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Abstract

Longitudinal imaging studies have moved to the forefront of medical research due to their ability

to characterize spatio-temporal features of biological structures across the lifespan. Valid inference

in longitudinal imaging requires enough flexibility of the covariance model to allow reasonable

fidelity to the true pattern. On the other hand, the existence of computable estimates demands a

parsimonious parameterization of the covariance structure. Separable (Kronecker product)

covariance models provide one such parameterization in which the spatial and temporal

covariances are modeled separately. However, evaluating the validity of this parameterization in

high-dimensions remains a challenge. Here we provide a scientifically informed approach to

assessing the adequacy of separable (Kronecker product) covariance models when the number of

observations is large relative to the number of independent sampling units (sample size). We

address both the general case, in which unstructured matrices are considered for each covariance

model, and the structured case, which assumes a particular structure for each model. For the

structured case, we focus on the situation where the within subject correlation is believed to

decrease exponentially in time and space as is common in longitudinal imaging studies. However,

the provided framework equally applies to all covariance patterns used within the more general

multivariate repeated measures context. Our approach provides useful guidance for high

dimension, low sample size data that preclude using standard likelihood based tests. Longitudinal

medical imaging data of caudate morphology in schizophrenia illustrates the approaches appeal.
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1. Introduction

Multivariate repeated measures studies are characterized by data that have more than one set

of correlated outcomes or repeated factors. Spatio-temporal data fall into this more general

category since the outcome variables repeat in both space and time. Valid analysis requires

accurately modeling the correlation pattern. Muller et al. (2007) and Gurka et al. (2011)

showed that under-specifying the correlation structure can severely inflate test size in

inference about fixed effects in the general linear mixed model. With multivariate repeated

measures data, modeling the correlation pattern separately for each repeated factor has

substantial advantages. Most importantly, the approach allows choosing and tuning each

model separately which improves accuracy and makes model fitting easier. Furthermore, the

approach inherently allows using fewer parameters than does an unstructured model. Use of

the Kronecker product provides an appealing way to combine these factor-specific

correlation structures into an overall correlation model. No additional parameters are needed

to combine any mathematically valid correlation patterns into a valid overall pattern.

Galecki (1994) gave a detailed treatment of Kronecker product covariance structures, also

known as separable covariance models. A covariance matrix is separable if and only if it

can be written as Σ = Γ ⊗ Ω, where Γ and Ω are factor specific covariance matrices (e.g. the

covariance matrices for the temporal and spatial dimensions of spatio-temporal data

respectively). A key advantage of the model lies in the ease of interpretation in terms of the

independent contribution of every repeated factor to the overall within-subject error

covariance matrix. The model also accommodates correlation matrices with nested

parameter spaces and factor specific within-subject variance heterogeneity. Galecki (1994),

Naik and Rao (2001), and Mitchell et al. (2006) detailed the computational advantages of

the Kronecker product covariance structure. The partial derivatives, inverse, and Cholesky

decomposition of the overall covariance matrix can be performed more easily on the smaller

dimensional factor specific models.

Limitations of separable models have been noted by various authors. Most importantly, as

mentioned by Cressie and Huang (1999), patterns of interaction among the various factors

cannot be modeled when utilizing a Kronecker product structure. Galecki (1994), Huizenga

et al. (2002), and Mitchell et al. (2006) all noted that a lack of identifiability can result with

such a model. The indeterminacy stems from the fact that if Σ = Γ ⊗ Ω is the overall within-

subject error covariance matrix, Γ and Ω are not unique since for a ≠ 0, aΓ ⊗ (1/a)Ω = Γ ⊗

Ω. However, this nonidentifiability can be fixed by rescaling one of the factor specific

covariance matrices so that one of its diagonal nonzero elements is equal to 1. With

homogeneous variances, the rescaled matrix is a correlation matrix. It is also important to

note that within a given subject all factors must have consistently-spaced measurements. In

the context of spatio-temporal data this means that at each time point a given subject must

have the same number of measurements taken at the same spatial locations.

Several tests have been developed to determine the validity of assuming a separable

covariance model. General (pure) tests use unstructured null and alternative hypothesis

matrices. Shitan and Brockwell (1995) constructed an asymptotic chi-square test for general

separability. Likelihood ratio tests for general separability were derived by Lu and
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Zimmerman (2005), Mitchell et al. (2006), and Roy and Khattree (2003). Fuentes (2006)

developed a general test for separability of a spatio-temporal process utilizing spectral

methods.

