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Abstract

Hippocampal pathology is central to Alzheimer’s disease (AD) and other forms of dementia such 

as frontotemporal lobar degeneration (FTLD). Autopsy studies have shown that certain 

hippocampal subfields are more vulnerable than others to AD and FTLD pathology, in particular 

the subiculum and cornu ammonis 1 (CA1).

We conducted shape analysis of hippocampi segmented from structural T1 MRI images on 

clinically diagnosed dementia patients and controls. The subjects included 19 AD and 35 FTLD 

patients (13 frontotemporal dementia [FTD], 13 semantic dementia [SD] and 9 progressive 

nonfluent aphasia [PNFA]) and 21 controls.

Compared to controls, SD displayed severe atrophy of the whole left hippocampus. PNFA and 

FTD also displayed atrophy on the left side, restricted to the hippocampal head in FTD. AD finally 

displayed most atrophy in left hippocampal body with relative sparing of the hippocampal head. 

Consistent with pathological studies most deformation was found in CA1 and subiculum areas in 

FTLD and AD.
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1. Introduction

The hippocampal formation is a key site of pathology in Alzheimer’s disease (AD). 

However, pathology of the hippocampus is also common in several other forms of dementia, 

including frontotemporal lobar degeneration (FTLD).

The hippocampus can be divided anatomically in different ways. In gross anatomical terms, 

three regions may be discerned: the hippocampal head (HH), which is the most anterior part, 

the body (HB) and the tail (HT) (Duvernoy, 2005). On basis of its cytoarchitecture, the 

hippocampus can be divided into the cornu ammonis subfields (CA1-4), the dentate gyrus 

(DG) and the subiculum (Duvernoy, 2005).

A three-part subdivision is also valid from a functional or molecular genomic perspective, 

according to which the structure can be divided into anterior, intermediate and posterior 

sections (Fanselow and Dong, 2010). The anterior hippocampus is associated with regulation 

of affect, stress and emotions, and the posterior part with cognitive functions such as 

memory and spatial learning (Moser and Moser, 1998). An intermediate part has also been 

identified but its specific functions are less well understood. Each subpart of hippocampus 

also has a unique connectivity pattern (Fanselow and Dong, 2010). The anterior 

hippocampus is thus connected to the amygdala and medial prefrontal cortex, regions 

associated with generation and regulation of emotional response (Fanselow and Dong, 2010; 

Moser and Moser, 1998). The posterior hippocampus has connections with several 

subcortical nuclei associated with spatial learning. In contrast to the gross anatomical 

division, however, this functional subdivision has no sharp boundaries; instead connectivity 

changes gradually moving from anterior to posterior through the structure (Fanselow and 

Dong, 2010).

Due to of its central role in the consolidation of memory and emotional processing and its 

vulnerability in different kinds of dementia, the hippocampal formation has been extensively 

studied with structural magnetic resonance imaging (MRI) (Apostolova, et al., 2010a; 

Apostolova, et al., 2006b; Barnes, et al., 2006; Frisoni, et al., 2008; Frisoni, et al., 1999; 

Probst, et al., 2007; van de Pol, et al., 2006). As hippocampal pathology is viewed as a 

central landmark in AD, it has also been used as a diagnostic biomarker in clinical practice 

(Wahlund, et al., 1999). While earlier volumetric MRI studies investigated pathology by 

measuring the total volume loss of hippocampus (van de Pol, et al., 2006), recent studies 

attempt to identify regional pathology within the structure. This can be undertaken by 

analyzing the shape deformation of a particular sub-region, a method used in several studies 

of AD (Apostolova, et al., 2006a; Apostolova, et al., 2010b; Chupin, et al., 2009; Frisoni, et 

al., 2008; Frisoni, et al., 2006; Gerardin, et al., 2009; Morra, et al., 2009) and rarely in other 

forms of dementia (Apostolova, et al., 2010a; Sabattoli, et al., 2008).

