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Abstract
Biotransformation of inorganic arsenic (iAs) is one of the factors that determines the character and
magnitude of the diverse detrimental health effects associated with chronic iAs exposure, but it is
unknown how iAs biotransformation may impact the epigenome. Here, we integrated analyses of
genome-wide, gene-specific promoter DNA methylation levels of peripheral blood leukocytes
(PBLs) with urinary arsenical concentrations of subjects from a region of Mexico with high levels
of iAs in drinking water. These analyses revealed dramatic differences in DNA methylation
profiles associated with concentrations of specific urinary metabolites of arsenic. The majority of
individuals in this study had positive indicators of arsenic-related disease, namely pre-diabetes
mellitus or diabetes mellitus. Methylation patterns of genes with known associations to diabetes
mellitus were associated with urinary concentrations of specific iAs metabolites. Future studies
will determine whether these DNA methylation profiles provide mechanistic insight into the
development of iAs-associated disease, predict disease risk, and/or serve as biomarkers of iAs
exposure in humans.
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INTRODUCTION
Millions of people worldwide are exposed to concentrations of inorganic arsenic (iAs) in
their drinking water that exceed the World Health Organization’s recommended limit of 10
ppb [1, 2]. Chronic iAs exposure has been associated with a variety of adverse health effects
in humans, collectively known as arsenicosis. These effects include characteristic skin
lesions, cancers of the skin and various internal organs, neurological disorders,
cardiovascular disease, and diabetes mellitus (DM) [3]. The mode of action (MOA) of iAs is
complex, and the etiology of iAs-associated diseases likely involves multiple mechanisms.
Deleterious effects believed to play important roles in iAs-associated disease development
include the generation of oxidative stress, the formation of various genetic aberrations, the
binding and inhibition of iAs metabolites to enzymes, and perturbation of key signaling
pathways [4–7].

Epigenetic alterations are also believed to play an important role in the MOA of iAs. For
example, changes in the patterns/levels of DNA methylation, histone post-translational
modifications and microRNAs have been observed after iAs exposure in laboratory studies
and/or in human populations [8]. These alterations have the potential to greatly impact
cellular homeostasis as each of these epigenetic components plays a crucial role in
regulating gene expression [9]. The impact on DNA methylation patterns is the most
extensively-studied epigenetic alteration associated with arsenic (As) exposure. Importantly,
there are several examples in the literature in which alterations in DNA methylation patterns
have been implicated as mediators of As toxicity [10–13].

The biotransformation of iAs, which produces trivalent and pentavalent monomethylated
and dimethylated arsenicals (MMAs and DMAs, respectively) [14], also plays an important
role in the development of iAs-associated disease. The concentrations and proportions of iAs
metabolites detected in the urine of chronically-exposed populations can vary considerably
between individuals in which total urinary As is comprised of ~10–20% iAs, ~10–20%
MMAs, and ~60–80% DMAs [15]. These arsenicals differ in their biological effects.
Specifically, methylated trivalent arsenicals, namely monomethylarsonous acid (MMAIII)
and dimethylarsinous acid (DMAIII), are the most toxic forms [16, 17]. Therefore,
differences in the levels of urinary arsenicals likely influence the risk of iAs-associated
disease in exposed individuals. An individual’s capacity to biotransform iAs indeed appears
to influence disease risk as high urinary proportions of MMAs and/or high ratios of MMAs/
DMAs have been associated with the development of several iAs-associated diseases [18,
19]. The biotransformation of iAs may impact disease development not only by generating
highly reactive and toxic metabolites, but through the process of iAs biotransformation
itself, which requires S-adenosyl methionine (SAM), the same methyl group source required
for DNA methylation [20, 21]. Arsenic-induced alterations in methionine metabolism are
one of the major proposed mechanisms by which iAs may alter DNA methylation status.
Aside from direct consumption of SAM during iAs biotransformation, iAs exposure can
alter methionine metabolism through the consumption of the cellular reductant glutathione
(GSH). GSH and SAM metabolic pathways are biochemically linked due to their shared
requirement for homocysteine [22]. Exposure to iAs can considerably deplete cellular GSH
levels. GSH is consumed during iAs biotransformation [23] and is excreted from the cell as
As-glutathione conjugates, which serve as a major defense mechanism against As-induced
oxidative stress [24, 25]. Changes in SAM availability due to iAs exposure/
biotransformation may therefore perturb DNA methylation patterns and subsequently
influence disease risk by altering the expression of key genes. To our knowledge, the
relationship between DNA methylation patterns and the urinary concentrations of iAs,
MMAs, and DMAs in exposed populations has not been investigated.
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Here, we set out to examine the relationship between genome-wide, gene-specific promoter
DNA methylation levels of peripheral blood leukocytes (PBLs) and urinary arsenical
concentrations in individuals from an endemic arsenicosis population in Zimapán, Mexico
[26, 27]. Importantly, half of these individuals have skin lesions characteristic of arsenicosis,
and we previously identified genes with differentially methylated promoters in PBLs from
these individuals as they relate to skin lesion status [28]. Here, we expand this effort to
examine the relationship between PBL DNA methylation status and urinary arsenical levels
across these individuals.