Structure-specific tests of separability have particular structure assumed for the null

hypothesis but generally not for the alternative hypothesis. Structured tests of separability

have been proposed by Roy and Khattree (2005a, 2005b) and Roy and Leiva (2008). Roy

and Khattree (2005a) derived a test for the case with one factor matrix being compound

symmetric and the other unstructured. Roy and Khattree (2005b) developed a test for when

one factor specific matrix has the discrete-time AR(1) structure and the other is

unstructured. The test of Roy and Leiva (2008) requires either a compound symmetric or

discrete-time AR(1) structure for the factor specific matrices. Simpson (2010) developed an

adjusted likelihood ratio test of two-factor separability for unbalanced multivariate repeated

measures data. The approach can be generalized to factor specific matrices of any structure.

All of the authors just mentioned noted that none of the separability tests developed thus far

can handle high-dimensional, low sample size (HDLSS) data due to the potential

nonexistence of a computable estimate for an unstructured covariance fit (the alternative

hypothesis). We provide a scientifically informed approach to conducting useful tests of

separability in the presence of HDLSS, a common problem in medical imaging and various

kinds of “-omics” data. We illustrate our method with data concerning caudate morphology

in schizophrenia. The data come from longitudinal MRI scans of the left caudate for 240

schizophrenia patients and 56 controls. The surface of each object was parameterized via the

m-rep method as described in Styner and Gerig (2001). The caudate shape was determined

as a 3 × 7 grid of mesh points (see Figure 1). Data were reduced to one outcome measure:

radius in cm as a measure of local object width (21 locations per caudate with no missing

data). The distance between two radii for a given subject was calculated as the mean

Euclidian distance over all images. Scans were taken up to 47 months post-baseline with the

median and maximum number of scans per subject being 3 and 7 respectively.

We present our approach to testing for separability in HDLSS data in section 2. Simulation

studies in section 3 help evaluate the approach. In section 4 the caudate morphology data

illustrate the use of the proposed testing procedure. We conclude with a summary discussion

including planned future research in section 5.

2. Likelihood ratio tests of separability

We examine both a structured and general test of separability to illustrate our approach. We

consider the following structured likelihood ratio test of separability for the Kronecker

product linear exponent autoregressive (KP LEAR) model which has been shown to work

well for situations in which the within subject correlation is believed to decrease

exponentially in time and space (Simpson et al., 2010, 2013). Suppose yi is a tisi × 1 vector

of tisi observations (e.g., ti temporal measurements and si spatial measurements) on the ith

subject i ∈ {1, …, N}. Here (yijl, yikl) = ρiγ;jk and (yijl, yijm) = ρiω;lm represent the

temporal (or factor 1) and spatial (or factor 2) correlations respectively, for (·) the

correlation operator. Then for Γi = {ρiγ;jk} (the temporal/factor 1 correlation matrix) and Ωi
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= {ρiω;lm} (the spatial/factor 2 correlation matrix), the factor specific linear exponent

autoregressive (LEAR) correlation structures are

(1)

(2)

where d(tijl, tikl) and d(sijl, sikl) are the distances between measurement times and locations

respectively. In turn (dt;min, ds;min) and (dt;max, ds;max) are computational constants equal to

the minimum and maximum number of temporal and spatial distance units across all

subjects. Parameters ργ and ρω are the correlations between observations separated by one

unit of time and distance respectively, and δγ and δω are the decay speeds. We assume 0 ≤

ργ, ρω < 1 and 0 ≤ δγ, δω. The (dt;min, ds;min) and (dt;max, ds;max) constants allow the model to

adapt to the data and scale distance such that the multiplier of the decay speeds δγ and δω,

(d(tijl, tikl) − dt;min)/(dt;max − dt;min) and (d(sijl, sijm) − ds;min)/(ds;max − ds;min), is between 0

and 1 for computational purposes. One could also consider tuning the constants if necessary

to address, for example, convergence issues. Simpson et al. (2010, 2013) contain further

details of the model. Note that each factor specific LEAR model can also be reparameterized

as an exponential model (or continuous-time AR(1) model) with a multiplicative nugget

effect (see Schabenberger and Gotway, 2005 for details on nugget effects).