It has generally been found that certain hippocampal subfields seem more sensitive than 

others to neuropathology. For example, in AD most studies have shown reduced volume in 

the subiculum and CA1 (Frisoni, et al., 2008; Gerardin, et al., 2009; Miller, et al., 2009; 

Scher, et al., 2007; Wang, et al., 2009). This concurs with the results of several 

neuropathological studies on AD patients (Scher, et al., 2007).
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FTLD is, from a neuropathological point of view, an umbrella term encompassing several 

different neuropathological processes that lead to common clinical phenotypes (Cairns, et 

al., 2007). The different neuropathological variants may, however, share some sites of 

hippocampal pathology, namely, the CA1, subiculum and DG (Amador-Ortiz, et al., 2007; 

Cairns, et al., 2007; Graham, et al., 2005; Kersaitis, et al., 2004; Piguet, et al., 2011).

The clinical international consensus criteria for FTLD include three syndromes: 

frontotemporal dementia (FTD), progressive nonfluent aphasia (PNFA), and semantic 

dementia (SD) (Neary, et al., 1998). FTD is diagnosed primarily on the basis of early decline 

in interpersonal conduct, early emotional blunting, and an early loss of insight or concern 

about such changes. This transformation of character should be the dominant feature at onset 

and throughout the course. The diagnosis of PNFA is made in patients who insidiously 

develop nonfluent speech with agrammatism (a pattern of simplified sentence structure), 

phonological paraphasias, or anomia. Apraxia of speech is a common feature whereas word 

comprehension and comportment are preserved initially. SD, in contrast, is defined by fluent 

but “empty” spontaneous speech, anomia combined with impaired word comprehension and 

associative agnosia or prosopagnosia. Surface alexia and surface agraphia may occur in 

patients who use alphabetic scripts. For the diagnosis of AD the American Psychiatric 

Association ([DSM-IV-TR], 2000) requires memory deficits as a core diagnostic feature, in 

addition to at least one of the following symptoms: aphasia, apraxia, agnosia or deficits in 

executive functioning.

To our knowledge hippocampal shape analysis has not yet been performed on clinically 

diagnosed FTLD patients. Two studies divided manually outlined anatomical sections traced 

in coronal plane into subdivisions, moving antero-posteriorly along the long axis of the 

hippocampal formation in AD and FTLD patients. In one study, the volumes of these 

subdivisions were then plotted as an antero-posterior volumetric “profile”, revealing that 

FTD patients showed only anterior atrophy while AD patients had reduced volume in all 

hippocampal subdivisions (Laakso, et al., 2000). In another study, the anterior-posterior 

“profile” was divided into 20 subparts, which contained the combined area (in mm3) of the 

hippocampus and amygdale (Barnes, et al., 2006). In this study SD, FTD and AD patients 

were included. Both FTLD subtypes had proportionally more anterior than posterior 

atrophy; while AD again displayed a more evenly distributed atrophy throughout 

hippocampus.

In the present study we aimed to investigate the atrophic deformation of the hippocampus in 

the three classical clinical subtypes of FTLD, that is FTD, SD and PNFA, as well asin AD.

Our aims were to investigate the following questions:

1. Is the regional atrophic deformation of hippocampus in vivo in both the FTLD 

subtypes and AD consistent with the relative neuropathological vulnerability of the 

subiculum and the CA11?

1The DG is located within the hippocampus and is therefore beyond reach for a shape analysis of the total hippocampus.
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2. Is there more pronounced deformation of the anterior parts of hippocampus in the 

subtypes of FTLD than in AD?

3. Does each subtype of FTLD have a characteristic pattern of hippocampal atrophy?

2. Methods

2.1 Participants

The participants included in this investigation have been studied before in relation to cortical 

and striatal structure (Lindberg, et al., 2009; Looi, et al., 2008; Looi, et al., 2009; Looi, et al., 

2011; Looi, et al., 2010).

