past observed outcomes and covariates.
For those who remain in a study at a particular time, the IPW methods weight each subject’s
contribution to the estimation equations at that time by the inverse of the non-dropout
probability. Next, to facilitate the evaluation of H×D effects in an overall manner, we couple
the IPWGEE framework with variable selection techniques. Specifically, we consider two
commonly used penalizing approaches: LASSO (Tibshirani, 1996) and adaptive LASSO (Zou,
2006; Zhang and Lu, 2007). The former applies the equal-weight L1 penalty to all variables
(i.e., ∑|βk| where βk is the regression coefficient). The latter inversely weights the variables by
their consistent estimates (i.e., ∑|βk|/|β ̂k| with β̂k’s the IPWGEE estimates without penalty),
which makes unimportant variables receive larger penalties than important variables. These
penalized approaches can simultaneously select important variables and estimate their effect
sizes. We are particularly interested to learn their relative performance to the ordinal IPWGEE
method, in which effect estimation and variable selection are done in two separate steps.

Alternatively, several likelihood-based approaches are also available for carrying out
haplotype-based longitudinal data analysis, such as HAPSTAT (Lin and Zeng, 2006) and
SimHap (Carter et al., 2008). These methods use mixed effects models to study haplotype effect
on the longitudinal outcomes, and can also handle the response-dependent dropouts under the
MAR missingness (Jansen et al., 2006). Compared to the IPWGEE method, the likelihood-
based approaches are efficient and do not need to model the dropout probability. However,
they require specification of the joint distribution of the longitudinal outcome process, which
can be difficult in practice and sensitive to model misspecification. In addition, when
incorporating penalty terms, the optimization of mixed effects models can become
computational demanding. In contrast, the IPWGEE method can be expressed as a weighted
least square problem, which makes its penalized extensions computationally convenient.

We focus this work on quantitative longitudinal traits measured during regular visits, which is
the scenario encountered in our motivating study, the Clinical Antipsychotic Trails of
Intervention Effectiveness (CATIE; Lieberman et al., 2005; Stroup et al., 2003). The CATIE
study examined whether atypical antipsychotics can reduce morbidity and resource use
compared to a conventional antipsychotic drug for patients suffering from chronic
schizophrenia. Recently, the CATIE participants were also genotyped genome-wide for about
500K single nucleotide polymorphisms (SNP; Sullivan et al. 2008). The availability of the
CATIE genetic and clinical data makes it possible to evaluate individual differences in
treatment response. However, such evaluation is intricate, as only a proportion of patients
respond to a specific antipsychotic, and non-response and dropouts are key indicators for
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individual differences in drug treatment. We aim to tackle these challenges with the methods
constructed in the work.

This article is organized as follows. Section 2 describes the regression model for studying the
haplotype effects on drug response and the proposed inference procedure based on the
IPWGEE and its penalized variations. Section 3 examines the performance of these methods
using simulation, and Section 4 showcases the proposed methods by applying them on the
CATIE data. Finally, Section 5 concludes the work with summary and discussion.

2 Model and Estimation Method
2.1 Model

We consider a follow-up study conducted over a fixed interval. Assume for each subject i (i =
1,…,n), a sequence of the outcome variables Yi,t are designed to be measured at visit time t =
1,…,T. In practice, some patients may quit the study or may only miss some visits but resume
at a later time. These two missing data patterns are referred to as monotone missingness (or
dropouts) and nonmonotone (or intermittent) missingness, respectively. See Tsiatis and
Davidian (2004) for a good review on analyzing longitudinal data with these two types of
missingness. To fix the idea, we consider the monotone missingness. However, the method
described here can also accommodate nonmonotone missingness.

