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Abstract

Neurobiological underpinnings of unusual sensory features in individuals with autism are 

unknown. Event-related potentials (ERPs) elicited by task-irrelevant sounds were used to elucidate 

neural correlates of auditory processing and associations with three common sensory response 

patterns (hyperresponsiveness; hyporesponsiveness; sensory seeking). Twenty-eight children with 

autism and 39 typically developing children (4–12 year-olds) completed an auditory oddball 

paradigm. Results revealed marginally attenuated P1 and N2 to standard tones and attenuated P3a 

to novel sounds in autism versus controls. Exploratory analyses suggested that within the autism 

group, attenuated N2 and P3a amplitudes were associated with greater sensory seeking behaviors 

for specific ranges of P1 responses. Findings suggest that attenuated early sensory as well as later 

attention-orienting neural responses to stimuli may underlie selective sensory features via complex 

mechanisms.
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Autism Spectrum Disorder (ASD) is characterized by impairments in communication, 

abnormal social interaction, and the presence of restricted, repetitive behaviors (DSM-IV-

TR; American Psychiatric Association, 2000). Alongside these identifying core features, 

individuals with ASD often display a range of atypical responses to sensory information 

(Baranek et al. 2006). Elucidating the neural and behavioral correlates of sensory processing 

deficits in ASD may inform theories relating to the core characteristics, as well as higher-

order cognitive deficits (i.e. Gomot and Wicker 2012; Hill 2004), of the disorder. While a 

large body of research describes behavioral manifestations of atypical sensory responses in 

ASD throughout development, few studies have explored neurobiological correlates of these 

behaviors. Electro- and Magnetoencephalography (EEG and MEG) provide unique tools for 

exploring the neural basis of sensory processing impairments as they allow for the analysis 

of distinct temporal components of information processing, and may therefore elucidate the 

temporal characteristics of atypical sensory processing in individuals with autism. The 

current study employs EEG to examine aberrations in temporal components of sensory 

processing in children with ASD and their potential associations with clinical measures of 

atypical sensory response patterns.

Sensory features in ASD have been documented in infancy (Ben-Sasson et al. 2008), 

childhood (Leekam et al. 2007; Liss et al. 2006), and adulthood (Crane et al. 2009; Harrison 

and Hare 2004) with reported prevalence rates ranging from 42% to as much as 100% 

(Baranek et al. 2006; Dawson and Watling 2000; Kientz and Dunn 1997) with varying levels 

of severity. While sensory features are not unique to ASD, they appear to be more prevalent 

in this population than in other developmental disabilities (Baranek et al. 2006; Ben-Sasson 

et al. 2009; Leekam et al. 2007).

Sensory features in ASD are well documented across all sensory modalities and may 

aggregate into behavioral sensory response patterns including, but not limited to, sensory 

hyperresponsiveness, sensory hyporesponsiveness and sensory seeking behaviors (e.g., 

Baranek et al. 2006; Brock et al. 2012; Dunn 1997; Miller et al. 2007). Sensory 

hyporesponsiveness is characterized by a lack of, less intense, or delayed response to 

sensory stimuli (e.g., Baranek et al. 2006; Ben-Sasson et al. 2007; Dunn 1997). For example, 

a child may show no behavioral orienting to a novel sound, or may have a diminished 

response to pain. Hyperresponsiveness is characterized by an exaggerated, aversive, or 

avoidant response to sensory stimuli (e.g., Baranek et al. 2007; Dunn 1997; Mazurek et al. 

2013; Reynolds and Lane 2008). For example, a child may show discomfort to grooming 

activities, or cover ears in response to certain sounds. Sensory seeking behaviors are 

characterized by a fascination with, or craving of, sensory stimulation which is intense and 

may be repetitive in nature (e.g., Ausderau et al. under review; Dunn 1997). For example, a 

child may show a fascination with flickering lights or rubbing textures. Aggregating 

individual sensory features into behavioral response patterns may help to elucidate 
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pathogenesis and facilitate understanding of generalized mechanisms supporting multi-

modal sensory processes.

Atypical responses to auditory stimuli in infancy are predictive of a later diagnosis of ASD 

(Baranek 1999; Guiraud et al. 2011; Osterling and Dawson 1994). Early sensory, and 

especially, auditory experiences are also a prerequisite for the development of speech and 

language (Jansson-Verkasalo et al. 2010), and any atypical pattern in auditory processing 

early in life may have detrimental consequences on later language development and hamper 

effective communication.

Despite the overwhelming evidence for the high prevalence of these unusual sensory 

features in individuals with ASD, their neurobiological underpinnings have yet to be 

delineated. One way of investigating the neural signature of auditory information processing 

is by means of event-related potentials (ERPs). ERPs represent transient changes in the 

brain’s scalp-recorded electrical activity in response to the repetitive presentation of certain 

stimuli. Because ERPs are non-invasive, have a high temporal resolution, and can be 

measured without requiring a response, they are particularly well suited to investigating 

specific stages of (auditory) information processing in very young, nonverbal, and clinical 

populations. Research investigating auditory information processing in children, adolescents 

and adults has revealed that ERPs change over the lifespan. These changes can be due to 

neural maturation, such as white and gray matter volume changes, affecting processing 

speed and processing efficiency (Albrecht et al. 2000; Caviness et al. 1996; Tonnquist-

Uhlen 1996). In typically developing children, the presentation of repeated tones in a 

sequence elicits a series of “obligatory” midlatency peaks identified as P1 and N1/N2, 

whereas in adults P1 (a.k.a. P50), N1 and P2 peaks can be discerned. In adults, the P1 peak 

to simple tone stimuli generally occurs between 40 and 60 ms, the adult N1 peak generally 

occurs between 90–100 ms, and the adult P2 peak generally occurs between 140–170 ms 

poststimulus. The N1 and P2 peaks are typically not seen in children under 9 years of age, 

although the likelihood of observing these components increases with longer (> 1 Hz) inter 

stimulus intervals, resulting primarily in the domination of these early responses by the N2 

peak, which appears to decrease in size from 5–10 years of age and become expressed 

primarily as an N1 in adults (Ceponiene et al. 1998; Sussman et al. 2008). The N2 peak 

occurs between 220 and 280 ms. These passive midlatency evoked potentials, elicited in the 

absence of an overt task, are pre-attentive and reflect the physical properties of a stimulus 

(Ceponiene et al. 2002; Lepistö et al. 2005), as well as detection, classification, and 

orientation (see Key et al. 2005, for an overview). When an occasional infrequent deviant 

sound is interspersed between a series of identical frequently presented “standard” sounds, a 

measure of sound discrimination can be obtained by subtracting the ERP to the standard 

sounds from the ERP to the deviant sounds. In adults, this results in a distinctive brain 

response, the mismatch negativity (MMN), which is hypothesized to reflect a sensory 

response to the mismatch between the memory trace of the standard and the new incoming 

stimulus, also known as “preattentive memory” (Näätänen et al. 1978). MMN-like 

discriminative ERP responses (‘mismatch responses’; MMRs) can also be obtained very 

early in infancy (Cheour 2007). The MMN/MMR is elicited even when the participant is not 

actively attending to the stream of sounds. In addition, the involuntary capture of attention 

can be indexed when an unexpected or ‘novel’ stimulus is introduced into the stream of 
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standard stimuli. If this stimulus is salient enough, an individual’s attention will switch 

towards the stimulus and a positive deflection, known as the P3a, is elicited roughly 300 ms 

after onset of the novel stimulus (Comerchero and Polich 1998). Unlike the MMN/MMR, 

the P3a is attention dependent and reflects higher cognitive processing of stimuli.