Following the preceding notation, and assuming that yi|Xi ~ Ntisi (μi = Xiβ, Σi = σ2[Γi(τγ) ⊗

Ωi(τω)]) and is independent of yi′|Xi for i ≠ i′ where Γi and Ωi are defined in equations 1 and

2 with τ = {τγ;τω} = {δγ, ργ; δω, ρω}, the structured likelihood ratio test of separability for

the KP LEAR model is

(3)

The log-likelihood function of the parameters given the data under H0 is

(4)

where  and ri(β) = yi − Xiβ. The log-likelihood function of the parameters given

the data under H1 is
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(5)

The standard likelihood ratio is given by

(6)

where L is the likelihood function and the maximum likelihood (ML) estimates are derived

following the approach in Simpson (2010) and Simpson et al. (2013). Namely, given the

imbalance in the data, the Newton-Raphson algorithm is employed to simultaneously solve

for the estimates of Σi and β. More specifically, for the unstructured case, each estimate of

Σi is a subset of the estimate for the overall general covariance matrix Σ in which Σi is

embedded. For example, the caudate morphology data discussed in the Introduction has 7

total time points and 21 spatial locations leading to an overall Σ to be estimated of

dimensions 147 × 147. If the first subject is measured at times 1, 3, and 7, then its

covariance matrix Σ1 consists of the 1st, 3rd, and 7th 21 × 21 main diagonal blocks of Σ.

Under regularity conditions, −2lnΛ is asymptotically distributed as a  random variable.

The associated degrees of freedom parameter ν is given by

(7)

where ttot and stot equal the total number of time points and spatial locations respectively.

Here we use the adjusted LRT (aLRT) of Simpson (2010), namely , where

(8)

and conduct several tests of “marginal KP LEARness” since the number of observations per

subject precludes conducting an overall aLRT using all of the data.

We also consider the following general likelihood ratio test of separability:
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(9)

We again employ the aLRT previously defined in equations 6 and 8, but whose formula now

reduces to

(10)

given that the matrices Γi and Ωi are unstructured. The associated degrees of freedom ν is

now given by

(11)

As stated previously, we would like to provide a scientifically informed approach to

assessing the appropriateness of a separable model with high-dimensional data. To do this

we will conduct c marginal aLRT tests using subsets of the data corresponding to diagonal

blocks of the covariance matrices. The approach covers a large fraction of the covariance

space and is especially useful in situations with most of the information contained along

diagonal blocks (i.e., correlation dies out along off-diagonals), which is the case for our

longitudinal imaging example concerning caudate morphology in schizophrenia. For

balanced data, each diagonal subset will contain data from all subjects. However, for

unbalanced data, subsets should either be chosen so that the same number of subjects are

used in each test or some weighting of the c tests should be considered based on the number

of subjects in each. We take the former approach in the simulation studies and data

application that follow. After the c aLRT tests are conducted, a false discovery rate

correction is applied that controls for multiple testing given dependent tests (Benjamini and

Yekateuli, 2001) and significance of the overall test is declared if any of the c p-values is

significant. The dependencies among covariance parameters in samples from a multivariate

Gaussian population were given by Wishart (1928).

This marginal testing approach can be thought of as a generalization of the more formalized

framework of Molenberghs et al. (2011). They presented a pseudo-likelihood based method

to partition prohibitively large data sets into M sub-samples, analyze each partition member,

and combine the results across partitions for parameter estimation. More formally, the full

sample is broken into M sub-samples of size nm, where m ∈ {1, …, M}. The pseudo-log-

likelihood for sample m is
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(12)

where l(·) is the log-likelihood that would be considered if the mth sub-sample were the

entire data set. In our case, l(·) = l(yi; β, σ2, τ) from equation 4 for the sub-sample under H0

for the structured test and l(·) = l(yi; β, Γi, Ωi) under H0 for the general test. Under H1, l(·) =

l(yi; β, Σi) from equation 5 for both the structured and general test. Extending their approach

directly into our context would involve averaging test statistics or p-values across sub-

samples (as they do for estimation of θ) and drawing inference from the averaged value. Our

approach is slightly different in that we test for marginal separability for each of the M sub-

samples and draw inference based on the number of these M tests that are significant. Our

method provides robustness against outlying sub-sample p-values.

3. Simulation studies

3.1 Structured tests

To assess the empirical performance of the structured aLRT in equation 3, we conducted

two simulation studies. The objective of the first study was to assess how much information

is lost in taking the diagonal subset approach. We simulated multivariate repeated measures

data with a 16 × 16 covariance matrix under H0 (two 4 × 4 factor specific matrices) and H1

and then conducted 1) an aLRT using all of the data, and 2) four tests using diagonal 2 × 2

subsets of the factor specific matrices following the testing procedure delineated in the

previous section (subset aLRT). The data were generated under H0 with ρ = [ργ ρω]′ = [0.8

0.8]′, δ = [δγ δω]′ = [(dt;max − dt;min)/4 (ds;max − ds;min)/4]′, σ2 = 1, and two-unit distance

intervals for both factors (space and time). The data were generated under H1 based on

Theorem 10.13 of Muller and Stewart (2006). Simulated test size and power at the α = 0.05

level was examined for tests 1) and 2) with sample sizes of N = 40, 80, 120, 160, and 200.

