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Abstract

Importance—Psychiatric disorders in youth characterized by behavioral and emotional 

dysregulation are often comorbid and difficult to distinguish. An alternative approach to 

conceptualizing these disorders is to move toward a diagnostic system based on underlying 

pathophysiologic processes that may cut across conventionally defined diagnoses. Neuroimaging 

techniques have potentials for the identification of these processes.

Objective—To determine whether diffusion imaging can identify neural correlates of emotional 

dysregulation in a sample of youth with a variety of different psychiatric disorders characterized 

by behavioral and emotional dysregulation.
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Design, Setting, and Participants—Start date = 07/01/10; End date = 02/28/15. We 

examined relationships between WM structure in key tracts in emotional regulation circuitry and: 

1).Broader-diagnostic categories of behavioral and emotional dysregulation disorders (DDs); and 

2).Symptom dimensions cutting across conventional diagnoses in 120 youth with behavioral 

and/or emotional DDs. Thirty typically developing youth (control participants) were included.

Main Outcome Measure(s)—Using global probabilistic tractography, key WM tracts in 

emotional regulation circuitry (ie, cingulum, uncinate fasciculus, and forceps minor) were 

reconstructed. Fractional anisotropy (and axial or radial diffusivity) was estimated, and values 

were imported into a well-established statistical package. We hypothesized that (1).Youth with 

emotional DDs, and those with both behavioral and emotional DDs, would show significantly 

lower fractional anisotropy compared with youth with behavioral DDs in these WM tracts, and (2) 

that there would be significant inverse relationships between dimensional measures of affective 

symptom severity and fractional anisotropy in these tracts across all participants.

Results—Multivariate multiple regression analyses revealed statistically significantly decreased 

fractional anisotropy and decreased axial, but not increased radial, diffusivity, within the uncinate 

fasciculus, in youth with emotional DDs vs. those with-behavioral DDs, vs those with both DDs, 

and vs controls (F P all pairwise comparisons, p<0.002). In the same model, greater severity of 

manic symptoms was positively associated with higher fractional anisotropy across all affected 

youth (F P p=0.043).

Conclusions and Relevance—The findings of the present study suggest that abnormal 

uncinate fasciculus and cingulum WM structure may underlie emotional, but not behavioral, 

dysregulation in pediatric psychiatric disorders, and that a different neural mechanism may exist 

for comorbid (emotional and behavioral) DDs.
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The majority of psychiatric disorders in youth (PDY) include behavioral dysregulation 

disorders, that are often associated with emotional problems, (eg,attention deficit 

hyperactivity disorder [ADHD], disruptive behavior disorders [DBD], including conduct 

disorder and oppositional defiant disorder) and emotional dysregulation disorders, often 

associated with behavioral problems, e.g.,depressive disorder(DD); bipolar spectrum 

disorders(BPSD); anxiety disorders(AXD). Given the overlap of symptoms and their high 

comorbidity, however, PDY pose challenges for diagnosis and treatment, increasing the use 

of ‘Not Otherwise Specified’ diagnoses1-4. While diagnostic manuals represent the 

consensus standard for psychiatric diagnosis, research needs to establish a groundwork for a 

future diagnostic system based on underlying pathophysiologic processes, using frameworks 

that may cut across conventionally-defined diagnoses5.

One possible approach is to conceptualize broad categories of disorders characterized by 

either emotional dysregulation, behavioral dysregulation, or comorbid behavioral and 

emotional dysregulation. In this categorical approach, youth with emotional dysregulation 

disorders may have comorbid behavioral problems, while youth with behavioral 
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dysregulation disorders may have associated emotional problems. Despite similar 

presentations of emotional and behavioral dysregulation across these broader categories of 

PDY, their underlying neural mechanisms may differ. Another approach conceptualizes 

these disorders in terms of dimensions of behavioral or emotional dysregulation that cut 

across conventionally-defined diagnoses, paralleling the dimensional approach of the 

NIMH's Research Domain Criteria5.