MATERIALS AND METHODS
Study Subjects

The subjects in this study are described in detail elsewhere [28]. Briefly, these subjects are
part of a larger population from Zimapán, Hildago, Mexico who are exposed to varying
concentrations of iAs in their drinking water. Approximately one half of the 46,000 residents
living in the area consume drinking water containing higher concentrations of iAs (21–1100
ppb; mean of 110 ppb) than the World Health Organization’s recommended maximum
contaminant level of 10 ppb [1, 27]. Spot urine samples were used for arsenical analyses.
Total arsenic (tAs) concentrations were measured by hydride generation atomic fluorescence
spectrometry (HG-AFS). The concentrations of iAs (trivalent + pentavent), MMAs (trivalent
+ pentavent), and DMAs (trivalent + pentavalent) were determined by hydride generation
atomic absorption spectrometry (HG-AAS) with cryotrapping [27]. The percentage of
hemoglobin A1C (HbA1c) in fasting blood of each subject was determined using GDX A1c
test cartridges (Cholestech Corp., Hayward, CA) [27].

Association Between Promoter DNA Methylation Levels and Urinary Arsenical
Concentrations

Methylated DNA was extracted from peripheral blood leukocytes (PBLs) of 16 females,
amplified, and hybridized to Affymetrix Human Promoter 1.0R arrays (Affymetrix, Santa
Clara, CA) as previously described [28]. These arrays represent >25,500 human promoter
regions, ~14,000 of which contain CpG islands, known targets of DNA methylation. Data
were normalized using robust multi-chip average (RMA) and bioinformatically summarized
at the CpG island level [29].

Associations between DNA methylation levels and the individual concentrations of iAs,
MMAs, DMAs in urine were tested while adjusting for age as a potential confounder.
Pearson correlation coefficients were calculated to describe the relationship between urinary
arsenical concentrations and promoter DNA methylation levels, and p-values were
computed for each correlation coefficient. In order to be considered for further analysis,
genes were required to achieve nominal significance (p-value<0.05). Hierarchical clustering
was performed using the correlation coefficients of the 812 unique genes that achieved
nominal significance for at least one of the arsenical groups using Partek Genomics Suite™
(version 6.5) software (Partek, Inc. St. Louis, MO).

Genes were subsequently analyzed for associated biological functions and canonical
pathways using IPA software (Ingenuity Systems, Redwood City, CA). The Ingenuity
Knowledge Base within IPA is a literature-based database of molecular interactions and
functional annotations based on known relationships between cells, cellular components,
drugs and diseases. All p-values were calculated in IPA using a right-tailed Fisher’s exact
test, which determines the probability that associated functions and canonical pathways were
generated due to chance alone. Individual genes in the DM pathways of interest were
considered to have a statistically significant association between promoter DNA methylation
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levels and concentrations of iAs, MMAs and/or DMAs if they passed the stringent statistical
filters of (1) association p-value<0.05 (2) a false discovery rate (FDR) q-value<0.2 [30–32].