Participants were recruited retrospectively from the Memory Clinic at the Karolinska 

University Hospital Huddinge, Stockholm, Sweden. All participants went through the 

standard investigation procedure at the memory clinic (Andersson, 2007). Laboratory 

investigations for all subjects were done on blood, CSF and urine (including vitamin B12, 

folic acid levels and thyroid function). Clinical diagnoses were determined at a 

multidisciplinary consensus conference with physicians, neuropsychologists, speech-

language pathologists and nurses. FTLD syndromes were diagnosed following international 

consensus criteria (Neary, et al., 1998). Patients with FTLD and AD at different stages of the 

disease were included. Diagnoses of AD were based on criteria of the ICD-10 International 

Classification of Diseases, Tenth Revision (WHO, 1992). The control group (CTL) 

comprised individuals referred to the memory clinic because of mild subjective forgetfulness 

in everyday life. Objective cognitive impairment was ruled out through comprehensive 

neuropsychological assessment (impairment was defined as performance 1.5 SD unit below 

the age-normal mean on any cognitive test). To further minimize the risk of including 

participants with neurodegenerative diseases in very early stages, we included only those 

participants whose performance did not deteriorate over a minimum of 2-years follow-up.

Volumetric data was obtained for 13 FTD, 9 PNFA, 13 SD and 19 AD patients, as well as 21 

CTL subjects. Nine SD patients had more temporal atrophy on the left and 4 more atrophy 

on the right side. For analysis of degree of asymmetry in temporal atrophy, the SD group 

was thus divided into SDL (SD with predominantly left side atrophy) and SDR (SD with 

predominantly right side atrophy). SD was also divided into SD4, with severe left temporal 

atrophy, and SD03, with milder left temporal atrophy (see below under visual rating). 

Background data included age at scanning, Mini-Mental State Examination (MMSE) score 

(Folstein, et al., 1975) and intracranial volume. Illness duration was also investigated by 

calculating the number of months/years between first indications of symptoms (in medical 

records) and the MRI investigation. A non-parametric Kruskal-Wallis ANOVA with a Mann-

Whitney U test as post hoc was used for investigating differences in illness duration, age at 

scanning and MMSE scores. The study was approved by the Regional Ethical Review Board 

in Stockholm, Sweden. Background data are presented in Table 1. The dementia groups did 

not differ in age, but all dementia groups had, as expected, significantly lower MMSE scores 

than the CTL group.
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2.2 Image Acquisition

T1-weighted MR images were acquired on a 1.5T Magnetom Vision Plus scanner (Siemens 

Medical Systems, Erlangen, Germany). A 3D magnetization-prepared rapid gradient echo 

pulse sequence (TR, 11.4 ms; TE, 4.4 ms; TI, 300 ms; flip angle, 10°; NEX, 1) was used to 

obtain 72 contiguous coronal 2.5-mm sections with a 512 × 144 matrix and a 230-mm FOV. 

Original images were subsequently up-interpolated to 1×1×1 mm image resolution before 

the computation of morphometric analysis.

2.3 Image analysis

2.3.1 Hippocampus—Volumetric analysis was performed using HERMES BMAP 

Morphy Display (Nuclear Diagnostics AB, Stockholm, Sweden). Hippocampus was 

measured following rules proposed by Malykhin et al. (2007). This protocol divides the 

hippocampus into hippocampal head (HH), body (HB) and tail (HT). The most posterior part 

of the HH was defined as the first slice in which the uncal apex was clearly visible 

(Malykhin, et al., 2007). The superior border was the alveus, the uncal recess and the 

inferior horn of the lateral ventricle. The medial border was the inferior horn of the lateral 

ventricle or the WM of the parahippocampal gyrus. More anteriorly, the superior border of 

the HH was the amygdala. The fimbria was included as the superomedial border of the HB. 

The white matter of the parahippocampal gyrus was used to separate the subiculum from the 

entorhinal cortex by an imaginary line along the HB to the quadrigeminal cistern. The lateral 

border was the inferior horn of the lateral ventricle or the adjacent white matter. The superior 

medial border was the quadrigeminal cistern. Anterior border was the last slice before the 

appearance of the uncus.

