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Abstract
The biomedical literature is an important source of information about the biological activity and
effects of chemicals. We present an application that extracts terms indicating biological activity of
chemicals from Medline records, associates them with chemical name and stores the terms in a
repository called ChemoText. We describe the construction of ChemoText and then demonstrate its
utility in drug research by employing Swanson’s ABC discovery paradigm. We reproduce Swanson’s
discovery of a connection between magnesium and migraine in a novel approach that uses only
proteins as the intermediate B terms. We validate our methods by using a cutoff date and evaluate
them by calculating precision and recall. In addition to magnesium, we have identified valproic acid
and nitric oxide as chemicals which developed links to migraine. We hypothesize, based on protein
annotations, that zinc and retinoic acid may play a role in migraine. The ChemoText repository has
promise as a data source for drug discovery.
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1. Introduction
A central endeavor in drug research is determining the biological effects and activities of a
chemical. Effects are observed and measured in a variety of venues from the test tube to the
human body, from high throughput studies to those involving a single individual. The data
from these experiments is increasingly being deposited in publicly available repositories (e.g.
PubChem [1]), but even so, a large part of information about biological effects of chemicals
is recorded only in the biomedical literature. We have developed a methodology to extract
terms which indicate biological effect from Medline [2] and house them in a repository where
they can be analyzed and mined. We call this repository ChemoText and have described the
early development of the methodology in previous work[3].

© 2010 Elsevier Inc. All rights reserved.
§Corresponding Author: Nancy C. Baker, CB 3360, 100 Manning Hall, University of North Carolina at Chapel Hill, Chapel Hill, NC
27599-3360, 1(919)967-6705 (voice), {nbaker@email.unc.edu, bmh@ils.unc.edu}.
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
J Biomed Inform. Author manuscript; available in PMC 2011 August 1.

Published in final edited form as:
J Biomed Inform. 2010 August ; 43(4): 510–519. doi:10.1016/j.jbi.2010.03.008.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Carolina Digital Repository

https://core.ac.uk/display/345211528?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


1.1 Previous Work
Mining the literature for new drug therapies is a growing field. The earliest and best known
research into using literature to find new treatments for disease is the work of Don Swanson.
A researcher in information science, Swanson developed a methodology for literature-based
discovery based on his observations of scientific literature[4]. He noted that the increasing
specialization of scientists was paralleled by an increasing specialization in scientific journals.
He described a situation where scientific domains no longer interacted through the reading and
publishing of their literatures: researchers reading and publishing in one set of journals were
not aware of articles in other journals. The literatures become islands and, in Swanson’s terms,
noninteractive. This situation according to Swanson creates the potential for knowledge to go
unconnected, relationships not recognized, and inferences not made, a situation he termed
undiscovered public knowledge. Swanson demonstrated that these connections could be
established through literature mining. Using his literature mining technique, often termed the
ABC method, Swanson made several discoveries, among them a connection between
Raynaud’s disease and fish oil [5] and the potential of magnesium to treat migraines[6].
Swanson emphasized that literature mining methods only assisted with hypothesis generation
or hypothesis support, and that any hypothesis derived from the literature, must, like any other,
be substantiated by experimental science.

Swanson’s ABC methodology starts with identifying a disease or condition of interest. As an
example we will consider migraine. (See Figure 1.) The term migraine becomes the C term.
In the next step the literature is searched for terms which co-occur with migraine. These are
the intermediary B terms and include in the case of migraine terms such as spreading cortical
depression, vasoconstriction, and vasodilation. The B terms can be seen as terms for
physiological conditions or states or processes which underlie the disease state. In the next step
potential treatments – the A terms – are identified which are associated with the B terms. Next
the C – A connection is tested and the only potential treatments retained for further examination
are those which have not yet been explicitly linked to migraine.