For each visit time t, define δi,t an indicator that equals to 1 if Yi,t is observed and 0 otherwise.
Note that for monotone missingness, δi,t = 0 implies δi,s = 0 for ∀s > t: Let Yi = (Yi,1,…,Yi,Ti)
′ denote the observed outcome vector of subject i, where Ti ∈ [1, T] is the number of visits that
subject i had. Also, for subject i, let Di denote the treatment indicator vector; Hi the haplotype
design vector; Yi,0 the baseline outcome value (occurred at t = 0); and Zi,t a vector of covariates
for patients’ characteristics and other environmental exposures that are measured at visit time
t (t = 0,⋯,Ti) and may be time-dependent. Assume (hi1, hi2) the haplotype pair for subject i,
then Hi,h, the hth element of Hi, is set to be I (hi1 = h) + I (hi2 = h) with I (·) an indicator function.
This particular choice of coding represents an additive-effect model. We note that other types
of coding can be used to represent recessive effect (i.e., Hi,h = I (hi1 = h) × I (hi2 = h)) or
dominate effect (i.e., Hi,h = I (hi1 = h) + I (hi2 = h) − I (hi1 = h) × I (hi2 = h)). Lastly, we denote
a patient’s information up to time t using Ȳi,t = (Yi,0, Yi,1,⋯,Yi,t)′, Z ̄i,t = (Zi,0, Zi,1,⋯,Zi,t)′, and
δ ̄i,t = (δi,0, δi,1,⋯,δi,t)′ with δi,0 ≡ 1 (i.e., assuming no missing data at baseline).

To account for potential outcome-dependent dropouts, we assume that the probability of a
subject dropping out at time t may depend on his past observed outcomes and covariates, and
we posit a model for the non-dropout probability Pi,t(γ) at time t as

(1)

where  is the coefficients vector, 1t is a t × 1 vector of 1, and g1 and g2 are
pre-specified functions of past observed outcomes and covariates, respectively. For example,
one may use g1(Ȳi,t−1) = Yi,t−1 and g2(Z ̄i,t−1) = Zi,t−1 to represent an assumption that the dropout
probability only depends on the most recent observed data.

For longitudinal outcomes, we assume a linear model that includes the main effects of drugs
and haplotypes, and their interactions. That is, for t = 1,⋯,T,
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(2)

where ⊗ is the Kronecker product and b(t) is a vector of functions of the time t. For example,
we may choose b(t) = t if the longitudinal outcomes Yi,t are linear in t, but the high order
polynomials or more flexible spline basis functions can be used for nonlinear trend of the
longitudinal outcomes.

In reality, haplotype Hi is usually not available and only genotype Gi is observed. Therefore
the model posited on E (Yi,t | Yi,0, Di, Hi, Zi,t) (i.e., equation (2)) cannot be used to construct
the estimating equations, and instead we use E(Yi,t | Yi,0, Di, Gi, Zi,t), the conditional expected
trait values given the observed genotypes, for this purpose. Let Ĥi = E(Hi | Gi), and as shown
below, we see this genotype-conditioned trait expectation is a linear function of Ĥi for
quantitative traits:

(3)

The hth element of Ĥi is E(Hi,h | Gi) and is equal to ∑(a,b)∈S(Gi) [I(a = h) + I(b = h)] × P ((a,
b) | Gi), where S(Gi) denote the set of haplotype pairs that are consistent with the observed
genotype Gi, and P((a, b) | Gi) is the conditional distribution of haplotype pair (a, b) given
genotype Gi, which is equal to πaπb / ∑(c,d)∈S(Gi) πcπd with πa the frequency of haplotype a.

2.2 IPWGEE

Define  with length p. To estimate the parameters
β in model (2), we propose to use the IPWGEE method (Robins et al., 1995). Specifically, we
first need to obtain the estimated non-dropout probabilities Pi,t(γ̂)’s, where γ̂ is an estimator of
γ in model (1). The estimator γ̂ can be obtained by fitting a logistic model for the observed
non-dropout indicators δi,t on the past observed outcomes and covariates. Then based on

equation (3) and Pi,t(γ̂)’s, we obtain the IPWGEE estimator  of β by solving

(4)

where Yi = (Yi,1,⋯,Yi,Ti)′, Xi = (Xi,1,⋯,Xi,Ti)′ is the Ti × p design matrix with

 for , and Vi is a pre-
specified Ti × Ti weight matrix characterizing the conditional covariance of the traits Yi. One
practical choice for Vi is the identity matrix, i.e., assuming the working independence. Such
choice for Vi can give the consistent estimator of β, but note that a correct specification or a
good estimate of Vi will improve the efficiency of the IPWGEE estimator (Liang and Zeger,
1986). Finally, solving equation (4) is equivalent to minimizing the following weighted least
squares:
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(5)

As a result, the minimization of (5) can be easily accomplished using standard software, such
as R, for weighted least squared regression.