The anterior border of the HT was the slice in which the fornix was seen in full profile, or 

was separated from the wall of the ventricle. As in the HB, the fimbria was included but not 

the fornix. The white matter of the fornix defined the superior and lateral border boundaries, 

and the white matter of the parahippocampal gyrus the inferior border. The medial border 

was the CSF of the quadrigeminal cistern (Malykhin, et al., 2007). OL was trained by NM 

for the hippocampus measurements. An interrater intraclass correlation coefficient (ICC) 

was calculated for volumetric data on 20 hippocampi. The ICC was 0.95 for the total volume 

in comparison with NM. Intrarater ICC was calculated on two occasions on 10 hippocampi 

and was on both occasions above 0.96. An anatomical atlas of the hippocampus (Duvernoy, 

2005) was used to interpret hippocampal anatomy. We used the gross-anatomical division of 

the region into HH, HB and HT, as specified by above, in the interpretation of the results. On 

basis of the regional deformation of the structure, we also estimated which cytoarchitectonic 

subfields that displayed atrophy in the dementia groups.

2.3.2 Intracranial volume—Intracranial volume was measured by stereology point-

counting technique following borders proposed by Eritaia et al. (Eritaia, et al., 2000). 

Measurements were performed by BZ.

2.3.3 Visual rating—Medial temporal lobe (MTL) pathology was also rated in dementia 

patients. Rating was performed in accordance with the Scheltens scale by an experienced 

radiologist (LC). The MTL scale ranges from 0 (no atrophy) to 4 (severe atrophy) 
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(Scheltens, et al., 1992). The visual rating scale was used to investigate the progression of 

atrophy in SD. In a sub analysis the SD patients were divided into two groups SD4 (with a 

left side MTL rating of 4) and SD03 (with a left side visual rating below 4) (table 1). The 

whole SD group had significant atrophy all over hippocampus. In order to find early sites of 

pathology a separate shape analysis of left hippocampus in the SD03 group was performed.

2.3.4 Statistical analysis—Statistical analysis was performed with Statistica 10 

(StatSoft, Inc., 2011). Volumetric data were analyzed by one-way-analysis of variance with 

Tukey HSD post-hoc test. All volumetric data were normalized by intracranial volume (ICV) 

by the formula volume of region/intracranial volume.

2.3.5 Shape analysis—Shape analysis was undertaken in an automated fashion using the 

University of North Carolina shape analysis toolkit (http://www.nitrc.org/projects/spharm-

pdm); a detailed description of the methodology is available in Styner et al. (2006). 

Segmented 3D label maps are initially processed to fill interior holes, ensure spherical 

topology and perform minimal smoothing. These are then mapped into spherical harmonic 

shape description (SPHARM-PDM), whereby boundary surfaces of each shape are mapped 

under area-preservation onto a spherical parametrization, followed by describing the original 

surface locations via sets of coefficients weighting spherical harmonic basis functions 

(Brechbuhler, et al., 1995). The correspondence between surfaces is established by 

parameter-based rotation, itself based on first-order expansion of the spherical harmonics, 

and is then uniformly sampled into a set of 1002 surface points. This surface is then aligned 

to a study-averaged template for each structure (left and right hippocampus) using rigid-

body Procrustes alignment (Bookstein, 1997), with normalization for head size using an ICV 

based scaling factor, fi, where fi=(Mean(ICV)/ICVi)1/3. We then compute local non-

parametric statistical tests that compares the local surface coordinates for group mean 

differences at the 1002 surface locations to compare shapes between groups (Styner et al., 

2006; Levitt et al., 2009). The group difference metric between groups of surface 

coordinates is derived from the Hotelling T2 two-sample metric. As the shape analysis 

involves computing 1002 hypothesis tests, one per surface location, a correction for multiple 

testing is necessary, as an uncorrected analysis would be overly optimistic. The shape 

analysis uses permutation tests for the computation of raw uncorrected p-values. A false 

discovery rate (FDR) correction (Genovese et al., 2002) is applied instead of a Bonferroni 

based multiple comparisons, resulting in a less pessimistic control for type 1 errors and less 

conservative estimate of false negatives (Pantazis et al., 2004; Styner et al., 2004). Shape 

statistical analysis significance maps showing local statistical p-values, raw and corrected for 

FDR, are generated. In results only FDR corrected data are shown. A global shape difference 

is computed, summarizing average group differences across the surface. Shape statistical 

analysis also provides visualizations of group test local effect size via mean difference 

magnitude displacement, which display the magnitude of deflation (mm) between the same 

point on the mean surface of group 1 and the mean surface of group 2, in a manner 

analogous to a vector map.
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Given the expected effect size in our study, the results of SPHARM-PDM shape statistics 

can be considered robust despite the relative low number of samples (Walterfang, et al., 

2011).