RESULTS
Assessment of Urinary Arsenicals and Indicators of Diabetes Mellitus in Study
Participants

The concentrations and proportions of iAs, MMAs, and DMAs in urine and percentage of
glycosylated hemoglobin (%HbA1c) in blood for each of the 16 study subjects were
measured (Table 1). Total As (tAs) measurements ranged between 3.6–31.8 ng As/ml urine
across the 16 study subjects with an average of 10.7 ng/ml (Table 1). Measurements of the
three major urinary arsenical species were 0.3–4.8 ng iAs/ml, 0.6–6.1 ng MMAs/ml, and
2.3–22.0 ng DMAs/ml. The proportions (% of total urinary As) ranged from 5.3–21.4% for
iAs, 10.3–28.9% for MMAs, and 49.3–84.9% for DMAs. The %HbA1c values ranged from
5.4–10.6, with an average of 6.7. These results indicate that eight of the 16 study subjects
had positive indicators of diabetes (HbA1c≥6.5%) and seven had positive indicators of pre-
diabetes (HbA1c=5.7–6.4%) (Table 1) [33]. Of the eight individuals with iAs-associated
skin lesions, five had positive indicators of diabetes and three had positive indicators of pre-
diabetes.

Genome-wide, Gene-specific DNA Methylation Patterns Associate with Urinary Arsenical
Concentrations

Considering the susceptibility to iAs-related diseases has been associated with both the level
of iAs exposure and iAs biotransformation capacity [19, 34–39], we examined the
relationship between the concentrations of urinary arsenicals and promoter DNA
methylation levels across >14,000 genes. Analyses were carried out to identify all genes for
which promoter DNA methylation was associated with the urinary concentrations of iAs and
the iAs metabolites MMAs and DMAs across the subcohort. For this analysis, a total of 812
unique genes were identified. These corresponded to 455 genes with promoter DNA
methylation levels associated with iAs, 556 with MMAs, and 121 with DMAs (Figure 1)
(see online supporting material [40]). There was some overlap in terms of common genes
between the three arsenical groups, with a minimum overlap of 47% (i.e. 264 of the 556
MMAs-associated genes were also present in the iAs and DMAs groups) and a maximal
overlap of 72.7% (88/121) for the DMAs group (Figure 1).

Functional analyses of the proteins encoded by the differentially methylated genes revealed
they represented diverse functions in the cell. The five most significant canonical pathways
associated with the total number of genes from each group are indicated in Figure 1. While
many of the canonical pathways were distinct for each arsenical class, common themes
emerge. For example, genes that play a role in the transforming growth factor-beta (TGF-β)
pathway have DNA methylation patterns that are associated with each of the arsenicals.
Major functions associated with these canonical pathways include cellular growth and
development, inflammatory response/immune response, nuclear receptor signaling, cellular
stress/injury, carbohydrate metabolism, intercellular/intracellular signaling, and apoptosis
(Figure 1).

Across the cohort, the majority of genes show decreased promoter DNA methylation levels
with increasing concentrations of urinary arsenicals for each arsenical group (Figure 2). For
example, there were 493 genes out of 556 total genes (or 88.6%) that had decreasing
promoter DNA methylation levels with increasing urinary concentrations of MMAs (Figure
2) [40].
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Association Between DNA Methylation Levels of Diabetes Mellitus-Related Genes and
Urinary Arsenicals

The type 2 DM (T2DM) canonical pathway was among the most significant perturbed
pathways associated with urinary concentrations of DMAs (Figure 1). In addition, the type 1
DM (T1DM) pathway was significantly associated with MMAs-associated genes
(p=1.0×10−2; results not shown). Together, these genes include those involved in one or
more processes associated with DM such as destruction of insulin–producing pancreatic β
cells (T1DM and T2DM) and altered insulin signaling in peripheral tissues associated with
T2DM (Figure 3A, B, Table 2).

Two of the MMAs-associated genes are involved in β cell destruction by signaling through
two mitogen-activated protein kinase (MAPK) signaling cascades, P38 or c-Jun N-terminal
kinases (JNK), or through transcription factor nuclear factor kappa beta (NF-κB). These
genes include interferon regulator factor (IRF1) and TNF-receptor-associated factor 6
(TRAF6) [41, 42]. MMAs-associated genes also include the major β cell autoantigen
glutamate decarboxylase 1 (GAD1) [43], minor B cell autoantigen vesicle-associated
membrane protein 2 (VAMP2) [44] (associated with T1DM) and genes involved in insulin
signaling in peripheral tissues, namely tumor necrosis factor receptor superfamily, member
1B (TNFRSF1B), inositol polyphosphate phosphatase-like 1 (INPPL1), suppressor of
cytokine signaling 6 (SOC6), and VAMP2 [45–49]. DMAs-associated genes included those
involved in insulin signaling and β cell homeostasis such as pancreatic and duodenal
homeobox 1 (PDX1) [50, 51]; β cell apoptosis, i.e. mitogen-activated protein kinase kinase
kinase 1 (MAP3K1) [52], and both insulin signaling and β cell apoptosis, namely protein
kinase C delta (PRKCD) [53, 54]. The DM-related gene associated with urinary iAs
concentrations was the insulin signaling regulator INPPL1. With the exception of PRKCD
(DMAs-associated gene), the promoter DNA methylation levels of each of these
aforementioned DM-related genes decreased with increasing urinary arsenical
concentrations (Figure 3, Table 2).