Many researchers have followed in Swanson’s footsteps and constructed applications for
discovery based on the ABC paradigm, but differing in other particulars. Swanson extended
his original manual methods in collaboration with Smalheiser and created an automated version
of their work called Arrowsmith[7]. Lindsay and Gordon broadened the corpus from titles to
include abstracts and employed lexical methods and statistical measures to evaluate and limit
the terms[8]. Weeber et al. [9] developed an application that used lexical methods and made
use of the Unified Medical Language System (UMLS) [10], a suite of tools and knowledge
sources available from the NLM for identifying, mapping, and understanding medical
language. Srinivasan [11] also employed the UMLS but chose MeSH [12] as her corpus and
developed ranking and weighting metrics to help narrow down the lengthy B term lists. Wren
et al. [13] used a network paradigm and co-occurrence metrics, ranking on terms extracted
from titles and abstracts. The ABC paradigm was described in graph language by
Narayanasamy et al. [14] who used the concept of transitivity to describe the A–C connection.
They applied the methods to find relationships between breast cancer genes. Yetisgen-Yildiz
and Pratt [15] created an application called LitLinker based on MeSH terms and also using the
UMLS for term selection and reduction steps. Seki and Mostafa [16] employed an inference
network model and applied it to find implicit connections between genes and diseases. Petrič
et al. emphasized rare terms in their application in order to find novel and innovative
connections [17].

1.2 Evaluation of literature-based discovery systems
Evaluating results achieved through literature-based discovery methods is a challenge.
Reproducing Swanson magnesium or fish oil discoveries has been a validation approach taken
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by several groups[8,9,18]. These discoveries are considered the gold standard because they
have been confirmed by clinical studies. Comparing data from two time periods is also
considered an important validation method [19]. Yetisgen-Yildiz and Pratt [15] and Hristovski
et al. [20] used recall and precision metrics to score overall the predictions made in the earlier
time baseline period with results from a later time period. Seki and Mostafa in [16] used an
external data source to validate their predicted connections between genes and disease. In an
experimental approach to validation, Wren et al. [13] performed in vitro cell assays to
substantiate their literature-based claim that chlorpromazine can treat cardiac hypertrophy.
Medical experts evaluated the results in [21,22].

Because disparate methods have been used by authors to evaluate their LBD systems there has
been to date no way to compare the efficacy of applications. In a very recent paper (too recent
to influence the design of this study) Yetisgen-Yildiz and Pratt [23]describe promising
methodologies to remedy this situation. These include principles to consider when designing
LBD research such as conducting multiple experiments and keeping the methods independent
of prior knowledge. The authors also introduce metrics that will enable the evaluation of the
ranking of the hypothesis set, not just the precision and recall of the entire set.

In this work we briefly review the construction of the ChemoText repository, and then we
demonstrate its utility in drug research by reproducing Swanson’s discovery connecting
magnesium to the treatment of migraine. The significant component of our implementation of
the ABC method is that we have limited the B terms to protein annotations (see Figure 2). We
apply this limitation not only to reduce the volume of data, but also because proteins are the
agents behind most physiological processes and are therefore studied both by scientists
investigating disease and by scientists looking for drugs. Because these very different groups
of scientists may not be aware of each other’s work, there must be a strong potential for finding
undiscovered implicit relationships between drugs (A terms) and diseases (C terms) via
proteins (B terms).

Other researchers in literature-based discovery have made use of the vital connections between
drugs, proteins, and disease. Ahlers et al. [22] for instance extract text from Medline records
and process it semantically to extract very specific information about the relationship between
proteins, drugs, and disease. They use this information to postulate the mechanism of action
of antipsychotic agents. The mechanism of action is carried out by the proteins that are found
to be intermediary terms between disease and drug. In our work we use this relationship to
hypothesize new therapies for disease.