Understanding of atypical auditory processing in children with ASD may be important to 

disentangle different etiologies of autism, target treatments for auditory hypo- and 

hyperresponsive and sensory seeking behavioral patterns, and potentially improve language 

learning and communication. Electrophysiological evidence obtained through ERPs 

indicates that ASD is indeed characterized by abnormal cortical processing of auditory 

stimuli. However, results have been inconsistent (see Bomba and Pang 2004; Jeste and 

Nelson 2009; Marco et al. 2011 for reviews). Discrepant findings in the literature are at least 

partly due to differences in the experimental task protocols, sample characteristics, and 

small sample sizes. However, few studies have investigated the association between brain 

electrical responses and clinical measures of sensory features and even fewer have used both 

observational assessments and parent report to examine responses to sensory stimulation. 

Gomot et al. (2011) found that children with autism who scored higher on intolerance of 

change on the Behavior Summarized Evaluations scale (BSE-R) had significantly shorter 

mismatch negativity latencies and P3a latencies compared to children with autism who 

scored lower on this scale. Orekhova et al. (2012) in a MEG study showed that atypical 

P100m lateralization in children with autism was associated with greater severity of sensory 

abnormalities assessed by the Short Sensory Profile, as well as with auditory 

hypersensitivity during the first two years of life.

In the current study, we examined responses to sensory stimulation measured by both parent 

report and observational assessments in a group of children with autism and gender- and 

age-matched typically developing children, ages 4–12 years. We employed clinical 

measures of sensory features across three patterns (hyperresponsiveness, 

hyporesponsiveness, and sensory seeking behaviors), as well as an auditory oddball ERP 

paradigm for which we focused on the P1, N1/N2, and P3a components elicited by standard 

(P1, N1/N2), pitch deviant (P1, N1/N2), duration deviant (P1, N1/N2) and novel sounds 

(P3a) respectively. This particular oddball paradigm allowed us to study the auditory 

information processing stream across both groups from early detection to later classification 

and orientation. Given the developmental maturation and potential fusing of the N1 and N2 

components during the age window examined in this study, we will refer to this component 

as the N2 going forward for simplification. Our aims were twofold: 1) to characterize and 

compare brain responses to different types of auditory stimuli in children with autism and 

their typically developing peers and 2) to examine the association between auditory brain 

responses and clinical sensory response patterns, as measured through observational and 

parental report assessments, in children with autism.

Methods

Participants

The study (N=67) included 28 children with autism and 39 children with typical 

development (TD), ages 4–12 years. EEG data were collected for an additional 17 children 
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with autism and 7 typically developing children, but was excluded for the following reasons: 

eye movement data could not be collected for 16 participants (11 autism and 5 TD) because 

these children would not tolerate placement of the eye electrodes; 4 participants (2 autism 

and 2 TD) had bad data due to excessive participant motion; for 3 children with autism the 

session had to be aborted since they would not tolerate the electrode cap; and for 1 child 

with autism there was an error with the testing equipment during data collection. 

Participants in the autism group and the TD group did not differ in chronological age 

(autism mean: 91.4 months, TD mean: 84.4 months, p>0.25). However, the autism group did 

have significantly lower mental age (autism mean: 73.4 months, TD mean: 97.9 months, 

t(64)=2.23, p=0.03) and non-verbal IQ (autism mean: 82.6, TD mean: 108.5; t(38.5)1=5.55, 

p<0.0001). Demographics for both participant groups are reported in Table 1.

Children in the autism group were diagnosed with Autistic Disorder by a licensed 

psychologist or physician, typically in the context of a multidisciplinary team evaluation. 

Additionally, all cases met algorithm cut-offs for “Autism” on the Autism Diagnostic 

Interview-Revised (ADI-R; Lord et al. 1994), and the Autism Diagnostic Observation 

Schedules-2 (ADOS-2; Gotham, et al. 2007; Lord et al. 2006; Lord et al. 2012), using 

Modules 1, 2, or 3 as appropriate to the age and verbal ability of the child. Children with 

typical development had no history of developmental delays or interventions, no symptoms 

of autism as confirmed by the Childhood Autism Rating Scale (CARS; Schopler et al. 

1986), and cognitive and adaptive behavior scores in the average range as confirmed by 

standardized assessments (see clinical and behavioral measures section below). Exclusion 

criteria for both groups included a) known genetic conditions (e.g., fragile X syndrome, 

tuberous sclerosis, Down syndrome), b) seizure disorder with evidence of seizure activity 

within the past 12 months, c) significant physical impairments/limitations, d) diagnosis of 

schizophrenia or bipolar disorder and/or any psychiatric condition with hallucinations or 

delusions, and/or e) currently taking antipsychotic medications (e.g., Risperdal). Participant 

medications included stimulants (3 participants with autism), antidepressants (2 with 

autism), and an NMDA receptor antagonist (1 with autism).

Participants were recruited from multiple venues, including a previous large study cohort, a 

university based autism subject registry, and local community agencies, clinics, schools and 

parent groups. Project staff contacted interested families via telephone, screened children for 

eligibility, and scheduled them for onsite developmental and sensory testing, diagnostic 

confirmation, and an EEG session. Parents completed developmental and sensory 

questionnaires and interviews about their children. Monetary incentives of $150-$175 were 

provided for participating families dependent upon the number of assessments completed. 

Children received a small toy or book and a certificate with a graphical image of their brain 

waves for completing the study. See Table 1 for a summary of participant and family 

descriptive and demographic information. The experimental protocol was approved by the 

university’s Institutional Review Board. All guardians of participants gave written informed 

consent, and participants gave written assent if applicable.