Let β0 denote the true values of β. As shown in Robins et al. (1995), if the non-dropout model
(1) and the longitudinal model (2) are correctly specified, then the IPWGEE estimator β̂ is
consistent and  converges in distribution to a normal random vector with mean 0
and variance-covariance matrix ∑ as n → ∞. The variance-covariance matrix ∑ involves
complicated expressions since it needs to take into account of the variations in the estimation
of γ̂ and Ĥi’s. Here instead to directly estimate ∑, we propose to use the bootstrap method
(Davison and Hinkley, 1997) to estimate ∑. Then we can use Wald tests to select important
covariates.

2.3 Penalized IPWGEE
To facilitate the evaluation of the main and interaction effects in an overall manner, we propose
a penalized IPWGEE method that can simultaneously estimate the model parameters and select
important variables. The penalization term in this method shrinks the coefficients of
unimportant variables to exactly zero. To be specific, we consider the following penalized
weighted least squared estimation:

(6)

where βJ,k is the kth element of βJ; wk’s are the weights that are pre-selected non-negative
constants and could be data-dependent; and λ > 0 is the tuning parameter. When wk’s are set
to one, it becomes the LASSO penalty (Tibshirani, 1996); when wk = 1/|β̂J,k|, the penalty term
becomes the adaptive LASSO penalty (Zou, 2006; Zhang and Lu, 2007). Following the
techniques of Zhang and Lu (2007), it can be shown that proposed adaptive LASSO IPWGEE
estimator has the selection consistency property, i.e., as  and nλ → ∞, the probability
of estimating the nonzero coefficients as nonzero and zero coefficients as zero converges to 1.
Moreover, the estimates of nonzero coefficients are consistent and asymptotically normal.

For each of the possible values of the tuning parameter λ, we minimize (6) to obtain the
estimates for β and calculate the BIC for the corresponding model. The minimization of (6)
can be achieved using standard LASSO packages, such as the shooting algorithm (Fu, 1998),
the algorithm proposed by Osborne et al. (2000), and lars algorithm (Efron et al., 2004). We
use the lars algorithm in our numerical studies since it can give the whole solution path. We
choose the model with the λ value that results in the smallest BIC, as the optimal λ chosen by
the BIC criterion can identify the true model consistently (Wang et al., 2007). In other words,
we choose λ to minimize

, where dfλ is the

number of nonzero coefficients in , a simple estimate for the degree of freedom
(Zou et al. 2007).
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3 Simulation Study
3.1 Set-up

We perform simulation studies to examine the performance of the proposed IPWGEE methods.
We also carried out analysis using the likelihood-based method SimHap (Carter et al. 2008)
as benchmark using the “haplo.long” function in the R package ’SimHap’ provided by the
authors. We simulate data akin to the CATIE study, including 500 individuals with outcomes
measured at time points of 1, 3, 6, 9, 12, 15, and 18 months. We consider 5 drugs with equal
probability of assignment, and a 3-SNP haplotype region forming 8 haplotypes: 000, 001, 010,
011, 100, 101, 110, and 111 with frequencies of 0.22, 0.09, 0.19, 0.09, 0.10, 0.11, 0.11, and
0.08. For each individual, we randomly sample a pair of haplotypes, assign one of the drugs,
and generate the baseline response value from Normal(0, 1). We evaluate each method’s ability
to detect the causal effects under 9 scenarios (Table 1), regarding whether the interacting
treatment and haplotype also exhibit main effects, and whether the involved haplotype is of
high or low frequency. Given the causal haplotypes and drugs for each scenario, we generate
Yi,t based on model (2) by the following steps. First, we set μi,t = E (Yi,t | Yi,0, Di, Hi, Zi,t) as
given in model (2 ) with βI = βY = 1, βT = 0.1, and b (t) = t. The drug effect (i.e., βD) is set to
1 for the causal-effect drug and 0 for the rest. The same effect size (i.e., 1) is used for the causal
haplotype and the causal H×D, which leads to a heritability ranging from 0.07 to 0.20. Next,
to create additional correlation among the outcomes values for subject i, we generate Yi,t from
Normal(μi,t + αi, 1) where αi ~ Normal(0, 0.5). To simulate the dropout process, we assume
that the dropout status depends on Drug 2 and the previous outcome values. Here we only
consider the monotone missingness, and generate δi,t from the binomial distribution with the
success probability specified in model (1), where γI = 3, , γY = −1, g1(Ȳi,t−1) =
Yi,t−1, and γZ = 0. The γ’s were set to obtain similar dropout rates observed in CATIE, and the
resulting simulated non-dropout probabilities are about 0.86, 0.74, 0.78, 0.76, 0.75, 0.75, and
0.72 at visits 1 to 7, respectively.