2. Methods
2.1 Extraction of MeSH terms

The goal in developing ChemoText was to build a repository of chemicals associated with
terms extracted from the literature that represented the chemicals’ biological activity or effect.
The strategy was to extract these activity terms from Medline annotations. (See Figure 3.) Three
categories of annotations were identified that indicated activity: MeSH drug effects
annotations, MeSH disease annotations, and the proteins listed in the RN and MeSH section
of the Medline record. MeSH or medical subject headings [12] are annotations assigned by
indexers at the National Library of Medicine (NLM). Drug effects were extracted by finding
all the drug effects subheadings and extracting the corresponding MeSH heading. The proteins
and diseases were identified by looking up the terms in the MeSH Tree file. Tree categories C
and F in this file were used to identify diseases, and the category D12 identified proteins. (The
category D12 contains amino acids and peptides in addition to proteins; for brevity we will
refer to this group as proteins.)
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2.2 Identification of subject chemicals
The Medline record can list more than one chemical. One or more of them may be the subject
of the research, while other chemicals are peripheral, perhaps discussed or used in the
experimental procedure, but not the central object of study. In order to reduce the volume of
data we chose to extract the chemicals that were the subjects of study and then associate the
activity terms only with those chemical(s). We developed a heuristic algorithm that evaluates
the MeSH subheadings or qualifiers occurring with the chemical annotations and identifies the
chemicals most likely to be the subjects. The heuristic follows a rule-based stepwise procedure,
a procedure developed based on the detailed analysis of 125 Medline records. In this process,
the annotations from each Medline record were examined to see if more than one chemical
was annotated and identified as a major topic. If only one chemical was found and major, it
was tagged as the subject chemical. If more than one chemical was identified as major, then
the subheadings or qualifiers of each were examined. If the subheadings were the same for
each of the chemicals, then they were all tagged as subjects. Preliminary analysis of the small
test set had shown that certain subheadings were more commonly associated with subjects then
other headings. (See Table 1.) Pharmacology, therapeutic use, and administration & dosage,
for instance, are subheadings commonly annotated to the subject chemical, while the
subheadings metabolism and biosynthesis are less common annotations for subject chemicals.
We assembled a hierarchy of subheadings, starting with those most commonly associated with
subjects to those rarely seen associated with subjects. We used this hierarchy to compare the
chemicals in the remainder of the records and tag those most likely to be subjects. Medline
records with more than one subject are common. Forty percent have more than one subject
chemical, and the average number of subject chemicals per Medline record is 1.65. In the next
step of the processing each of the subject chemicals was associated with the previously
extracted activity and effects terms.

2.3 Complete repository
The 2008 Medline baseline file was downloaded from the NLM and used as the corpus for
extraction routines. The extract routines were written in Perl. The data was loaded into a
MySQL database and subsequent processing was performed in SQL or Microsoft Access. The
completed data base depicted as a network is shown in Figure 4. The diagram shows the number
of unique entities in each category as well as the number of relationships between entities stored
in ChemoText. The baseline file contained 16,880,015 records; 6,635,344 records had
identified subject chemicals and were included in ChemoText.

There are other repositories that contain combinations of drug, disease, and protein
information. STITCH (Search Tool for Interactions of Chemicals) contains small molecule
chemicals and proteins[24]. The curated relationships in this resource come from both publicly
available assay databases and from literature extraction. The cBioC resource relies on text-
mining and community curation to establish and vet its protein-protein and protein-disease
connections[25][26]. KEGG[27] and DrugBank [28] are two other sources of drug and protein
information. The focus of KEGG is protein pathways while the focus of DrugBank is drugs
and their protein targets. Both are highly curated.

In contrast to these resources, the data in ChemoText is extracted automatically and undergoes
no manual curation. While the quality of the data in ChemoText may not rival a curated source,
its breadth of coverage is more extensive, mirroring the broad reach of PubMed.

2.4 Literature-based discovery methods
We next explored the potential of using ChemoText for drug discovery. Our goal was to
generate a list of chemicals linked implicitly but not explicitly to a particular disease through
the literature. Such a list or hypothesis set may contain chemicals important to drug research
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either as new treatments or as key chemicals in the physiology of the disease. To generate the
hypotheses, the ABC methodology of Swanson [6] was adopted.

The ChemoText database was queried for all articles published before 1985 in which migraine
disorders, migraine with aura, or migraine without aura were included in the MeSH
annotations. (The first article which first directly connected magnesium to migraines was
published in 1985. We limited ourselves to evidence before that year for the baseline data.)
These were the C terms. In the next step each protein annotation included in any of these articles
was extracted. This was the pool of proteins associated with migraine. (B terms) This pool
contained 131 proteins and included names for specific proteins as well as protein families
(e.g. Receptors, Adrenergic).

In the next step the link between chemical and protein was examined. All chemicals were
identified which, in the baseline period before 1985, appeared as a subject chemical in an article
with the annotation of any of the migraine pool proteins. Chemical family names such as
Amines or Lactones were eliminated to reduce the data volume. The resulting set of terms were
the A terms. The number of migraine pool proteins associated with each chemical was counted.
In the next step the link between the chemical and disease in the baseline period was examined.
All chemicals were identified that appeared as a subject chemical in an Medline record before
1985 with the annotation of migraine. These records represented already known connections
between the chemical and disease and were eliminated. The entire ChemoText database was
examined to determine which chemicals predicted to have a link to migraine based on the
evidence of the baseline period did indeed have literature evidence of a connection in the test
period. The most common MeSH subheadings appearing with these chemicals when they were
annotated with migraine were also extracted to help elucidate what kind of link emerged.