1Degrees of freedom (df) are adjusted due to Satterthwaite’s correction for unequal variances.
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Clinical and Behavioral Measures

Prior to EEG, research staff screened children in both groups to confirm normal or corrected 

to normal vision to acuity of 20/40 using the Cardiff Acuity Test (Adoh et al. 1992) and 

hearing using otoacoustic emission screening.

Children received a standardized cognitive assessment appropriate to their age and 

developmental level – either the Mullen Scales of Early Learning (MSEL; Mullen 1995), the 

Stanford Binet Intelligence Scales, Fifth Edition (SB5; Roid 2003), or the Leiter 

International Performance Scale - Revised (Roid and Miller 1997). Standardized nonverbal 

IQ scores were reported descriptively, whereas, mental age (MA) equivalents, a measure of 

cognitive maturation, were used as a covariate in the analyses to control for the 

heterogeneity in developmental levels across participants. The Vineland Adaptive Behavior 

Scales-Survey Edition (VABS; Sparrow et al. 1984), a structured, standardized caregiver 

interview, was administered to a parent of each participant to describe adaptive functioning 

levels. Parents also completed a handedness questionnaire to assess children’s hand 

dominance in everyday activities adapted from McManus et al. (1988) and Cornish and 

McManus (1996). In addition, autism diagnostic instruments (noted in the participants 

section) were used to rule in/out diagnosis, and to determine severity levels of autistic 

symptoms. We specifically used the ADOS-2 calibrated severity scores, a standardized 

metric that can be used across modules (Gothham, et al. 2009), as a covariate in our within-

group analyses. Calibrated severity scores on the ADOS-2 can range from 0–10, with scores 

between 1–3 representing “nonspectrum”, 4–5 “ASD” and 6–10 “Autism” classifications. 

Our autism group had a mean of 8.5 (SD=1.2).

A total of four clinical sensory measures, two observational measures: the Tactile 

Defensiveness and Discrimination Test-Revised (TDDT-R; Baranek and Berkson 1994), and 

the Sensory Processing Assessment for Young Children (SPA; Baranek 1999); and two 

parent questionnaires: the Sensory Experiences Questionnaire (SEQ; Baranek 1999; Baranek 

et al. 2006), and the Sensory Profile (SP; Dunn 1999) were used to measure the three 

sensory constructs of interest (hyperresponsiveness, hyporesponsiveness, and sensory 

seeking patterns).

The TDDT-R is an observational play-based assessment of tactile responsiveness and has 

been validated with children with autism and developmental disorders (DD) (Baranek et al. 

2007; Baranek and Berkson 1994). The SPA is a play-based observational assessment used 

to identify approach/avoidance behaviors in response to novel sensory toys, orienting/

habituating responses to sensory stimuli, as well as stereotyped/seeking behaviors (Baranek 

et al. 2007; Baranek et al. 2013). The SEQ is a caregiver questionnaire that focuses on 

frequency of sensory responses across patterns in young children with ASD and other DD 

(Baranek et al. 2006; Little et al. 2011). The SP (Dunn and Westman 1997; Dunn 1999) is a 

commonly used parent report measure of frequency of a child’s sensory responses across 

modalities, and has been used previously with clinical populations including children with 

autism (Kientz and Dunn 1997).

Items from each of the four sensory measures (TDDT-R, SPA, SEQ, and SP) were 

rigorously evaluated using a combined conceptual and empirical approach to validate the 
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three sensory dimensional constructs of interest (hyperresponsiveness, hyporesponsiveness, 

and sensory seeking) in a previous study using confirmatory factor analysis and structural 

equation modeling (Watson et al. 2011). For this study, we calculated mean summary scores 

across the items represented by previously validated factors (hyperresponsiveness, 

hyporesponsiveness, seeking) after reverse scoring the SP, and weighting all items on an 

equal 5 point scale with concordant valence across assessments. An item score of 1 indicated 

least severe sensory symptoms and an item score of score of 5 indicated most severe. The 

TDDT-R contributed 39 items to observed measures [hyporesponsiveness (1) 

hyperresponsiveness (31) sensory seeking (7)]. The SPA contributed 31 items to observed 

measures [hyporesponsiveness (7) hyperresponsiveness (17) sensory seeking (7)]. The SEQ 

contributed 33 items to parent report measures [hyporesponsiveness (6) hyperresponsiveness 

(14) sensory seeking (13)]. The SP contributed a total of 64 items to parent report measures 

[hyporesponsiveness (10), hyperresponsiveness (29), sensory seeking (25)]. Item scores 

were aggregated for the two observational measures (TDDT-R, SPA) and the two parent 

report measures (SEQ, SP) and a sum calculated across the three constructs, yielding six 

variables for the final within-group analyses. Table 2 includes the descriptive for the six 

sensory scores as well as statistical differences between the two groups. Higher scores on the 

six aggregated indices reflect greater levels of severity across the three sensory response 

patterns.

Experimental Procedure

To familiarize all children with the experimental procedure, a nonfunctional EEG cap and 

electrode adhesive pads were mailed to all children to play with at home. Prior to their 

appointment, children watched a video and/or read a social story depicting the laboratory 

setting, employees they would encounter during the visit, and the entire experimental 

procedure. On test day, children were fitted with an Electro Cap (Electro-Cap International, 

Inc., Eaton, OH) containing 20 tin electrodes, 12 of which (F3, Fz, F4, C3, Cz, C4, P3, Pz, 

P4, T7, T8) were used for recording electroencephalograms (EEGs). The EEG was acquired 

with a Neuroscan 4.3 (Neurosoft, Inc., Sterling, VA) system. The right mastoid served as the 

reference and AFz as the ground. EEG data were amplified, bandpass filtered (0.15Hz–

70Hz), and digitized at 500 Hz. Four tin electrodes placed at the outer canthi of both eyes 

and above and below the right eye measured vertical and horizontal electro-oculogram 

(VEOG and HEOG). Children were instructed to remain as still and relaxed as possible with 

their eyes focused on the video screen at all times, and to try not to move, tense their facial 

muscles, or speak. They then entered a sound-attenuated, dimly lit testing chamber 

accompanied by a parent or guardian, who either stood behind them or sat down in an 

adjustable chair holding the child in their arms. The child’s head was positioned roughly at 

the height of the video screen. During testing, the children watched a self-chosen video with 

low sound (<60 dB) to enhance auditory inattention while tones were randomly presented 

through speakers. The speakers were placed to the left and right of the video screen, spaced 

60 cm apart, and at approximately 80 cm from the child’s head. Children were instructed to 

watch the video and to ignore the sounds. All sounds were presented with an average of 80 

dB as measured by a digital Sound Level Meter (RadioShack, Cat. No. 33-2055). We used 

Presentation 13.4 to present the auditory stimuli. Stimuli included standard tones (200 ms 

duration, 1000 Hz, 88%), pitch deviant tones (200 ms duration, 1100 Hz, 4%), duration 
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deviant tones (190 ms duration, 1000 Hz, 4%) and novel sounds (200 ms duration, unique 

environmental sounds such as a dog bark, 4%). Sound stimuli were created with rise and fall 

times of 5 ms, digitized at a rate of 44.1 kHz and 16 bit resolution. Six semi-randomized 

sequences of tones were generated, with at least two standard tones following each deviant 

or novel tone. Each sequence was presented once during the six-run task protocol (five 

minutes each), yielding a total of 500 tones per run. A stimulus onset asynchrony of 600 ms 

separated each tone. To familiarize the children with the tones and build up a memory trace 

for the standard tones, the first run contained no novel sounds and was not recorded. This 

ensured that the standard tone became a ‘frequent familiar’ stimulus, the pitch deviant and 

the duration deviant tones became ‘infrequent familiar’ stimuli and the novel sounds became 

‘infrequent unfamiliar’ stimuli.