Neuroimaging can help identify neural mechanisms underlying the pathophysiology of 

behavioral and emotional dysregulation in youth. Diffusion imaging (DI) is a non-invasive 

technique, sensitive to water diffusivity in brain tissue6,7. DI measures include axial 

diffusivity(L1), radial diffusivity(RD) and fractional anisotropy(FA), representing the 

degree of fiber coherence. Tracts with collinear axons(densely-packed fibers) are mostly 

characterized by high FA and high L1 and tracts with non-collinear axons(e.g.,crossing 

fibers) by low FA and high RD; while WM damage is mostly characterized by low FA and 

high RD.

Changes in DI measures correlate with progressive cortical thinning8 and synaptic pruning, a 

process by which redundant synapses overproduced early in life are eliminated9. 

Specifically, age-related increases in the magnitude/directionality of water diffusivity(i.e., 

increased FA with increased L1 and/or decreased RD) may reflect ongoing maturation of 

axons and their myelin sheaths from-childhood-to-adulthood10-15. In this timeframe, ventro- 

and dorso-limbic pathways may play a key role in the pathophysiology of many psychiatric 

disorders characterized by emotional dysregulation16-19. Specifically, the uncinate 

fasciculus, connecting the anterior temporal pole –including amygdala– with prefrontal 

cortex and known to be involved in reappraisal strategy,20 constitutes the ventro-limbic WM 

pathway21-24. The cingulum, connecting the anteromedial temporal lobe –including 

amygdala-hippocampus- with cingulate cortex, constitutes the dorso-limbic WM 

pathway22-24. Another tract supporting interhemispheric associative functions of 

emotion(and cognition) is the forceps minor of the corpus callosum, connecting left-right 

prefrontal regions23,25,26. Examining whether WM abnormalities in these tracts are 

associated with emotional more than behavioral dysregulation disorders in youth can 

provide neurobiological measures to help distinguish these disorders.

DI studies in PDY focused, however, on comparing youth with a conventionally-defined 

diagnosis versus healthy youth. Studies in youth with BPSD reported WM abnormalities in 

frontal27,28 and temporal27,29 regions, and in the corpus callosum27,30-33. Similarly, in youth 

with DD, one study reported lower FA in the uncinate and cingulum34. WM abnormalities in 

youth with ADHD have been reported in numerous tracts, including forceps minor, 

uncinate35, and cingulum36,37. A recent study also reported higher FA in the uncinate of 

youth with severe DBD38; disconfirming previous evidence39. Together, these findings 

suggest abnormalities in the uncinate, cingulum, and corpus callosum across a range of PDY 

characterized by emotional, and behavioral, dysregulation, but a more consistent pattern of 

abnormal(decreased) FA in youth with emotional dysregulation disorders(BPSD and DD) 

than youth with behavioral dysregulation disorders(ADHD and DBD). Yet, to our 

knowledge, no DI study adopted a broader categorical or a dimensional approach to 

studying youth with behavioral and emotional dysregulation disorders.
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Recruiting from a multisite longitudinal study of youth seeking treatment for behavioral and 

emotional dysregulation, the Longitudinal Assessment of Manic Symptoms(LAMS) study40, 

we sought to identify relationships between emotional, and behavioral, dysregulation 

disorders and WM in the above tracts in a clinically well-characterized cohort of referred 

youth.

Given the inconsistency of DI findings in the study of specific PDY, likely due to relatively 

small sample sizes and Region-Of-Interest/Voxel-Based approaches, we employed global 

probabilistic tractography, ‘TRActs-Constrained-by-UnderLying-Anatomy’(TRACULA)41. 

Using reproducible tracking protocols42 validated on training subjects, TRACULA is suitable 

for the study of well-characterized WM tracts43 in large samples.

We evaluated the following aims and hypotheses:

Broader Categorical Approach

We categorized youth into broader-diagnostic categories of youth with behavioral 

dysregulation disorders only(with-BehavioralDD; including ADHD,DBD,ADHD+DBD), 

youth with emotional dysregulation disorders only(with-EmotionalDD; including 

BPDS,DD,AXD,BPDS+ADX,DD+AXD), and youth with comorbid behavioral and 

emotional dysregulation disorders(with-Both; including combinations of the other 

2classes.Figure-1A). Hypothesis.1: Youth with-EmotionalDD(and youth with-Both) would 

show significantly lower FA than youth with-BehavioralDD in uncinate fasciculus, 

cingulum, and forceps minor.