3. Results
3.1 Hypothesis set and validation

Our experiment produced a list of 4,725 chemicals potentially connected with migraine. (See
Table 2 Part A.) We term this list our hypothesis set. When the set was ranked by protein count
(Prot Ct), magnesium appeared near the top of the list at position 3. This closely reproduces
Swanson’s discovery.

Many researchers have reproduced Swanson’s magnesium – migraine discovery; thus our
observation is not novel, but can be viewed as a method validation. However, the design of
ChemoText enabled us to extend this analysis in a novel direction. For each chemical in the
hypothesis set the ChemoText database was searched for any link between the chemical and
migraine after 1984. These results were summarized and combined with the results from the
baseline period. Table 2 Part B contains these new columns: First Year (abbreviated First
Yr, the first year an article appeared directly associating the chemical to migraine), Article
Count (abbreviated Article Ct, the count of articles with this direct association) and the most
common qualifiers or subheadings appearing in the annotations of the disease and the chemical
with migraine (Disease Qualifier and Chemical Qualifier). Magnesium was first connected-to
migraine in 1985 and has had 39 articles since connecting it to migraine. Both the most common
disease qualifier and the most common chemical qualifier occurring in records in which
migraine and magnesium occur together were blood, indicating the blood levels of magnesium
are important in migraine.

The set was visually examined to see what general observations could be made. The set contains
many types of chemicals. Sodium, zinc, copper and magnesium are elements. Cysteine is an
amino acid and cyclic GMP is a nucleotide. Pharmaceuticals become more common as one
scans down the list. The disease and chemical qualifiers indicate that the connections between
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the chemicals and migraine were varied. A number of chemicals were annotated indicating
they treat migraine. Some chemicals like copper apparently cause migraine, and some appear
to be involved in the physiological mechanisms of migraine (e.g. cyclic GMP).

The total set contained 154 chemicals which had no connection to migraine in the baseline
period but developed a connection by 2007. Among the top 12 chemicals eight (66%) have
developed links to migraine since 1984. The Article Count element was adopted as a rough
indicator of the significance of a chemical’s connection to migraine. Magnesium has had 39
articles linking it to migraine since 1985 while copper has only one since its first connection
in 1986. Sodium has only one article linking it directly to migraine, but the article is recent
therefore the connection is newly established and its significance as of today is understandably
low.

Based on the article count metric, two chemicals, valproic acid and nitric oxide, warrant further
discussion. (See Table 3.) Valproic acid, found in position 105, has only 43 migraine-related
proteins. The first article discussing its therapeutic use in migraine appeared in 1988 and by
2007, 83 articles linked valproic acid to migraine, twice as many as magnesium. Valproic acid
is an example of drug re-profiling. It was used for many years as an anti-epileptic drug before
being tried in migraine prophylaxis[29]. Valproic acid developed the strongest link to migraine
based on the article count metric yet it did not appear as high as magnesium in the hypothesis
set based on baseline protein count.

Nitric oxide appears relatively low in the list as well at position 599, linked to only 11 proteins
in common with the pool of migraine-linked proteins, but by 2007 it had 40 articles linking it
to migraine, one more than magnesium. The most common qualifiers indicate that nitric oxide
is important in the physiology of migraine.

3.2 Evaluation
Precision and recall were calculated using the following formulas.

(1)

HS is the number of entries in the hypothesis set and FL stands for the number of chemicals
which will develop a future link to migraine. Future linked chemicals are those that existed in
the baseline period, and had no direct link to migraine during that period, but by the end of the
1985–2007 test period had developed a direct link to migraine. We chose to use the terms FL
and HS instead of adopting the True Positive (TP), True Negative (TN), etc. terminology
because the latter scheme implies a certainty of outcome that our experiment could not support.
The term True Positive, for example, sounds definitive, but all the links between drugs and a
disease are not definitely established at a particular point in time. The links evolve over time
as the result of ongoing research and publication.