EEG Data Analysis

The EEG data were analyzed with Neuroscan Edit 4.4 and custom Matlab (The MathWorks, 

Inc., Natick, MA) scripts built on the open source EEGLAB (Delorme and Makeig 2004) 

and FieldTrip (Oostenveld et al. 2011) toolboxes. After concatenating all runs together, we 

manually eliminated large artifacts due to subject’s motion, gross facial movements, or other 

irregularities. An eye movement correction algorithm (Semlitsch et al. 1986) corrected for 

eye movement artifacts. After applying a bandpass zero-phase-shift digital filter (1–15 Hz), 

continuous EEG data from all channels were subsequently imported into EEGLAB. 

Continuous data were epoched using a 100 ms prestimulus baseline period and a 500 ms 

poststimulus period. Individual epochs were passed through an automatic artifact detection 

algorithm to remove epochs with EEG activity in excess of −90μV or +90μV. Subsequently, 

epochs containing abnormally distributed data (i.e. joint probability or kurtosis > 5 standard 

deviations from expected mean values) were rejected. After pre-processing the data, the 

number of remaining trials for the 4 event types were as follows, standard: 1685.7 (TD) vs. 

1563.2 (autism) [t(37.32)=3.24, p=0.003]; pitch deviant: 90.9 (TD) vs. 85.1 (autism) 

[t(43.6)=2.97, p=0.005]; duration deviant: 91.3 (TD) vs. 84.0 (autism) [t(41.0)=3.41, 

p=0.002]; and novel: 90.6 (TD) vs. 85.4 (autism) [t(39.1)=2.18, p=0.04] respectively. All 

participants had at least 55 accepted trials for all 4 conditions. ERPs were obtained by 

averaging the baseline corrected EEG epochs for each stimulus category and for each 

participant separately in FieldTrip. The P1, N2 and P3a peaks were identified by an 

automatic peak detection procedure. First, for the standard, pitch deviant, and duration 

deviant tones, the P1 and N2 were identified as the most positive and negative, respectively, 

peak within a specified window (see below) after stimulus onset. Second, their amplitudes 

were quantified as the mean voltage in a 50 ms window around each subject’s individual 

peak. The P1 peak detection windows for the different event types were 80–150 ms for 

standard tones, 90–180 ms for pitch deviant tones, and 70–160 ms for duration deviant 

tones. The N2 windows for the different event types were 150–274 ms for standard tones, 

174–274 ms for pitch deviant tones, and 150–274 ms for duration deviant tones. The P3a 

was identified as the most positive peak between 200 and 400 ms after stimulus onset for the 

novel sounds only and the amplitude was quantified as the mean voltage in a 50 ms window 

around each subject’s individual peak.

2df adjusted due to Satterthwaite’s correction for unequal variances.
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Analytic Strategy

The first objective of this study was to evaluate between group (autism vs TD) differences in 

amplitudes of ERP components. Because the morphology of the ERP waveform changes 

during childhood we examined the group averaged waveforms of children 8 to 12 years and 

compared them to the group averaged waveform of children aged 4 to 8 years. Since both 

ERP waveforms showed a similar P1-N2 component structure, ERPs of children aged 4–12 

years were averaged together.

We compared group differences in amplitude separately for each ERP component and 

condition with a 3-way (2 groups (autism, TD) X 3 Anterior-posterior position (frontal (F), 

central (C), posterior (P)) X 3 Lateral position (left (3), middle (z), right (4))) repeated-

measures MANOVA. We also ran analyses with MA entered as a covariate. An identical 

analysis was performed on the latencies of each peak. All statistical analyses were 

conducted using SAS (SAS Institute, Inc., Cary, NC).

The second objective of this study was to evaluate associations between ERP components 

and clinical measures (parent and observed indicators) of sensory response patterns within 

the autism group only. This was accomplished using a series of ordinary least squares 

regression models. In an effort to reduce the dimensionality of the data and to reduce the 

number of accompanying statistical tests a composite measure for each ERP component was 

created. Hereto, we averaged the responses from central electrodes (C3, Cz, C4) because all 

ERP components showed largest amplitudes for this position. This resulted in a single value 

for each ERP component. Preliminary models, which are not presented here, identified up to 

two cases per outcome that exerted excessive influence (per graphical displays of Cooks D 

values; see Fox 1991); these cases were excluded from consideration. The initial (“full”) 

model included the full set of predictors including mental age and ADOS severity as 

covariates, three ERP composites (P1, N2, P3a) as main effects, and all possible 2-way 

interactions between ERP composites (i.e., P1 x N2, P1 x P3a, N2 x P3a). The inclusion of 

interaction terms provided tests of potential conditional associations between ERP 

components and six indices of sensory response patterns (hyperresponsiveness, 

hyporesponsiveness, and sensory seeking patterns, each indicated by parent report and 

observed measures). For each outcome, a second (“trimmed”) model was presented in which 

any (all) non-significant interaction terms were removed. Following best practice (Aiken 

and West 1991), ERP composites were mean centered in order to reduce non-essential 

multicollinearity between main effect and interaction terms, and significant interaction terms 

were probed by evaluating the simple slopes between a given ERP composite and the 

sensory outcome at conditional values (i.e., low and high levels, defined as the 25th and 75th 

percentiles of the observed scores) of the second ERP composite. Both unstandardized (b) 

and standardized (β) coefficients are tabled, whereas only standardized coefficients are 

presented in figures (as simple slopes).