3.2 Results
In the simulation analyses, we use only unphased genotypes and implement the IPWGEE
methods under a working independence assumption (i.e., set Vi = ITi×Ti). To investigate the
potential power loss that is attributed to the working independence assumption, we repeat our
analysis using the true variance-covariance structure for Vi. We also use the true covariance/
correlation structure in SimHap analysis. For Scenario “ALL NULL”, we run 5000 replications
in the IPWGEE analysis and 1000 replications in the SimHap analysis. We run 1000
replications for Scenarios A to D in all analyses. We summarize the results by reporting the
frequencies of each variable being identified as significant. For the ordinary IPWGEE method
(referred to as oIPWGEE), the significance of a variable is determined by the Wald test of 5%
level based on the asymptotic normal distribution of the β estimates, with the variances of the
β estimates obtained from 100 bootstrap samples. For the IPWGEE combined with the LASSO
(referred to as LASSO) and adaptive LASSO (referred to as aLASSO), the significance is
determined by whether the regression coefficient is estimated as exactly zero: non-zero means
significant and zero otherwise. Finally, for SimHap method (referred to as SimHap), the
significance of a variable is determined at the 5% level using the p-values obtained from 100
simulations. The simulations are conducted to account for uncertainty in haplotype assignment
when phase is unknown.

Figure 1 shows the results from the Scenario of ALL NULL, where the proportion of
significance corresponds to the type I error rates. The top panel is for the IPWGEE methods
when a working independence covariance is used. The type I error rates for oIPWGEE are
around the nominal level 0.05. It is observed that the type I error rates for the interaction terms
are a little conservative, which agree with our expectation since there are less information for
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the gene-drug interaction effects than their main effects. The type I error rates for LASSO and
aLASSO are more conservative since these two methods are not test-based and shrink
coefficients of unimportant variables to exact zeros. Indeed, the error rates will be closer to
zero as the sample size increases, especially for aLASSO. This is because the aLASSO
estimates have the variable selection consistency property (Zou, 2006;Zhang and Lu, 2007),
i.e., when the sample size increases, the procedure will estimate the zero coefficients as exact
zero with probability converging to one. With a sample of size 500, the range of the type I error
rates across all variables for LASSO is 0.0072 to 0.0198, with mean equal to 0.0132, and the
range for aLASSO is 0.0004 to 0.0106, with mean error rate equal to 0.0030. The middle panel
shows the results of the IPWGEE methods when the true covariance is used. The type I error
rates are compatible to those in the top panel. Finally, the bottom panel shows the type I error
rates of the SimHap method. We see that the type I error rates are conservative, which is
somewhat expected as the dimension of the parameter space is big.

Figure 2 to Figure 5 show the power (true positive) and type I error (false positive) rates for
Scenarios A to D. The left panels present the results of the IPWGEE methods (i.e., oIPWGEE,
LASSO, and aLASSO) with a working independence covariance structure. Across all these
scenarios, the oIPWGEE method offers the lowest power in detecting an effect. The LASSO
method exhibits the greatest power but at a cost of high false positive rates. This is not too
surprising because the LASSO method does not have the variable selection consistency
property and it tends to select more variables than necessary (Zou, 2006). The simulation result
suggests that all false positive detections tend to involve an interaction term that contains at
least one of the main effects. On the other hand, the aLASSO method has power nearly as high
as the LASSO but it does not have as many false positives. The aLASSO method achieves a
better balance between true and false positives than the oIPWGEE and the LASSO, which is
again a result from the nice theoretical properties of the adaptive LASSO method.