The search of the entire ChemoText determined that there were 177 future linked chemicals;
our routines found 154 of them. The 23 chemicals were missed because they did not have
proteins linked to them from the migraine protein pool. In other words, the B – C connection
did not pick up these chemicals. The intersection of the hypothesis set and the future linked
(FL) chemicals gives the number of future linked chemicals found by our experiments.

The results for recall and precision are as follows.
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The recall results are high. Selecting migraine drugs based on proteins identified 87% of the
future chemicals connected to migraine. Our precision results, however, are weak. Only 3.3%
of the chemicals in the hypothesis set developed a connection to migraine after 1984.

One likely reason for the low precision is that the 131 proteins connected to migraine include
many protein families. These annotations can be very general and therefore have the likelihood
of being annotated with many chemicals. For instance, Adenosine Triphosphatases and Peptide
Hydrolases are two protein annotations from the migraine protein pool. While these families
certainly have a connection to migraine, they are so broad that they will have connections to
many other diseases and chemicals. As a result they will likely increase our hypothesis set
significantly with chemicals of little potential connection to migraine. Not all protein families
can be discounted, however. Receptors, Serotonin is also a protein family, but it has a well-
known importance to the physiology of migraine and should not be undervalued. In future work
we hope to develop other metrics which attribute a weight to the protein annotations that will
reflect their importance to the disease being investigated.

We hypothesized that those chemicals with a weak connection to migraine will have fewer
protein annotations from the migraine protein pool. We investigated the use of protein count
thresholds to improve our results.

3.3 Increasing Precision
We investigated the relationship between protein count and the strength of the connection of
a chemical to migraine. To reflect the importance of the connection between a chemical and
migraine we continued the use of the article count metric. This metric acts as a weighted count,
giving chemicals a weight equal to the number of publications connecting them with migraine.
Counting co-occurrences to estimate relationship strength is a common technique in text
mining (e.g. [30]). Using article count, however, does have limitations. It is a direct measure
of publication activity, and publications may not always accurately reflect significance of a
chemical. (It is even difficult to define the significance of a chemical.) Publication rates may
increase, for instance, if a certain drug is suspected of having dangerous side effects.
Additionally, a chemical which has ten articles connecting it to migraine cannot be said to be
ten times more important than a chemical with only one article. Despite these limitations we
will use the article count metric as a rough indicator for the importance of a connection between
a chemical and migraine.

For a graphic understanding of these relationships between protein count, future linked (FL)
count, and article count, we created a bar chart which grouped the hypothesis set by protein
count ranges. (See Figure 5.) For each protein count range, the following percentages were
depicted as bars: the percentage of the hypothesis set, percentage of future linked (FL)
chemicals, and percentage of future linked articles. The bars in the first group, 10 proteins and
under, show that over 80% of the hypothesis set chemicals have fewer than 10 proteins linking
them to migraine. This large group has around 40% of the future linked chemicals. This group
however has only around 25% of the articles linking chemicals to migraine. Because so many
chemicals in the hypothesis set had fewer than 10 proteins, a separate bar chart (Figure 6) was
created to look at the 0–10 range in detail. This graph shows that over 40% of the chemicals
in the hypothesis set had only one protein from the migraine protein pool. This large group
contained only 10% of the true migraine chemicals and less than 5% of the migraine articles.
Eliminating this group of chemicals could improve precision without significantly degrading
recall. To test this idea, precision and recall were recalculated as the chemicals with the lowest
protein counts were consecutively eliminated. The results are contained in Table 4.

This table includes a new element: Article Recall. To calculate this we used the following
formula.
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(2)

We will illustrate this formula using the results from the entire hypothesis set.

The numerator in this equation is the number of articles associated with the 154 chemicals from
our hypothesis set that did indeed develop a future link (FL) to migraine. The denominator is
the number of articles for the chemicals in our hypothesis set that developed a future link to
migraine in addition to the 55 articles associated with the 23 chemicals that our routines did
not find. Article recall overall was 90.9%. Article recall is higher than chemical recall because
the chemicals we did find had on average more articles associated with them then the chemicals
we did not find.