Without loss of generality, the mean model was set to β = 0 (one group with mean 0)

(Simpson, 2010). Each simulation consisted of 5,000 realizations.

Table 1 shows the results of this first simulation study for the structured tests. It contains the

simulated test sizes and power for the full aLRT and subset aLRT approaches. For the subset

approach, the table also shows the test size and power by the number (out of c = 4) of

significant p-values required for overall significance to be declared. There is very slight test

size inflation for the subset aLRT when one significant p-value is required. Test size is well

controlled when more than one significant p-value is required as it is for the full data aLRT.

Additionally, there is no loss in power for the subset aLRT as compared with the full data

aLRT. Although the subset method is for situations in which a full data test is infeasible, this

comparison gives us confidence that little information is lost when taking our subset

approach.

The objective of the second simulation study was to assess the type I error rate and power of

the subset aLRT approach in a higher-dimensional setting in which current separability tests

are unsuitable due to the potential nonexistence of a computable estimate for an unstructured

covariance fit (while theoretical existence just requires N > ttotstot, N ≫ ttotstot is generally
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required for computational existence due to estimation algorithm nonconvergence in

relatively smaller sample size settings). Our simulations were aimed to mimic the

schizophrenia and caudate morphology data discussed in Simpson et al. (2013) and in the

next section. To do this, we again generated data under H0 with ρ = [ργ ρω]′ = [0.8 0.8]′, δ =

[δγ δω]′ = [(dt;max − dt;min)/4 (ds;max − ds;min)/4]′, and σ2 = 1, and under H1 based on

Theorem 10.13 of Muller and Stewart (2006). To mimic the example, the data generated

were unbalanced with maxi(si) = stot = s = 21, maxi(ti) = ttot = 7, and medi (ti) = 3. There

were (ti · s) ε [21, 147] observations per subject (  had 21 observations,  had 63

observations,  had 105 observations, and  had 147 observations), each at two-unit

distance intervals. Ten subset tests of 2 × 2 diagonal blocks of the spatial matrix (Ω) were

conducted using the entire 7 × 7 temporal matrix Γi (thus, for each subset test, Γi ⊗ Ωsubset

was 14 × 14). Ten tests occur since there are ten 2 × 2 diagonal blocks in the 21 × 21 spatial

matrix (Ω) with 1 diagonal element (the last element) omitted. Given the imbalance in

temporal measurements, the approach ensures that the same number of subjects are used in

each subtest. Simulated test size and power at the α = 0.05 level was examined for sample

sizes of N = 140, 240, 280, and 320. The sample size of N = 140 < ttotstot = 147 was chosen

to assess the performance of the test in the context of a theoretically nonexistent

unstructured covariance estimate. The other sample sizes were chosen to mimic the

schizophrenia and caudate morphology data.

The results of the second simulation study for the structured tests are shown in Table 2. It

contains the simulated test size and power for the subset aLRT by the number (out of c = 10)

of significant p-values required for overall significance to be declared. There is severe test

size inflation for all sample sizes when only 1 significant p-value is required. However, the

test size becomes controlled for N = 280 and 320 when 2 or more significant values are

required, for N = 240 when 3 or more are required, and for N = 140 when 9 or 10 is required.

Regardless of the number of significant subtest p-values required for overall significance,

the test remains extremely powerful.

3.2 General tests

To assess the empirical performance of the unstructured aLRT in equation 9, we conducted

the same two simulation studies detailed in the previous subsection for the structured case.

Here the data were generated under H0 and H1 based on Theorem 10.13 of Muller and

Stewart (2006). Table 1 exhibits the results of the first simulation study for the general tests

assessing information loss when taking the diagonal subset approach. Test size is well

controlled for the subset aLRT across all conditions as it is for the full data aLRT.

Moreover, there is minimal to no loss in power for all sample sizes with the subset aLRT

when one significant p-value is required. However, the power loss increases as the number

of significant p-values required increases, with this effect mitigated at larger sample sizes.

Table 2 displays the results of the second simulation study for the general tests assessing the

type I error rate and power of the subset aLRT approach in the higher-dimensional setting.