Donkers et al. Page 9

J Autism Dev Disord. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Results

Between Group Comparisons of Amplitude and Latency

Group differences in amplitude were analyzed separately for each ERP component for each 

condition, resulting in 7 separate analyses (Standard P1, Standard N2, Novel P3a, Pitch 

Deviant P1, Pitch Deviant N2, Duration Deviant P1, and Duration Deviant N2). See figures 

1, 2, 3, and 4 for ERP group overlays for the standard, novel, duration deviant, and pitch 

deviant sounds respectively. Table 3 presents for each group the component amplitudes and 

latencies at the Cz electrode and the results of the MANOVA analyses. The Group X 

Anterior position X Lateral position MANOVA analyses revealed group differences for 

several ERP components:

Standard Tones - Amplitudes

Compared to the TD group, the autism group had marginally smaller amplitudes to standard 

tones for both the P1: (F(1,65)=3.2, p=0.08) and the N2: (F(1,65)=4.0, p=0.05). When MA 

was included in the model, results were weakened somewhat (P1: (F(1,63)=2.9, p=0.09); 

N2: (F(1,63)=2.6, p=0.11)). Effect sizes were medium (≈0.5) for both (Cohen’s d, P1: 0.43, 

N2: 0.45). There was not a main effect of MA for either measure (p>0.3). There was a main 

effect of Anterior position for the standard tone P1 (F(2,126)=14.1, p<0.0001) and the 

standard tone N2 (F(2,126)=3.7, p=0.03), such that central electrodes had the highest 

amplitudes for both groups. For the standard N2, there was also a marginal main effect of 

Lateral position (F(2,126)=2.5, p=0.09) and an interaction between Lateral position and MA 

(F(2,126) = 3.0, p=0.05). There were no effects of lateral position on the standard P1 

(p>0.5). No other 2- or 3-way interactions were present for either the standard P1 or N2 

(p>0.1 for all), reflecting similar effects of electrode location across groups.

Novel Sounds - Amplitudes

Compared to the TD group, the autism group had a significantly smaller P3a amplitude for 

novel tones (F(1,64)=5.8, p=0.02). This effect was also present when MA was included in 

the model (F(1,62)=6.9, p=0.01) and the effect size was medium (Cohen’s d = 0.62). There 

was no main effect of MA (p=0.2). There was a main effect of Anterior position 

(F(2,124)=16.1, p<0.0001), such that the central electrodes showed highest amplitudes for 

both groups. There was also a main effect of Lateral position on P3a amplitude 

(F(2,124)=437, p=0.01), such that the midline electrodes showed highest amplitudes. 

Furthermore, there were interactions between Lateral position and MA (F(2,124)=4.3, 

p=0.02) and between Anterior position and Lateral position (F(4,248)=2.6, p=0.04). There 

were no other 2- or 3-way interactions (p≥0.3), reflecting similar effects of electrode 

location across groups.

Deviant Tones - Amplitudes

There were no significant group differences in amplitude for the remaining ERP 

components: P1 and N2 responses to pitch deviant stimuli (p=0.9 for both) and P1 and N2 

responses to duration deviant stimuli (p>0.3 for both). MA was a marginal predictor of N2 

for the pitch deviant tones (F(1,62)=3.6, p=0.06), but not for the pitch deviant P1 or the 
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duration deviant P1 or N2 (p>.3 for all). There were no 2- or 3-way interactions between 

group and electrode position for these 4 ERP components (p>0.05 for all), reflecting similar 

effects of electrode location across groups. Because there were no significant group effects 

for the P1 and N2 components for pitch deviant and duration deviant stimuli, they were 

excluded from all further analyses.

Latencies

We also examined group differences in latency. Separate Group X Anterior position X 

Lateral position MANOVA analyses were conducted for each ERP component and for each 

condition. The only significant group difference in latency was found for the pitch deviant 

P1, such that the autism group had longer latencies than the TD group (F(1,62)=4.18, 

p=0.05), in addition to a marginal effect of MA (F(1,62)=3.68, p=0.06)3. There were no 

significant group effects for the remaining ERP components and conditions: standard P1, 

standard N1, novel P3a, pitch deviant N1, duration deviant P1, duration deviant N1 (p>0.15 

for all). There was a significant effect of MA only for the standard tone P1 (F(1,62)=15.87, 

p=0.0002), and a marginally significant effect of MA on pitch deviant N1 (F(1,62)=2.85, 

p=0.10), but not for the remaining ERP components and conditions (p>.3 for all).

Relating Neural Responses to Sensory Features in Autism: Exploratory Analysis

Given the rarity of having clinical indicators of sensory response patterns 

(hyperresponsiveness, hyporesponsiveness, sensory seeking behaviors, each indexed by both 

parent report and observed measures) as well as ERP data in children with autism, we 

conducted an exploratory set of hypothesis generating analyses, in which ERP amplitudes 

were used to predict individual differences in sensory features. Given the relatively small 

sample size, we adopted a liberal alpha level (p<.10) in order to reduce the chance that we 

might commit a type II error (and potentially miss a clinically meaningful result). Initial 

bivariate correlations among the predictors and outcomes for regression models indicated 

that sensory indicators were weakly to moderately correlated with individual ERP composite 

amplitudes (|rs|=.04 – .30) and failed to reach statistical significance (ps >.10). This 

suggested that any single ERP component was not an adequate predictor of sensory features. 

As such, we tested whether multiple ERP components might jointly (additively or 

multiplicatively) predict sensory features.

Sensory Seeking

The set of ERP composite amplitudes (Standard P1, Standard N2, Novel P3a) and covariates 

(mental age and ADOS severity) was significantly predictive of greater levels of observed 

sensory seeking behaviors, (F(8, 17)=7.72, p=.0002), adjusted R2 =.68. As summarized in 

Table 4, there was evidence for significant P1 x P3a and P1 x N2, but not N2 x P3a, 

interaction terms. A trimmed model that excluded the N2 x P3a term continued to explain 

substantial variation in the outcome, (F(7,17)=9.02, p<.0001), adjusted R2 =.69. As depicted 

in Figure 5, the P1 x N2 interaction term indicated that less negative amplitudes of N2 (i.e., 

3For the pitch deviant P1, there were no main effects of either Anterior position or Lateral position (p>0.1 for both), however there 
were significant interactions between Anterior position and both Group (F(2,124)=8.2, p=0.0005) and MA (F(2,124)=4.5, p=0.01), 
suggesting that group and MA effects varied across anterior positions. No other interactions were significant.
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attenuated responses) were associated with higher levels of observed sensory seeking 

behaviors at lower but not higher amplitudes of P1 (e.g., a 1 standard deviation increase in 

N2 was associated with a .65 standard deviation increase in seeking behaviors given low 

levels of P1; see Figure 5). Furthermore, as depicted in Figure 6, the P1 x P3a interaction 

term indicated that lower amplitudes of P3a were associated with higher levels of observed 

sensory seeking behaviors at higher but not lower amplitudes of P1. In contrast to observed 

measures of sensory seeking, there was no evidence that the set of predictors was associated 

with parent report measures of sensory seeking behaviors, (F(8,19)=0.90, p=.53), adjusted 

R2=.00. This continued to be true even after all three non-significant interaction terms were 

removed, (F (5,22)= 0.27, p=.92), adjusted R2=.00. Regression coefficients for both models 

are summarized in Table 4.