Table 4 records the change in precision and recall as protein count thresholds were applied to
the hypothesis set. The elimination of each group of chemicals caused an increase in precision
and a decrease in recall. By eliminating all chemicals with 10 or fewer proteins, the hypothesis
set contains 617 chemicals. Of these 82 or 13% are future linked. While the chemical recall
was decreased to 46.3%, the article recall decreased only to 65.7%, showing that the chemicals
remaining had a more significant connection to migraine as measured by article count. The
three chemicals which eventually developed the strongest link to migraine (magnesium, nitric
oxide, and valproic acid) are all included in the set of 617, although nitric oxide, with only 11
chemicals from the protein pool, was close to the cutoff. Our results on the whole compare
favorably to other similar studies [15,20].

4. Discussion
In this proof of concept study, our strategy of using proteins as the intermediary terms in the
ABC paradigm was very effective in finding chemicals in the literature prior to 1985 that later
developed a link to migraine. The reason for this likely lies in the central role proteins play in
both disease and drug research. The study of disease increasingly focuses on the physiology
of the disease state at the molecular level, a level in which observations of proteins and their
interactions with other molecules are central. Drug research focuses on proteins as well,
searching for drugs that will modulate the behavior of proteins involved in the disease pathway.

Restricting the B terms to proteins has also allowed us to reduce the size and complexity of
the datasets we work with. A count of protein annotations in our database showed that they
comprise roughly 12% of the MeSH annotations in the subset of Medline records stored in
ChemoText (those with annotated chemicals). This represents a significant reduction in data
volume, and likely a reduction in noise, while the signal in the data remains strong enough for
the purposes of our study.

While drawing connections based on common proteins is effective in recall, the utility of the
protein count variable is not so clear. Chemicals with the lowest protein counts can be
eliminated without significant deterioration in recall, and chemicals with the highest protein
counts are more likely to be connected to migraine than the chemicals overall. Eight out of the
top 12 chemicals from the hypothesis set developed a link to migraine, a much higher
proportion than the 3.3% overall. In between the high and low extremes, however, the
correlation between protein count and strength of the connection to migraine becomes less
apparent. Table 5 calculates protein and article counts based on data retrieved from the entire
ChemoText database. Part A on the left ranks the chemicals connected to migraine by article
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count. Sumatriptan has overwhelmingly the highest article count, but a protein count of only
69. The related triptan drugs which are also highly written about have even lower protein
counts. The right hand side of the table ranks the chemicals by protein count. The article counts
do not approach the 675 articles of sumatriptan; with 230 articles serotonin comes the closest.

We have observed that protein count seems more indicative of a connection to migraine for
endogenous chemicals than for exogenous ones. Endogenous molecules are those that occur
naturally in the body. Exogenous molecules are foreign to the body, and therefore drugs belong
to this category. (Many drugs are forms or derivatives of endogenous chemicals so this is not
a strict definition.) We can speculate that endogenous chemicals are likely to be involved in
multiple pathways in the body and will therefore be over time studied for their relationship to
many diseases and will accumulate protein annotations. The goal in creating a drug, on the
other hand, is to make its action as targeted as possible in order to reduce unwanted effects.
Often a drug targets a single protein like a receptor. The literature annotations will likely include
other proteins as well as the upstream, downstream, and off-target effects are elucidated. In
future work we plan to divide the chemicals if possible into endogenous and exogenous groups
to test the significance of the protein count variable in each group.

We have shown that applying protein count cutoffs can work as dial to select different levels
of recall and precision. In practice the decision as to what levels of precision and recall are
acceptable depends on the purpose and resources of the researcher. Achieving the best possible
recall may be most important to drug researchers who have other information resources on
hand to limit the hypothesis set. These researchers can limit the set to exogenous molecules
and then examine external data such as toxicity and patent information to cull unlikely
candidates. These researchers may even augment the hypothesis set with structurally similar
molecules and then screen the whole set in silico or in vitro. Relatively higher precision, on
the other hand, may be more important to other researchers who do not have screening
resources.

One of the main challenges in developing ChemoText and in implementing Swanson’s ABC
discovery paradigm lies in the designation of chemicals in MeSH. The first challenge is that
the name of a chemical may change over time. While NLM maintains helpful records mapping
names to earlier designations, we have not written or implemented all the routines necessary
to trace the history of a chemical and relate all the names to a unique identifier. The second
hurdle is that chemicals may be categorized in several ways. Again the NLM provides the very
helpful Tree database [31], but the complexity of chemicals makes them difficult to categorize.
For instance, many endogenous molecules (including proteins) are synthesized and used as
drug therapies. It is not possible from to know from the annotations whether a reference is to
the endogenous or the exogenous form of the molecule.