The right panels of Figure 2 to Figure 5 show the results of the IPWGEE methods and SimHap
when the true covariance structure is used in the analysis. Focusing on the IPWGEE methods
(oIPWGEE, LASSO and aLASSO), we note that the left and right panels provide similar
results, indicating that there is only marginal power loss when the independence covariance
matrix is used instead of the true covariance structure. For the comparisons between the
proposed IPWGEE methods with the benchmark SimHap method, we see that comparing to
oIPWGEE, the SimHap method gives higher power for detecting drug main effects, but lower
power for haplotype main effects and H×D interactions. On the other hand, other proposed
methods (i.e., LASSO and aLASSO) result in much higher power than the SimHap method.
A similar trend holds for all scenarios of A, B, C, and D.

4 Application to CATIE Data
We apply the proposed IPWGEE methods to the CATIE study of schizophrenia, and perform
a search on chr22 for potential genetic variants related to drug response. We choose chr22
because it contains the most published candidate genes (i.e., 91 genes) for schizophrenia
etiology according to the Schizophrenia Research Forum
(http://www.schizophreniaforum.org/res/sczgene/dbindex.asp) as of June 2009.

Data
CATIE uses a multiphase design to study the effect of antipsychotic medications for
schizophrenia. In Phase 1, 1460 patients are randomly assigned to double-blinded treatment
with either the conventional drug perphenazine, or one of the new-generation drugs olanzapine,
quetiapine, risperidone, ziprasidone. The patients are followed up for up to 18 months or until
treatment was discontinued for any reason. Patients whose assigned treatment is discontinued
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could receive other treatments in Phases 1B, 2 and 3 (see Stroup et al., 2003 for further details).
Our analysis focused on the Phase 1 data only.

About 51% of the 1460 CATIE participants provided DNA samples, and in total 738 patients
are genotyped after further inclusion and exclusion criteria. Genotyping is conducted using the
Affymetrix 500 K platform and a custom 164 K chip created by Perlegen which, after quality
control, lead to 6378 SNPs on chr22. Among the 738 patients, 2 individuals do not have
treatment information, 1 individual does not have baseline Positive and Negative Symptom
Scale (PANSS) scores, and 86 individuals only have baseline PANSS scores but no follow-up
information. Excluding these subjects results in a sample of 649 patients in our analysis. Among
the 649 patients, 60% of the subjects have missing outcome values, and the monotone
missingness accounts for a large percentage of missing (i.e., 96% of the 60% individuals).

Analysis
The primary outcome variable was the PANSS total scores measured at months 1, 3, 6, 9, 12,
15, and 18. The effects to be assessed include: (a) the relative effects of the four new-generation
antipsychotic drugs to the conventional drug perphenazine; (b) the genetic effects; and (c) the
interactions between the genes and drugs. In addition to the effects of interest, we also
incorporate baseline PANSS score, drug-time interaction, age, sex, and ancestry in model (2),
and set b (t) = t and Vi = In×n for the analysis. The ancestry is approximated using the first seven
principle components identified in the CATIE genome-wise association study (Sullivan et al.
2008) using EigenSoft (Price et al. 2006). The missing mechanism is modeled by a logistic
regression, in which the dropout status was regressed on the previous PANSS scores and the
drugs. When previous PANSS scores are not available, we use the most recent observed value
instead. The chromosomal scan is carried out using a sliding window of four SNPs. One
challenge for the haplotype sliding-window scan is the multiple testing problem, as the tests
can be highly correlated due to the use of overlapping SNPs. While this issue may be bypassed
in the LASSO or aLASSO since they do not involve any test procedure for selecting significant
variables, a chromosome-wide significant threshold would still be needed for the Wald test in
the oIPWGEE method. Because our analysis is for exploratory purposes, and because it is
beyond our focus to address this unsettled issue here, we use an ad-hoc way to determine a less
stringent threshold: we set the total number of tests as 6378/4 (i.e., as if non-overlapping
windows were used), and treat the tests as perfectly correlated when they are next to each other,
and uncorrelated otherwise. This leads to a Bonferroni threshold of 0.05/(6378/4/2) = 6.3 ×
10−5 for the p-values from chr22.