DISCUSSION
In this work, we set out to describe the relationship between promoter DNA methylation
levels of PBLs and urinary arsenical concentrations in selected individuals from an
arsenicosis endemic population in Zimapán, Mexico. Importantly, urinary arsenical levels
and alterations in DNA methylation profiles are implicated in the development of iAs-
associated disease. However, to our knowledge, this is the first analysis of the association
between genome-wide, gene-specific PBL DNA methylation patterns and the concentrations
of urinary arsenicals in an exposed human population.

As expected, the levels and proportions of each urinary arsenical differed among these 16
individuals and were consistent with those of other chronically-exposed populations [15,
55]. Distinct gene sets were identified that showed patterns of DNA methylation associated
with iAs, MMAs and/or DMAs concentrations. Most genes showed decreased promoter
DNA methylation levels with increasing urinary arsenical concentrations. Interestingly,
these patterns of methylation differ from our previous work in which we detailed a general
trend of gene specific-hypermethylation associated with skin lesion status [28]. These results
underscore that patterns of DNA methylation likely differ when analyzed in the context of
exposure or disease.

The results presented here indicate that different urinary arsenical levels, and thus
differences in iAs metabolism, are indeed associated with different patterns of gene-specific
DNA methylation. Epigenetic alterations have been considered likely crucial events that link
toxicant exposure to environmentally-induced disease [56]. Considering the risk of iAs-
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related disease has been associated with both iAs exposure dose and iAs biotransformation
capacity [19, 34–39], these arsenical concentration-specific and arsenical-specific DNA
methylation profiles may help inform the risk and/or mechanisms of disease development in
iAs-exposed populations.

This aforementioned hypothesis is particularly attractive considering the identification here
of altered DNA methylation levels of several DM-related genes associated with
concentrations of specific urinary arsenicals. Of note, the majority of study subjects had
positive indicators of DM or pre-DM and were from a larger population in the Zimapán and
Lagunera regions of Mexico in which the prevalence of DM has been shown to be positively
associated with concentrations of iAs in drinking water and DMAIII in urine [27]. Taken
together, epidemiological evidence has been historically judged as insufficient or inadequate
to establish a causal relationship between iAs exposure and DM development [57–59].
However, other recent studies of chronically-exposed populations have also reported a
positive association between T2DM development and tAs concentrations in urine [60] and
iAs concentrations in drinking water [61]. Here, we report a dose-response relationship
between the promoter DNA methylation levels of several DM-related genes and specific
urinary arsenicals, including DMAs. The identified genes are primarily associated with two
functions related to DM development, namely pancreatic β cell apoptosis and insulin
signaling perturbations in peripheral tissues. These results are consistent with in vitro and in
vivo evidence that suggest arsenicals cause diabetogenic effects by targeting both β cell
function and insulin-activated signal transduction pathways [62–65].

It is important to note, however, that PBLs are not cells associated with the development of
any known iAs-associated disease, and that the DNA methylation profiles of DM-associated
genes in PBLs may not reflect patterns observed in cells involved in DM development such
as pancreatic β cells. Due to practical limitations associated with examining target cell types
across large populations, PBL DNA methylation patterns have been used as biomarkers of
toxicant exposure or health outcomes in epidemiological studies, and the value of these PBL
methylation profiles has been the subject of considerable discussion [66]. The use of PBLs
as intermediate biomarkers of disease risk and toxicant exposure in different target tissues
and organs is rapidly developing. For instance, recent publications have reported distinct
PBL DNA methylation patterns associated with breast cancer risk [67], insulin resistance
[68], and risk of T2DM development [69] in humans. Importantly, the urinary arsenical-
specific DNA methylation profiles reported here may be representative of critical factors
that link iAs biotransformation to iAs-associated disease as they are enriched for genes with
known associations consistent with the disease status (pre-DM/DM) of the majority of study
subjects. Future work will expand the number of individuals in the cohort to determine if
these PBL methylation profiles may serve as useful biomarkers of iAs exposure or provide
insight into the mechanisms and susceptibility of iAs-associated disease.
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As arsenic
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DM diabetes mellitus