Our definition of a direct connection between a chemical and a disease consists of a
cooccurrence of a subject chemical and the annotated disease. This definition is restrictive and
leaves out co-mention of a chemical with a disease in an abstract or title. It also omits possibly
informative MeSH co-occurrences. Our ChemoText database is limited by time as well. We
currently update it on a yearly basis when the new baseline data is available from the National
Library of Medicine. The MeSH vocabulary is also updated on a yearly basis, and therefore
can lag behind the results being reported.

We have found that the key relationships and entities important to computational drug
discovery show strong presence in the MeSH annotations that we do include. This key
information includes chemicals, diseases, and proteins. The limitations in the scope of the data
also reduce its size. The insights we have gained from data streamlined enough to move back
and forth in time to understand the evolution of a drug or disease treatments are valuable enough
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to risk missing connections. Because our methods involve inference – taking a set of data and
predicting new things based on it – we do not need the newest information to construct a
hypothesis set. We would however need the newest and most complete information available
on PubMed to validate any predictions we would make based the hypothesis set.

Magnesium provides a good example of the restrictiveness of our procedures and what they
would and would not consider a relationship. Entering the query “magnesium and migraine”
in PubMed Entrez gives 128 articles (as of 08/20/2008). In three of the four articles before
1985 though magnesium occurs in the Medline record, magnesium is not the main topic. The
Altura 1984 [32] article does meet our criteria for magnesium to be the subject drug, but as the
article is about strokes, migraine is only mentioned in the abstract and not annotated. The 1973
German article linking migraine therapy to magnesium glutamate specified glutamates as the
main topic[33]; no abstract is provided so it is difficult to assess the accuracy of that annotation.
The 1985 Altura article [34] about the calcium antagonist properties of magnesium is the first
article we include in ChemoText with a direct link between magnesium and migraine.

Predictions
The analysis that produced Table 5 Part B was rerun to include all chemicals, those with and
those without a direct link to migraine in ChemoText. When the list was sorted by protein
count, only three chemicals among the top-ranked 35 showed no link to migraine: zinc,
tetradecanoylphorbol acetate, and retinoic acid (MeSH term Tretinoin). Tetradecanoylphorbol
acetate is a plant derivative and, because we have noted a stronger link between protein count
and endogenous molecules and tetradecanoylphorbol is exogenous (as well as a known
carcinogen), we will not predict that it has a connection to migraine. We predict that zinc and
retinoic acid have a connection to migraine. We will briefly discuss some of the literature
evidence here.

Zinc is an important nutrient in the human diet. In the body it plays many roles both in structure
as a component of many proteins, but also in cell signaling. In [35] Frederickson et al. review
the role of zinc in neurobiology. Several of the roles they outline for zinc in the nervous system
have possible links to migraine. Zn2+, the ionic form of zinc, is a neurotransmitter and is stored
in and released from a neuron in the brain that also releases glutamate, a neurotransmitter
known to be involved in the physiology of migraine. Zinc has been shown to be active with
regard to at least two key receptors in migraine physiology: the NMDA receptor and GABA
receptor. The level of free zinc in cells, particularly in pathological conditions, is modulated
by nitric oxide, a molecule with direct links to the etiology of migraine.

Retinoic acid is a form of Vitamin A and an important molecule in regulating gene transcription.
In the nervous system it has been studied extensively for its role in development of the embryo
and its link to maintaining and remodeling the nervous system is also under investigation
[36]. Excessive Vitamin A can cause a number of conditions including idiopathic intracranial
hypertension, a condition with symptoms very similar to migraine including severe head pain
and visual disturbances[37]. Neither Vitamin A nor retinoic acid has a direct link to migraine
in ChemoText, however isotretinoin, a isomer of retinoic acid, has one link[38]. In this case
study a woman with unilateral Darier’s disease was prescribed isotretinoin to treat her skin
eruptions. She also complained of migraines. During the treatment with isotretinoin the
headaches ceased, but once the treatment concluded and she stopped taking isotretinoin, the
migraines returned. Retinoic acid also has a link to nitric oxide: in keratinocytes retinoic acid
has been shown to reduce inflammation through inhibiting the synthesis of nitric oxide[39].
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5. Conclusion
In this research we have developed a methodology for inferring drug-disease associations based
on a novel implementation of Swanson’s ABC text mining paradigm. The novelty of our
approach is that we use only MeSH protein annotations as the intermediate B terms. This
approach gives our work the following advantages over other implementations of Swanson’s
model. First, limiting the B terms to proteins lowers the volume and dimensionality of our data
and makes it more tractable. This allows us to combine data from two time periods not only to
validate our findings but also to understand what kinds of connections have emerged between
the chemical and the disease. Using proteins additionally obviates the need to have a scientist
review the intermediary results and make decisions about how to proceed, a requisite step in
some other literature-based discovery applications. In our application, human effort is saved
for evaluation of resulting hypotheses. Additionally, using proteins as the intermediary terms
also has sound biological footing: proteins are frequently the intermediary between disease and
drugs. This consideration justifies their use as functional B terms in the ABC approach. In this
proof of concept and methods development study, we have demonstrated the utility of our
approach by reproducing Swanson’s well known connection between magnesium and
migraine, as well as by predicting several other known links between drugs and disease.