Sensory Hyperresponsiveness

There was a trend for the full set of ERP composites and covariates to predict observed 

sensory hyperresponsiveness, (F(8,17)=2.22, p=.08), Adjusted R2=.28. As summarized in 

Table 5, the P1 x N2 interaction term was statistically significant. Re-estimating this model 

excluding the non-significant P1 x P3a and N2 X P3a terms resulted in comparable model 

fit, (F(6,19)=2.60, p=.052), adjusted R2 =.28. Although the magnitude of the association 

between N2 and observed sensory hyperresponsiveness was conditional on levels of P1 (i.e., 

increasing levels of N2 were associated with higher and lower levels of hyperresponsiveness 

at higher and lower levels of P1, respectively), none of the simple slopes were statistically 

significant. This may be due to the possibility that conditional associations of N2 and 

sensory hyperresponsiveness were only evident at more extreme levels of P1 than 

considered here (e.g., 10th and 90th versus the current 25th and 75th percentile scores).

In contrast to observed measures of sensory hyperresponsiveness, there was no evidence that 

the set of predictors was associated with parent report measures of sensory 

hyperresponsiveness, (F(8,18)=1.69, p=.17), adjusted R2=.28. This continued to be true even 

after all three interaction terms were removed, (F(5,21)=1.85, p=.15), adjusted R2=.14. 

Regression coefficients for both models are summarized in Table 5.

Sensory Hyporesponsiveness

The full set of ERP composites and covariates was not significantly associated with 

observed measures of sensory hyporesponsiveness, (F(8,17)=2.02, p=.11), adjusted R2=.25. 

There was a trend for an association once all three interaction terms were removed, 

(F(5,20)=2.67, p=.053), adjusted R2= .25. As summarized in Table 6, higher levels of mental 

age were associated with lower levels of sensory hyporesponsiveness (β=−.55, p=.008); 

moreover, there was a trend for higher levels of N2 (i.e., attenuated responses) to be 

associated with higher levels of observed sensory hyporesponsiveness (β=.35, p=.07).

The full set of ERP composites and covariates was not significantly associated with parent 

reported sensory hyporesponsiveness, (F(8,18)=1.71, p=.16), adjusted R2=.18; although, the 

P1 x N2 interaction term was statistically significant (p=.02). However, the overall model 

continued to be non-significant, even after the two non-significant interaction terms were 
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removed, (F(6,20)=1.83, p=.14), adjusted R2= .16. Regression coefficients for both models 

are summarized in Table 6.

Selection Effects

It is important to consider the impact of selection effects on the electrophysiology 

participant groups. While EEG is relatively non-invasive, it requires the participant to wear a 

cap with electrodes and gel on their head and to allow the experimenter to touch their head 

repeatedly. Accordingly, many parents involved in the greater project elected not to attempt 

an EEG session with their child, while other children were not able to complete an initiated 

EEG session. It is possible (and likely) that the children who were not able to participate in 

the EEG study have more severe sensory features than those who were able to participate. In 

order to investigate this possibility, we performed a post-hoc analysis comparing a sample of 

the children with autism who participated in the EEG study (N=38) to a sample of the 

children with autism who elected not to participate or withdrew during the session (N=52). 

We found evidence that, in fact, the successful EEG participants were higher functioning, as 

measured by IQ (t(86)= −3.31, p=0.001) and mental age (t(86) =−6.14, p<0.0001). They 

also had lower severity scores on observed sensory hyperresponsiveness (t(83)=3.24, 

p=0.002), observed hyporesponsiveness (t(83)=3.43, p=0.001), and observed sensory 

seeking behaviors (t(83)=2.65, p=0.01). This evidence suggests that the participants in this 

EEG study represent a subset of the autism population with more mild sensory features and 

higher levels of cognitive functioning.

Discussion

Relative to typically developing children, the children with autism showed attenuated neural 

responses to auditory tones, and these responses were related to selective aspects of 

behavioral sensory features in this population. The children with autism showed marginally 

reduced early sensory responses (as measured by the P1 and N2 ERP components) during 

passive exposure to standard, repeated tones. The children with autism also showed reduced 

attentional responses (as measured by the P3a ERP component) during exposure to 

infrequent, novel, naturalistic sounds.

Potential Neural Mechanisms Underlying Group Differences in Auditory Processing

Since the P1 and N2 are early sensory ERP components our findings may be suggestive of a 

disruption (or perhaps maturational delay) in low level sensory processing. Some studies 

have shown reductions of early sensory ERP components in children with ASD (e.g. 

Bruneau et al. 1999) where as others (particularly with high functioning adolescent and adult 

samples) have not (e.g. Kemner et al. 1995; Lincoln et al. 1995). The simplistic nature of 

“standard” auditory stimuli suggests that deficits in the P1 and N2 responses may be 

generalizable to a wide category of sound events and support a neural basis of atypical 

sensory encoding in autism.

Despite the fact that the P1 and N1/N2 are often thought of as ‘obligatory’ ERP components 

that are primarily determined by bottom-up influences, there is some evidence to suggest 

that at least the N1/N2 can be modulated by top down inhibitory processes (Sable et al. 
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2004; Whitehouse and Bishop 2008). Therefore, the marginally attenuated N2 response in 

the autism group potentially reflects disruptions in both low level stimulus driven as well as 

higher level top down stages of auditory information processing. It is also important to note 

that the standard tone was presented well over 1500 times. Therefore, it is possible that the 

results reported here may be influenced by different habituation rates to these stimuli in 

children with autism compared to typically developing children. Further analyses are needed 

to test this hypothesis.

The children with autism also showed significantly attenuated P3a responses to the 

infrequently presented, novel, naturalistic sounds. The P3a is a later ERP component 

(occurring ~300ms after stimulus presentation), is attention dependent, and hence reflects 

higher order cognitive processing of stimuli. Therefore, the attenuated P3a response suggests 

that attentional orienting or perhaps salience evaluation in children with autism is 

compromised. This finding of impaired orienting has been frequently reported in the EEG 

literature (Ceponiene et al. 2003; Dawson et al. 1998; Kemner et al. 1995; Lincoln et al. 

1993). Taken together, this set of findings suggest that children with autism have disrupted 

neural responses to auditory stimuli in both bottom up early sensory processes, as well as 

later top down attentional processes, both of which are hypothesized to result in less 

responsiveness to external auditory stimuli.