3. Results

3.1 Volumetric analysis

Compared to controls the normalized left hippocampal volume was significantly smaller in 

all dementia groups. The right-sided volume was significantly smaller in FTD and SD (Table 

2) compared to controls. No significant difference was found between dementia groups on 

either the left or right side volumes. The mean hippocampal volume was larger on the right 

side in all dementia groups while controls displayed a non-significant larger mean left 

volume. In SDL and PNFA there was a significant difference showing smaller left than right 

hippocampal volume. SDR had smaller right than left side volume; however this difference 

was not significant.

3.2 Hippocampal deformation in the dementia subtypes

3.2.1 AD compared with controls—Left hippocampus differed significantly in global 

shape between AD and controls (p=0.0018). Inferior and superior views also revealed 

localized shape differences. Atrophy was found in the medial part of the HB in the 

subiculum area and the lateral part of the HB in the CA1 area. Furthermore, a small part of 

the anterior hippocampal pole in the CA2-3 area and inferior part of the HH in the 

subiculum area displayed atrophy (Figure 2a).

The right hippocampus did not display a global shape difference between AD and controls. 

Significant localized atrophy was however found in the most medial part of the HH 

corresponding to the subiculum area and in a small spot of the inferior lateral part of the HH 

in the CA1 and subiculum area (Figure 2b).

3.2.2 FTD compared with controls—There was a significant global shape difference in 

the left hippocampus between FTD and controls (p=0.0087). Significant atrophy was also 

found in the anterior pole of the HH in the subiculum area (Figure 2c).

The right hippocampus did not display a global shape or regional difference between FTD 

and controls.

3.2.3 PNFA compared with controls—The left hippocampus displayed a significant 

global shape difference between PNFA and controls (p=0.0011). Viewing the hippocampus 

from above indicated that the most anterior part of the HH and posterior lateral parts of the 

HB and HT were atrophic, involving CA1-3 and the subiculum. A small part at the medial 

border of the body in the subiculum area was also affected. The inferior view indicates that a 

large part of the body was affected involving the CA1-2 area (Figure 2d). The right 

hippocampus did not display any global shape or regional significant deformation in PNFA.

3.2.4 SD compared with controls—Severe localized atrophy was found in most parts of 

the left hippocampus in SD. The global shape difference was thus highly significant when 
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comparing SD with controls (p=0.0002). (Figure 2e). There was also a global shape 

difference in the right hippocampus between SD and controls (p=0.0098), however, no 

regional significant difference remained after FDR correction.

3.2.5 SD with visual MTL rating of 0-3—The superior view of the left hippocampus 

shows atrophy of the HH in the anterior pole in the CA1 and subiculum area, in the lateral 

part of the HH in the CA1 area, and also in the superior medial part of the HH in the CA2-3 

area. A small part in the CA2-3 area in the junction between the HB and the HT was also 

affected. An inferior view indicated that subiculum and the CA1 displayed atrophy in the 

HH, while a small part of the medial subicular area of the HB as well as a small part the 

subiculum and CA1 area of the HT (Figure 2f). No global or regional shape difference was 

found on the right side in SD with left visual MTL rating between 0-3.

4. Discussion

We have investigated global volume loss and regional shape deformation of the 

hippocampus in three clinical FTLD subtypes and AD. The variance in morphology of the 

hippocampus across the groups will be discussed in terms of volumetry and different levels 

of neuroanatomy.

4.1 Volumetry

Global volumetric data revealed hippocampal atrophy in all dementia types on the left side, 

while only two FTLD subtypes (SD & FTD) were atrophic on the right side. This is 

consistent with previous findings (Shi, et al., 2009; van de Pol, et al., 2009).

4.2 Morphology: gross anatomy

From gross anatomical viewpoint, the FTD patients only displayed atrophy of left anterior 

HH. SD patients showed marked atrophy deformation in the whole left hippocampus, while 

PNFA had deformation in the left HH and HB. AD finally displayed more pronounced 

deformation of the left HB and some small spots in the HH.