Our ChemoText data repository is well-suited to finding implicit relationships. One of its
strengths comes from identifying the subject chemical of a Medline record. This is a novel
technique that not only reduces the volume of data, but reduces the noise associated with term
co-occurrence.

Article count was introduced as a rough metric for the importance or significance of a
connection between a chemical and a disease. Although we are hoping to use a more
sophisticated measure of significance in our future work, the article count metric has allowed
us to identify two chemicals with comparable significance to magnesium: valproic acid and
nitric oxide. Despite the many literature mining projects endeavoring to reproduce Swanson’s
migraine-magnesium connection, no one, as far as we know, has identified the strong link
between these chemicals and migraine. (Swanson himself however in [6] noted a connection
between epilepsy and migraine.) Valproic acid and nitric oxide should be included with
magnesium as a gold standard for future literature-based discovery research.

Based on the importance of protein count for endogenous molecules, we have predicted that
zinc and retinoic acid have a connection to migraine.

Our approach to literature-based discovery has several limitations. Connections between
biological entities which occur in the title, abstract, or full text of the article will not be picked
up. Additionally, the identification of the subject chemical is performed by a heuristic algorithm
and therefore not always accurate. The principle of assuming that two biological entities are
related because terms referring to them co-occur in the same Medline record has its limitations
and can produce false connections.

By its distillation of a large body of chemical and disease research, ChemoText offers many
rich avenues for exploration. (See Figure 4.) We hope to extend our techniques to a wider scope
of drug-disease associations. We also aim to improve on our understanding of the patterns
residing in the data so that we can develop procedures and metrics that will lead to higher
precision and models with improved predictive abilities. In order to improve evaluation, we
hope in the future to adopt the guidelines described in[23]. As the biomedical literature grows
in volume and continues to segment into specialties, the need for tools to combine literatures
in rational, useful ways will become increasingly critical to scientists in drug discovery. We
have shown that ChemoText represents a promising addition to the field of literature-based
drug discovery.
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Figure 1.
Swanson’s ABC Paradigm
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Figure 2.
Swanson’s ABC using ChemoText
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Figure 3. Medline processing into data tables
The top part of the figure shows selected MeSH annotations in the Medline record for PubMed
ID 16640785. The bottom of the figure shows the database entries in ChemoText that result
from the processing of this Medline record.
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Figure 4.
Schematic view of ChemoText

Baker and Hemminger Page 17

J Biomed Inform. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Bar chart showing percentages by protein count
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Figure 6.
Bar chart showing percentages by protein count for chemicals with 10 or fewer associated
proteins
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Table 1
Hierarchy of MeSH subheadings used when establishing subject chemicals

Only chemicals flagged as major in at least one of their subheadings are used as input to the algorithm. If a
subheading from level one is found, the associated chemical(s) are designated subjects. Only if no chemical has
a subheading from the first group does the algorithm look at subheadings from the second group. If no chemicals
have been identified annotated with subheadings from the first two groups, then chemicals tagged with a
subheading from level 3 are tagged as subjects.

Level MeSH subheadings

1 Pharmacology OR Adverse Effects OR Therapeutic Use OR Administration
& Dosage OR Toxicity OR Pharmacokinetics

2 Any subheadings except Biosynthesis, Metabolism, Chemistry

3 Biosynthesis OR Metabolism OR Chemistry
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