DMAs trivalent+pentavalent dimethylated arsenic

DMAIII dimethylarsinous acid

GSH glutathione

iAs inorganic arsenic

HbA1c hemoglobin A1c

MMAs trivalent+pentavalent monomethylated arsenic

MMAIII monomethylarsonous acid

MOA mode of action

PBL peripheral blood leukocyte

SAM S-adenosylmethionine

T1DM type 1 diabetes mellitus

T2DM type 2 diabetes mellitus
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FIGURE 1.
Venn diagram illustrating the number of genes that have a statistically significant
association between promoter DNA methylation levels and urinary concentrations of iAs,
MMAs and/or DMAs. The five most significant canonical pathways associated with the
genes in each group are displayed. Major functions associated with these pathways
include: 1cellular growth and development, 2inflammatory response/immune
response; 3nuclear receptor signaling, 4cellular stress/injury, 5carbohydrate
metabolism, 6intercellular/intracellular signaling, and 7apoptosis.
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FIGURE 2.
Hierarchical clustering of the association coefficients of 812 unique genes that had a
statistically significant association between promoter DNA methylation status and
concentrations of iAs, MMAs, and/or DMAs in urine. The number of genes that were
positively and negatively correlated with concentrations of arsenical is indicated (# positive/
# negative) and represented by red and blue tones, respectively.
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FIGURE 3.
Promoter DNA methylation levels of diabetes mellitus (DM)-associated genes correlated
with urinary concentrations (ng/ml) of iAs, MMAs, and/or DMAs. DM-associated genes
include those involved in (A) pancreatic β-cell apoptosis particularly related to T1DM and
(B) insulin signaling/insulin resistance in peripheral tissues that are primarily associated
with T2DM. Genes with promoter DNA methylation levels that had a positive or negative
association with urinary arsenical concentrations are shaded in red and green, respectively.
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TABLE 2

Promoter DNA Methylation Levels of Diabetes Mellitus-Related Genes Associated with Urinary Arsenical
Concentrations

Gene
symbol

Gene name Promoter
methylation
change with
increasing urinary
arsenical (ng/ml)

Arsenical
group
(ng/ml)

Association with
diabetes mellitus (DM)

GAD1 glutamate decarboxylase 1 hypomethylation MMAs Major β cell autoantigen in T1DM [43]

INPPL1 inositol polyphosphate phosphatase-
like 1

hypomethylation iAs MMAs Negative regulator of insulin signaling [46];
expression associated with insulin resistance
[70]

INS insulin hypomethylation MMAs Promotes glucose uptake from blood into
peripheral tissues [71]

IRF1 interferon regulatory factor 1 hypomethylation MMAs Promotes β cell apoptosis [41]

MAP3K1 mitogen-activated protein kinase
kinase kinase 1

hypomethylation DMAs Promotes β cell apoptosis [52]

PDX1 pancreatic and duodenal homeobox 1 hypomethylation DMAs Transcriptional activator of insulin gene;
important in β cell differentiation, development,
function and survival [50, 51]

PRKCD protein kinase C delta hypermethylation DMAs Promotes β cell apoptosis [53]; regulates insulin
signaling [54]

TNFRSF1B tumor necrosis factor receptor
superfamily, member 1B

hypomethylation MMAs Regulator of TNFa-mediated apoptosis [72];
levels of plasma soluble fraction of receptor
positively correlated with insulin resistance [45],
severity of diabetic retinopathy [73], and
predicting risk of end stage renal disease [74],
and chronic kidney disease [75] in diabetics

TRAF6 TNF receptor-associated factor 6 hypomethylation MMAs Promotes β-cell apoptosis [42]

SOCS6 suppressor of cytokine signaling 6 hypomethylation MMAs Regulator of insulin signaling [47, 48]

VAMP2 vesicle-associated membrane protein 2 hypomethylation MMAs Minor antigen in T1DM [44]; involved in
translocation of glucose transporter to cell
membrane, overexpressed in insulin-resistant
tissue [49]
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