4.2.1 SD—A previous study on SD showed limited atrophy particularly in the HT (Barnes, 

et al., 2006). As we found more posterior pathology in SD, including the left HT, we 

hypothesized that this may be an effect of disease progression. To test this we excluded the 5 

SD patients that had a visual left medial temporal lobe rating score of 4 (severe pathology). 

A subset shape analysis was then performed comparing the remaining 8 patients with the 

same control group (Table 1; SD03). We indeed found more limited posterior pathology in 

these milder cases of SD (Figure 2f.).

4.2.2 PNFA—Similarity in hippocampal morphology between the clinical FTLD subtypes 

and AD may potentially be related to the presence of AD pathology in these subtypes 

(Alladi, et al., 2007). PNFA was the FTLD subtype that displayed most similarity of 

hippocampal morphology with AD. Both AD and PNFA show deformation of the medial 

part of the HH and the lateral part of the HB. In a study of clinically diagnosed FTLD 

patients, around 44% of the PNFA cases had pathology consistent with AD post mortem, 
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while this number was much smaller in SD (10%) and FTD (7%) (Alladi, et al., 2007). 

Perhaps some of the PNFA patients included in the study were atypical AD patients, 

contributing to the resemblance between these two groups.

4.2.3 AD—In AD, the left hippocampus displays more pronounced pathology in the body, 

while the right hippocampus displays atrophy in the medial part of the hippocampal head. 

Pathological studies of AD suggest that atrophy starts in the entorhinal area (Braak and 

Braak, 1991) which is adjacent to the medial hippocampal head (Pruessner, et al., 2002). 

Thus it is very plausible that the atrophy we found in the right HH is more an effect of initial 

entorhinal rather than hippocampal atrophy. One could argue that if such were the case, then 

more medial atrophy would be seen in the left HH as well. The medial edge of the HH may 

however be too small a region to be reliably interpreted in a small group like our AD group 

(as anatomical variability may be a confounding factor). The interpretation of entorhinal 

pathology is strengthened in the context of a previous study by Gerardin et al. (2009). This 

study found medial atrophy of the HH on both side in both AD and in mild cognitive 

impairment (Gerardin, et al., 2009). An interesting contrast between AD and SD is this. In 

SD most of the left hippocampus is markedly atrophic; however the medial part of the L HH 

is relatively spared (Figure 2e). It has been suggested that atrophy in SD starts in the lateral 

temporal areas and the temporal pole and progresses later to the hippocampus (Graham, et 

al., 1999a; Graham, et al., 1999b; Graham, et al., 2000; Maguire, et al., 2000). Thus one 

possible interpretation of this could thus be that atrophy has progressed from medial 

entorhinal areas in AD but from lateral temporal areas in SD.

4.3 Comparison with previous studies on this dementia-cohort

The patients included in this investigation have been studied before. We have previously 

shown that the FTLD patients display different degrees of frontal lobe pathology: 

FTD>PNFA>SD>AD (Lindberg, et al., 2009). The same pattern has also been found in the 

caudate and in the putamen (Looi, et al., 2008; Looi, et al., 2009). The overall significance 

of shape deformation of left hippocampus in this study reveals the following pattern: 

SD>PNFA>AD>FTD while only SD displays a significant deformation on the right side. We 

have further shown that frontal versus temporal cortical pathology could be used to 

discriminate SD from FTD and PNFA patients, with the most temporal changes seen in SD 

and the least in FTD and PNFA (Lindberg, et al., 2009). Maybe a characteristic sign of AD-

pathology is manifested in proportionally more atrophy of the HB compared to the HH.

All dementia types in this investigation displayed more atrophy on the left hemisphere. This 

has previously been found in AD, PNFA and SD (Shi, et al., 2009; van de Pol, et al., 2006) 

but seems more unexpected in FTD, particularly since we previously showed that this group 

of FTD patients displayed more atrophy of the right frontal lobe (Lindberg, et al., 2009). 