Contrary to our expectations, this study failed to present significant group differences in 

ERP amplitudes to small pitch deviant and duration deviant tones. However, for both the 

pitch deviant tones as well as for the duration deviant tones the P1 and N2 responses were 

slightly attenuated in the autism group, a direction consistent with the findings for the 

standard tones. Yet, ERP latency of the P1 peak to pitch deviant sounds was found to be 

slightly later in the autism group. Several other studies have also observed delayed early 

auditory responses in ASD especially regarding the N1/M100 peak (i.e. Bruneau, et al. 

1999; Sokhadze et al. 2009; Gage et al. 2003; Roberts et al. 2010). These findings are taken 

to indicate disrupted encoding of simple sensory information. The null findings regarding 

amplitude might be due to the small differences between the standard and deviant stimuli 

that were used in our study (1000 Hz vs. 1100 Hz for pitch deviant; and 200 ms vs. 190 ms 

for duration deviant) and/or the relatively small number of deviant stimuli, resulting in less 

reliable ERPs.

Early sensory processing differences (e.g., attenuation of P1/N2 to standard tones) may also 

impact later processing components (discrimination, attention allocation, etc.), and/or 

multisensory integration. It is possible that if P1/N2 responses are dysfunctional, greater 

attentional resources or greater alerting mechanisms are needed to compensate for such 

deficits; however, if concomitant deficits exist in P3a, there are fewer resources to use as a 

compensatory mechanism and this may have implications for outcomes.

Although the conditional associations between ERP responses and clinical measures of 

sensory functioning within the autism group were not as easily understood as simple 

bivariate associations would have been, the pattern of results underscores the importance of 

considering multiple aspects of ERP responses together. Three sets of findings are 

noteworthy: First, given attenuated P1 responses to standard tones, attenuated N2 responses 
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were associated with more severe sensory seeking behaviors observed in children with 

autism. Therefore, individual differences in N2 response to standard tones are only 

positively related to more severe sensory seeking behaviors for children with autism who 

concurrently show attenuated P1 responses to standard tones. Second, given larger P1 

responses to standard tones, larger P3a responses to novel tones are associated with less 

severe sensory seeking behaviors observed in children with autism. Hence, individual 

differences in P3a responses to novel tones are only negatively related to sensory seeking 

behaviors for children with larger P1 responses to standard tones. Third, clinical measures of 

sensory hyperresponsiveness in children with autism also trended toward a relation to an 

interaction of P1 and N2 responses to standard tones. Given larger P1 responses, more 

attenuated N2 responses were related to more severe sensory hyperresponsiveness. 

However, given attenuated P1 responses, more attenuated N2 responses were related to less 

severe hyperresponsiveness. These results illustrate the complex association between ERP 

responses to auditory tones and sensory characteristics of children with autism.

Implications of Aberrant Neural Sensory Processing for Behavioral Sensory Features in 
Children with Autism

To our knowledge, this is the first study to examine the association of neural ERP 

components to clinical indices of three separate sensory response patterns, as assessed by 

both parent report and clinical observations, commonly observed in children with autism. 

These findings begin to unravel the complex and conditional associations among specific 

auditory ERP components (P1/N2 and P3a) and severity of behavioral sensory features 

(even after controlling for mental age and autism severity). The combination of weak N2 

responses following weak P1 responses was particularly predictive of more atypical sensory 

seeking behaviors. This modulation of the N2 amplitude-sensory seeking relation by 

P1amplitude reflects the complex dynamics of these distinct neural processes.

Because the N1/N2 ERP component is believed to be affected by higher order top down 

processes to some degree, the relation found here between N2 responses and behavioral 

characteristics suggests that top down attentional control in children with autism has some 

effect on their behavioral characteristics related to observed sensory seeking behaviors. 

Further evidence for this was found in an interaction between P1 responses to standard 

tones, P3a responses to novel tones, and observed sensory seeking behaviors. Specifically, 

given increased amplitude levels of P1, the P3a response predicted sensory seeking 

behaviors, such that lower amplitude levels of P3a predicted more severe sensory seeking 

behaviors. Again, this provides evidence of a relation between disruptions in neural 

responses to sensory processing and more severe behavioral characteristics. The P3a ERP 

component reflects attentional orienting processes, providing additional evidence that 

disrupted neural attentional processes are related to sensory processing characteristics of 

individuals with autism.

There are multiple possible mechanisms that could lead from disrupted neural attentional 

processes to atypical sensory seeking behaviors. Disrupted attentional mechanisms may 

diminish orienting responses to novel stimuli, and therefore some children with autism may 

appear preoccupied with intense and repetitive sensory activities because they are unable to 

Donkers et al. Page 15

J Autism Dev Disord. Author manuscript; available in PMC 2016 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



disengage and refocus on other environmental events. Alternatively, disrupted attentional 

mechanisms may lead to hyper-engagement on existing stimuli or sensory-driven activities 

due to disruptions in reward pathways. The present study provides evidence of an 

association between attentional processes and specific sensory features in autism, but more 

research is needed to distinguish these two (or potentially other) mechanisms underlying 

these associations. Examination of attentional orienting in the context of overt attention 

switching tasks in individuals with autism may be able to further illuminate these 

mechanisms.

The significant P1/N2 interaction predicting observed hyperresponsive behaviors in the 

autism group was complex and difficult to interpret given that none of the individual slopes 

were statistically significantly different. Given our limited sample size, we cannot 

disambiguate whether these are meaningful effects or artifacts from a small number of cases. 

Further research with larger participant groups may be able to better characterize this 

association.

Limitations

It is likely that atypical ERP responses found here may be attenuated relative to the general 

autism population given that individuals were less likely to enroll and/or tolerate the EEG 

procedures. Thus, children with more severe clinical sensory features may have even 

stronger neurophysiological disruptions in auditory processing than reported here, and has 

implications for future research as well as intervention planning. Due to the fact that we 

used a passive task paradigm and children’s attention was directed elsewhere we can’t rule 

out the possibility that our ERP results might be explained (partly) by the fact that children 

with autism were more ‘tuned in’ to their movie resulting in reduced ERP component 

amplitudes compared to the TD group. We were not able to show group differences in ERP 

responses to pitch deviant and duration deviant tones. It is possible that the small number of 

pitch deviant and duration deviant stimuli and/or the small differences used between the 

standard and deviant stimuli did not provide enough sensitivity to capture this effect. 

Although there were some trends in the predicted directions, we did not find associations 

between attenuated ERP components and clinical measures of sensory hyporesponsiveness. 