Result
We focus on the oIPWGEE and aLASSO methods, as we see in the simulation that the LASSO
method tends to select more variables than necessary. First, the dropout rates seem to depend
on drug olanzapine (p-value 0.026): Patients with olanzapine have higher odds to stay in the
study relative to the baseline drug perphenazine (OR=1.36). Next, for PANSS analysis, it
appears that the PANSS scores depend positively on the baseline PANSS score, negatively on
time, but not on the drugs or the drug-time interactions. The mean estimate across all regions

for  is (0.59, −0.36, 0.00, 0.00,
0.00, 0.00, 0.00, 0.00, 0.00, 0.00) by aLASSO, and is (0.58, −0.59, 1.66, 0.81, 2.32, 1.03, 0.01,
0.04, 0.00, 0.34) by oIPWGEE, with the corresponding mean Z statistics of the Wald test
(obtained based on 100 bootstrap samples) as (21.00, 4.68, 0.91, 0.71, 1.04, 0.70, 0.38, 0.42,
0.11, 1.94).

For genetic effect detections, while there are quite a few overlaps in regions identified by both
methods, there are also regions where the findings from the two methods do not agree. The
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inconsistent results may be due to various reasons. For example, one possible reason is that
the oIPWGEE selects significant genetic effects using Wald tests adjusting for the multiple
testing issue, while the aLASSO selects important genetic factors and estimate their effect sizes
at the same time avoiding the multiple testing. Another possible reason is that the dropout status
may depend on other covariates than what we have incorporated, and hence the assumed
logistic model for the non-dropout probability cannot catch the complete missingness
mechanism. Because there are no known positive controls for the data analysis, we report those
regions that are identified by both methods. We see some of the significant regions are adjacent
with each other. We list and annotate our findings in Table 2, where the annotations are based
on HapMap genome browser (http://www.hapmap.org/cgi-perl/gbrowse/hapmap27_B36/),
UCSC genome browser (http://www.genome.ucsc.edu/cgi-bin/hgGateway), NCBI
(http://www.ncbi.nlm.nih.gov/sites/entrez), Sullivan Lab Evidence Project (SLEP,
https://slep.unc.edu/evidence/?tab=GeneName), and Schizophrenia Research Forum
(http://www.schizophreniaforum.org/res/sczgene/chromo.asp?c=22). As with many findings
in complex trait genetics, there are intriguing suggestions in the results that require replication
to understand more fully.

5 Discussion
We introduce an ordinary IPWGEE method and its penalized extensions to facilitate haplotype-
based pharmacogenetic analysis for longitudinal quantitative data. It allows for outcome-
dependent missingness, and permits an overall evaluation of the high-dimensional haplotype-
drug interaction in an unbiased manner. By re-expressing the IPWGEE as a weighted least
square problem, the proposed method is easy to implement and computationally efficient. Our
simulations show that the IPWGEE combined with the adaptive LASSO penalty can improve
the power to identify important genetic effects while retaining the false positive rates at a
desired level. The R code that implements this method is available from the corresponding
author’s website at http://www4.stat.ncsu.edu/~jytzeng/Software/HapWGEE/R/.

In our numerical studies, we set Vi to be the identity matrix in the estimation equation (4) to
obtain the parameter estimates, which treats the outcome values from the same subject as
independent after conditioning on the covariates incorporated in model (2). Under the content
of genetic studies, this working independence assumption might not be completely incorrect,
as the within-subject correlation might be removed after conditioning on the genetic factors of
an individual. Nevertheless, the GEE does not require a correctly specified working variance-
covariance matrix in order to obtain consistent estimates. The use of a more precisely specified
Vi can improve detecting power.

In this work, the IPWGEE-based approaches are constructed for quantitative traits, but the
framework can be also extended to binary traits. For quantitative traits, the expected outcome
values E (Yi,t | Yi,0, Di, Hi, Zi,t) is a linear function of the unobserved haplotype Hi, and
consequently, its genotype-conditioned expectation, E (Yi,t | Yi,0, Di, Gi, Zi,t), is also linear in
E (Hi | Gi). With binary traits, same principle of equation (3) implies, but E (Yi,t | Yi,0, Di, Hi,
Zi,t) = {1 + exp [−(βI1Ti + XiβJ)]}−1 is no longer linear in Hi. As a result, the mean effect model
conditioning on genotypes require additional work in the computation, and we plan to continue
the work in our future study.