Perhaps a lateralized difference has been emphasized by the characteristics of the controls 

group that displayed a non-significant larger mean volume of the left hippocampus, while 

the FTD group displayed the opposite pattern.
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4.4 Morphology: functional anatomy

In the introduction we also discussed a functional division. As this study did not involve any 

formal behavioral test, comment about the relevance of the distribution of hippocampal 

atrophy for emotional behavior is admittedly speculative, yet does indicate possibilities for 

further research. It can be noted that particularly FTD and SD displayed proportionally more 

anterior atrophy than PNFA and AD. As discussed in the introduction, the anterior parts of 

hippocampus are associated with emotional processing (Fanselow and Dong, 2010). It is 

interesting to note that the international consensus criteria for FTLD describe alteration in 

emotional behavior both in SD (“loss of sympathy and empathy”) and FTD (“decline in 

social interpersonal conduct”), while PNFA is defined by having “early preservation of 

social skills” (Neary, et al., 1998). Furthermore, the American Psychiatric Association 

([DSM-IV-TR], 2000) does not include emotional or social dysfunction as diagnostic criteria 

for AD. Thus the two dementia types that displayed most anterior hippocampal atrophy in 

this study have been described to develop emotional and social dysfunction. Whether 

anterior hippocampus by itself may be relevant for this changes can, however, not be 

investigated in our data. Atrophy of this region could for example also be an indirect 

indicator of more general atrophy of the anterior temporal lobe (including amygdala and 

temporal pole).

4.5 Morphology: cytoarchitecture

On basis of the shape analysis, we infer that the subiculum and the CA1 are the two most 

atrophic cytoarchitectonic subfields in both AD and FTLD. Some involvement was however 

found also in CA2-3, particularly in the left HH (in AD, SD & PNFA) and in some parts of 

the body (in SD & PNFA).

4.6 Limitations

A limitation of this study is the difference in illness duration between different patients of 

the same dementia group and/or between different subgroups of dementia. However, 

comparative disease duration in clinically defined disease is itself a problematic concept due 

to probable differences in pathophysiology resulting in disparate clinical features, each with 

different temporal progressions. This makes it impossible to differentiate between primary 

sites of pathology and later spreading from primary sites, except by longitudinal study, 

which was not attempted here. Another limitation is that we did not have pathological 

confirmation about the underlying cause of the disease in the dementia groups. It has to be 

emphasized, however, that the relationship between atrophy and pathologically confirmed 

cases is a quite different approach than used in this study; particularly since the different 

pathologies may result in similar clinical symptoms (Rabinovici and Miller, 2010).

A third limitation is that we can only study the subfields of hippocampus indirectly (by the 

location of the deformation) which may yield different information from the actual volume 

of these subfields (Malykhin, et al., 2010). To measure the subfields volume would, 

however, require high resolution images that were not available in these patients. The use of 

a subjective memory complaint, but no cognitive impairment, group as controls was 

validated by the long term follow-up showing no decline in cognition in the controls.
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5. Conclusions

This study demonstrates that both the FTLD subtypes and AD are most vulnerable to 

atrophy in CA1 and the subiculum. In contrast to FTLD, AD displayed proportionally more 

atrophy of the HB than the HH. FTD only displayed atrophy in the HH, while SD displayed 

atrophy of the whole hippocampus. There was a strong resemblance in the pattern of 

hippocampal atrophy between AD and PNFA. This may potentially reflect the fact that 

patients with the clinical diagnosis of PNFA more often display AD neuropathology than 

other FTLD subtypes.
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Figure 1. Raw volume of hippocampus in included patients groups
Figure 1 displays the raw (in cm3) volume of hippocampus in included groups. X-axis 

denotes included groups, Y-axis denotes the volume of hippocampus. HC=hippocampus. 