Although a sampling bias may have been responsible, it is also possible that our clinical 

measures were not sufficiently sensitive to capture the full range of hyporesponsive features, 

particularly at the most severe extreme. Moreover, since the clinical measures and EEG 

could not be conducted on the same day, it is possible that the time gap between study tasks 

further attenuated potentially significant associations between behavior and 

neurophysiology. However, we note that there was a moderate correlation (r=0.53) between 

observed hyporesponsiveness and observed sensory seeking behaviors, thus, it is plausible 

that the sensory seeking measure indirectly taps some aspects of hyporesponsiveness (e.g., 

children are under-aroused or overfocused and thus less likely to respond to external stimuli) 

and is more sensitive to the effects of disrupted neural processing evident in the EEG study. 

Several studies have theorized about the association between these two clinical response 

patterns (e.g., Dunn 1997; Ausderau et al. in revision) and how they are especially 

detrimental to social-communication outcomes such as joint attention and language levels 

(Watson et al. 2011; Baranek et al. 2013).
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We note that whereas significant associations between the observed sensory response 

measures and the ERP measures were found, such associations were non-existent for the 

parent report measures. Observed measures and ERP measures are both based on direct 

observations of responses to sensory stimuli whereas parent report measures are not. Parent 

report measures may also be confounded by parents’ knowledge of symptoms associated 

with autism and/or parents may be less aware of (or avoid mentioning) unusual behaviors 

before an official diagnosis has been established (Stone and Hogan 1993). Observed 

measures might therefore be more sensitive than parent report measures and hence show 

stronger association with ERP measures. Future studies could include modality-specific 

clinical measures (e.g., subset of items tapping predominantly auditory features), rather than 

multimodal sensory features; however, most real-world experiences involve multimodal 

processing. Another limitation was the lack of a second control group of children with other 

developmental disabilities to determine the extent to which significant findings are specific 

to children with autism and not general to intellectual disabilities or clinical populations. 

This is important as we showed that adding mental age, a measure of cognitive maturation, 

as a covariate can weaken (as in the case of P1/N2 amplitudes) or strengthen (as in the P3a 

amplitude) group difference findings. In the future, adding another comparison group, one 

with known intellectual deficits, would allow additionally controlling for intellectual 

disability status which is not possible with a typically-developing control group. 

Investigating children with lower cognitive abilities is difficult but very much needed since 

most EEG studies focus on older and high functioning cases, and thus results from these 

studies cannot be generalized to the broader and vastly heterogeneous population of children 

with autism.

Conclusion

This study provides evidence of sensory processing dysfunctions at the neural level in 

children with autism compared with typically developing children, ages 4–12 years. While 

sensory features have been well characterized in autism, this is one of the few studies to 

report on potential neural bases of some of these clinical behaviors. Specifically, these 

findings demonstrated marginally attenuated early sensory (P1 and N2) responses to 

repeated, familiar tones, as well as attenuated attentional responses (P3a) to novel sounds 

reflecting poor orienting to external stimuli. This study suggests that both low level stimulus 

driven processes and top down attentional processes are disrupted in children with autism in 

the temporal stream of sensory processing and furthermore, that these neural disruptions 

conditionally predict increased levels of clinically observed sensory seeking behaviors via 

complex mechanisms. With future work, these findings may be able to inform interventions 

for atypical sensory processing behaviors in children with autism.
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Figure 1. 
Group averaged ERPs to standard stimuli. Time is in seconds. Time = 0 indicates stimulus 

onset. TYP = typically developing group. AUT = group with autism
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Figure 2. 
Group averaged ERPs to novel stimuli. Time is in seconds. Time = 0 indicates stimulus 

onset. TYP = typically developing group. AUT = group with autism
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Figure 3. 
Group averaged ERPs to pitch deviant stimuli. Time is in seconds. Time = 0 indicates 

stimulus onset. TYP = typically developing group. AUT = group with autism
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Figure 4. 
Group averaged ERPs to duration deviant stimuli. Time is in seconds. Time = 0 indicates 

stimulus onset. TYP = typically developing group. AUT = group with autism
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Figure 5. 
ERP interactions between P1 and N2 amplitude in the prediction of observed sensory 

seeking behaviors. Low and high levels were defined as the 25th and 75th percentiles of the 

observed sensory seeking scores.
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Figure 6. 
ERP interactions between P1 and P3a amplitude in the prediction of observed sensory 

seeking behaviors. Low and high levels were defined as the 25th and 75th percentiles of the 

observed sensory seeking scores.
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Table 1

Demographics for participants with autism and typically developing participants

Autism
N (%)

TD
N (%)

Total Participants 28 (100) 39 (100)

Gender (Male) 22 (79.0) 31 (79.5)

Maternal Education

 High School or GED 4 (14.3) 1 (2.6)

 Associates Degree or higher 23 (82.1) 36 (92.3)

 Unknown 1 (3.6) 2 (5.1)

Annual Household Income

 Less than $59,999 7 (24.0) 13 (33.3)

 $60,000 to $99,999 11 (39.3) 13 (33.4)

 $100,000 or more 9 (32.1) 11 (28.2)

 Unknown 1 (3.6) 2 (5.2)

Race

 White 25 (85.7) 29 (74.4)

 African-American, Asian, or Multiple Races 4 (14.3) 10 (25.6)

Hispanic or Latino Origin 3 (10.7) 6 (15.4)

Handedness

 Left 4 (14.3) 1 (2.6)

 Right 20 (69.0) 34 (87.2)

 Mixed or Unknown 4 (14.2) 4 (10.3)

M (SD) M (SD)

ADOS Severity Score 8.5 (1.2) NA

Chronological Age (months) 91.4 (26.6) 84.4 (24.5)

Mental Age (months) 73.4 (42.2) 97.9 (45.6)

Nonverbal IQ 82.6 (22.4) 108.5 (12.1)
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Table 2

Comparison of Groups on Parent Report and Observed Sensory Measures.

Typical (N = 39) Autism (N = 28) Comparison

M (SD) M (SD) t (df) Prob

Observed Sensory Seeking 1.4 (0.3) 2.1 (0.7) −5.1 (65) <.0001

Observed Hyporesponsive 1.5 (0.5) 2.1 (0.7) −3.8 (65) 0.0003

Observed Hyperresponsive 1.2 (0.2) 1.4 (0.4) −3.1 (65) 0.0033

Parent Report Sensory Seeking 1.5 (0.3) 2.3 (0.4) −10.1 (65) <.0001

Parent Report Hyporesponsive 1.5 (0.3) 2.2 (0.6) −6.7 (65) <.0001

Parent Report Hyperresponsive 1.5 (0.3) 2.3 (0.5) −8.8 (65) <.0001

Note: M = mean; SD = standard deviation; df = degrees of freedom; Prob = probability
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