Severe test size inflation occurs for all sample sizes when only 1 significant subtest p-value

is required and remains above the α = 0.05 level until 6 or more (out of c = 10) significant

values are required for N = 240, 280, and 320, and until 8 or more are required for N = 140.
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As with the structured test, the unstructured subset aLRT remains extremely powerful for all

parameter combinations.

4. Test of separability for schizophrenia and caudate morphology example

We model the schizophrenia and caudate morphology data discussed in the Introduction

with an intercept-only general linear model for repeated measures (Simpson et al., 2013).

That is, , where the log2(radius) values for each of the si = s = 21

locations (spatial factor) and ti images (temporal factor) for the ith subject (i ∈ {1, …, 296})

are contained in yi (ti · 21 × 1). For the assessment of covariance structure separability, the

240 cases and 56 controls remain combined as the sample size of the controls precludes

fitting an unstructured model (since Ncontrols = 56 < ttotstot = 147) and thus precludes a

standard test for homogeneity of covariance (e.g., Box’s test). While a modified

homogeneity test employing a subsampling approach like the one discussed here may prove

useful in this context, an examination of this is beyond the scope of this work. This data

example is meant to be illustrative of the benefits of our separability testing procedure.

As evidenced by information criteria and observed vs. predicted correlation plots, Simpson

et al. (2013) showed that the Kronecker product LEAR model appears to provide a good fit

to the caudate morphology data. However, the validity of the separable assumption should

be assessed as there may be space × time interactions which cannot be modeled with the

Kronecker structure. In order to test separability, Simpson (2010) was forced to reduce the

data by picking four (out of the 21) representative spatial locations to accommodate the

dimensions of the data. Here we apply our structured subset aLRT approach detailed in

section 2 by conducting 10 subset tests utilizing the entire 7 × 7 temporal matrix Γi ⊗ Ω 2 ×

2 diagonal blocks of the spatial matrix as in the second simulation study. For a significance

level of α = 0.05 and, based on the simulations conducted in section 3.1, declare significance

if 3 or more (out of c = 10) of the subset p-values are significant. The null hypothesis is

rejected since more than 3 of the tests had significant p-values, which implies that the

assumption of separability appears invalid in this case. In order to gain insight into this

finding we examine the following estimates (each multiplied by 100) for 4 (of the 21) spatial

locations and the 3 time points for subject i = 4 (t4 = 3, s = 4) (also in Simpson, 2010):
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The estimates show that a space × time interaction exists as the spatial covariance pattern

(among the four caudate radii) changes across the three time points (the 3 4 × 4 blocks along

the diagonal of Σ̂
4). To further investigate whether the significant test results are due more

to this space × time interaction or to heterogeneity of variance (our model assumes

homogeneity) we reconduct the structured subset aLRT. Under H0 we fit an unstructured

variance model along with a LEAR correlation model for the spatial covariance matrix, Ω,

and a single variance parameter (the observed temporal variances are constant) with a LEAR

correlation model for the temporal covariance matrix, Γi. Again the null hypothesis is

rejected implying that the space × time interaction is the main cause of the invalidity of the

separability assumption. The separable LEAR model does provide a reasonable

approximation to the completely unstructured model with 78 − 5 = 73 fewer parameters.

And with , the separable LEAR model has 10878 − 5 = 10873 fewer

parameters than a completely unstructured model (for which convergence is currently

impossible). However, given that our separability test results rendered the separability

assumption invalid and the evident space × time interaction, a nonseparable model like that

of Kim and Zimmerman (2012) or Fonseca and Steel (2011) should likely be employed.

5. Discussion

The subset aLRT approach provides a statistically reasonable approach to test the validity of

the separability assumption when the standard tests do not apply. More specifically, the

diagonal approach we take parsimoniously covers a large fraction of the covariance space
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and is especially useful in situations like ours where most of the information is contained

along diagonal blocks (i.e., correlation dies out along off-diagonals). As evidenced by the

simulation results, the subset aLRT is a powerful test that also controls test size with careful

selection of the number of significant subtests needed for overall significance.

Future work examining other covariance subspace sampling techniques will prove useful

given the contextual nature of the problem. For example, conducting subtests based on

random (as opposed to diagonal) subsets of the covariance matrix affords a method

amenable to all covariance patterns regardless of whether most of the information is

contained along the diagonal blocks. However, the approach may be more computationally

intensive and less efficient when most of the information is in the middle of the matrix.
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Figure 1.
M-rep shape representation model of the caudate.
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