L=left, R=right. AD: Alzheimer’s disease, FTD: Frontotemporal dementia, PNFA: 

Progressive nonfluent aphasia, SD: Semantic dementia, SDL: SD with predominantly left 

side atrophy, SDR: SD with predominantly right side atrophy
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Figure 2. Shape statistics and displacements maps
This figure contains Shape statistics maps (above) and displacements maps below. The 

statistical shape maps display the significance of local deformations. P-values color 

significance scale is identical for all images, and warmer colors refer to smaller P-values 

(less than 0.05). Blue color corresponds to P-values above 0.05. False discovery rate (FDR) 

corrected P-values are displayed. In the displacements maps color scale is unique for each 

image, and corresponds to the millimeters of atrophy of the surface in that region. Warmer 

color corresponds to greater deflation and colors such as green and blue corresponds to 

lesser deflation. I=inferior view, S=superior view, A=anterior, P=posterior, L=lateral.

2a) Left hippocampus in AD compared to controls.

2b) Right hippocampus in AD compared to controls.

2c) Left hippocampus in FTD compared to controls.

2d) Left hippocampus in PNFA compared to controls.

2e) Left hippocampus in SD compared to controls.

2f) Left hippocampus in SD with visual rating below 4 compared to controls.
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Table 1

Background data of the included patients

Group Age at scan Illness duration MMSE N M/F ICV

CTL 62.9(53.2-78) NA 28.9(25-30) 21 7/14 1408(1116-1673)

AD 63.7(50.3-74.9) 2.49 (0.6-5.1) 22.3(7-29)* 19 8/12 1373(1138-1574)

PNFA 65(57.2-78.3) 3.6 (0.1-8.13) 16.9(0-28* 9 3/6 1373(1296-1542)

SD 64(51.6-76.9) 3.9(1.31–7.73) 22.9(5-29)* 13 5/8 1440(1204-1682)

FTD 59.8(41.9-72.1) 1.7 (0.25-3.4) 20.83(10-30)* 13 4/9 1373(1296-1542)

SDL 63.3(51.6-76.9) 4.1 (I.3-7.7) 22.4(5-29)* 9 2/7 1449(1237-1682)

SDR 65(57.5-73.8) 3.45 (2.3-5.3) 24.3(20-27) 4 3/1 1420(1204-1610)

SD03 62.2(51.6-73.8) 3.47(1.31-5.85) 25.4(24-27) 8 3/5 1339(1237-1610)

SD4 66.2(56.3-76.9) 4.59(2.4-7.73)+ 19.4(5-29) 5 2/3 1507(1204-1682)

CTL=controls. Second column: mean(max-min) age at scan, Third column= mean (max-min) illness duration. Fourth column= mean(max-min) 
scores on minimal mental state exame. N= number of subjects. M/F= the number of males/females included in the study. ICV= intracranial volume 
mean(max-min).

+
= significant difference from FTD in Kruskal-Wallis Anova with a Mann-Whitney U-test post-hoc.

*
= significantly different from controls in Kruskal-Wallis Anova with a Mann-Whitney U-test post-hoc.
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Table 2

Volumetric data of hippocampus

HC L HC R HC L HC R

CTL NA NA 3.26 (2.99-3.54) 3.21 (2.98-3.44)

AD 0.005 0.166 2.66* (2.42-2.9) 2.75 (2.48-3.02)

PNFA 0.001 0.92 2.50* (2.06-2.94) 2.94 (2.62-3.25)¤

SD 0.0002 0.01 2.41* (2.20-2.61) 2.61* (2.33-2.89)

SDL 0.0001 0.16 2.29* (1.95-2.63) 2.79 (2.46-3.12)¤

SDR 0.09 0.003 2.67* (2.04-3.30) 2.21* (1.47-2.95)

FTD 0.0002 0.012 2.61* (2.32-2.9) 2.72* (2.38-3.06)

HC L= Left hippocampus, HC R=Right hippocampus. Column 1&2 denotes P-values in one-way-ANOVA withTukey post-hoc test. Column 3&4 
denotes the raw mean with a 95% confidence interval volume of hippocampus in investigated groups.

*
=significant different compared to controls.

¤
= significant difference between right and left hippocampal volume in T-test (p < or = 0,01).

AD: Alzheimer’s disease, FTD: Frontotemporal dementia, PNFA: Progressive nonfluent aphasia, SD: Semantic dementia, SDL: SD with 
predominantly left side atrophy, SDR: SD with predominantly right side atrophy
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