Finally, modeling longitudinal quantitative traits has also drawn big attentions in the field of
quantitative trait locus (QTL) mapping. Among the many methods proposed, functional
mapping emerges to be a powerful and promising tool (Wu and Lin 2006). Functional mapping
uses mathematical equations to describe the profile of the response values, such as using logistic
equations for the growth trajectories, and using bi-exponential equations for HIV dynamics.
These mathematical functions are typically governed by a few parameters that have biological
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interpretation and can be further expressed in terms of genetic effects. In recent years, the
framework of functional mapping has also been extended from controlled crosses to natural
population (Ma et al., 2004; Wu et al., 2007; Lin et al., 2007). It will be of great interest to
incorporate such mechanistic mathematical modeling in our IPWGEE methods and consider
it in the CATIE data analysis.
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Figure 1.
Proportion of significance under the Scenario of ALL NULL (i.e., type I error rates). The top
two panels are the results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, and
aLASSO) with different covariance structures. The open circles, filled circles and the star signs
indicate the results for the oIPWGEE, aLASSO and LASSO respectively. The bottom panel
is the results of the SimHap, where the type I error rates are indicated by triangles. In all panels,
the horizontal dashed line indicates the nominal level of 0.05 used in the oIPWGEE and
SimHap methods.

Tzeng et al. Page 12

J Biopharm Stat. Author manuscript; available in PMC 2010 March 26.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Proportion of significance under Scenario A as defined in Table 1. The left panel shows the
results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and
SimHap analysis when the true covariance structure is used. The horizontal dashed line
indicates the nominal level of 0.05 used for the Wald test in oIPWGEE and SimHap. The
vertical dashed lines indicate the causal effects.
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Figure 3.
Proportion of significance under Scenario B as defined in Table 1. The left panel shows the
results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and
SimHap analysis when the true covariance structure is used. The horizontal dashed line
indicates the nominal level of 0.05 used for the Wald test in oIPWGEE and SimHap. The
vertical dashed lines indicate the causal effects.
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Figure 4.
Proportion of significance under Scenario C as defined in Table 1. The left panel shows the
results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and
SimHap analysis when the true covariance structure is used. The horizontal dashed line
indicates the nominal level of 0.05 used for the Wald test in oIPWGEE and SimHap. The
vertical dashed lines indicate the causal effects.
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Figure 5.
Proportion of significance under Scenario D as defined in Table 1. The left panel shows the
results of the proposed IPWGEE methods (i.e., oIPWGEE, LASSO, aLASSO) when a working
independence covariance is used, and the right panel shows the results of the IPWGEE and
SimHap analysis when the true covariance structure is used. The horizontal dashed line
indicates the nominal level of 0.05 used for the Wald test in oIPWGEE and SimHap. The
vertical dashed lines indicate the causal effects.
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Table 1

List of causal effects of drug, haplotype and haplotype-drug interactions considered in the simulation

Scenario Causal Drug Causal Haplotype Interactions Heritability

NULL: no effect NA NA NA 0

A: The haplotype in the interactions has no main effect

A1 Drug 3 010 (0.19)* Drug 3×101 (0.11) 0:14

A2 Drug 3 111 (0.08) Drug 3×101 (0.11) 0:07

B: The treatment in the interactions has no main effect

B1 Drug 2 010 (0.19) Drug 3×010 (0.19) 0:20

B2 Drug 2 111 (0.08) Drug 3×111 (0.08) 0:10

C: Both the haplotype and treatment in the interactions have main eects

C1 Drug 3 010 (0.19) Drug 3×010 (0.19) 0:13

C2 Drug 3 111 (0.08) Drug 3×111 (0.08) 0:10

D: Both the haplotype and treatment in the interactions have no main effects

D1 Drug 2 010 (0.19) Drug 3×101 (0.11) 0:14

D2 Drug 2 111 (0.08) Drug 3×101 (0.11) 0:08

*
values in the parenthesis indicate the haplotype frequencies.
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