Dimensional Approach

To determine the extent to which dimensional measures of emotional dysregulation, 

including measures of mania, depression, anxiety, and a measure of emotional 

dysregulation, the Parent General Behavior Inventory-10 Item Mania Scale(PGBI-10M 

score) were significantly associated with FA in the above WM tracts across youth with 

behavioral and/or emotional dysregulation disorders, irrespective of diagnosis. Hypothesis.
2: There would be significant inverse relationships between the above dimensional measures 

and FA in these tracts across LAMS youth.

We recruited a control group of demographically-matched typically developing 

youth(CONT) to examine the extent to which youth in each broader diagnostic group, or 

youth with different levels of symptom severity, showed abnormal WM FA(vs.CONT). We 

also examined L1, RD and volume to interpret FA findings, and explored the impact of 

lifetime presence of each conventionally-defined diagnosis upon FA in these tracts.

Methods

Participants

One-hundred-twenty LAMS participants from three sites participated: Case Western 

Reserve University(CWRU;n=32); Cincinnati Children's Hospital(CCH;n=47); and 

University of Pittsburgh Medical Center(UPMC;n=45). Thirty LAMS youth were excluded 
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due to data loss(n=4) or image artifacts(n=26). Those excluded did not differ significantly 

from those included in age, sex, or IQ(p>0.05;eMaterials), leaving 91 LAMS youth (male/

female=55/36;mean-age[SD]=13.8[2.1];right/left handedness=83/8; IQ[SD]=102.8[17.3]) in 

the neuroimaging study.

32CONT were recruited from CWRU(n=13), CCH(n=6) and UPMC(n=13). After quality-

control procedures(2CONT were excluded for image artifacts), 30demographically-matched 

CONT without history of psychiatric illness were included. eMaterials report medications 

and exclusion criteria.

Data analysis

Symptom Assessment—To assess emotional dysregulation, LAMS youth and their 

parents/guardians completed the Kiddie Schedule for Affective Disorders and Schizophrenia 

for School-Age Children Mania Rating Scale(K-MRS) and Depression Rating Scale(K-

DRS)44 to assess hypo/mania and depressive symptoms, respectively, at scan(eTable-1). The 

Screen for Child Anxiety and Related Emotional Disorders(SCARED)45 assessed anxiety 

symptoms at 6-monthly intervals throughout LAMS and at scan. To assess behaviors 

associated with emotional dysregulation, parents/guardians completed the 

PGBI-10M46,47(eMaterials) at 6-monthly intervals throughout LAMS; present analyses 

usedscores closest to scan day.(eTable-1).

Diagnostic Categories—As confirmed by a licensed clinician using K-SADS defined-

diagnoses(DSM-IV-based), the 91 LAMS youth had a variety of current(at scan) DSM-IV 

diagnoses.(Figure-1B). In broader-diagnostic categories, there were 22 youth with-

BehavioralDD, 16 with-EmotionalDD, and 53 with-Both.(eTable-1).

Neuroimaging—Using freely-available softwares(ExploreDTI;FreeSurfer;TRACULA), 

the 3WM tracts described above were reconstructed in 121 participants(Figure-2A). Mean 

FA(plus L1,RD and volume) was extracted for each pathway in each participant. The 

corticospinal tract was separately examined as a control region. Two trained independent 

observers(AV;HA) visually inspected all neuroimaging outputs to ensure data quality. 

Details on data acquisition and preprocessing are in eMaterials.

Statistical Approach

Demographic, clinical, and DI measures were imported into well-established statistical 

software(IBM-SPSS.20) to test main hypotheses and exploratory analyses. Rather than 

considering 3WM tracts separately, we examined them simultaneously across LAMS 

youth-- balancing type-I and type-II errors. To further reduce the number of multiple 

comparisons, we computed mean FA(or L1/RD/volume) across both hemispheres for both 

bilateral tracts, then entered these values, together with values of the interhemispheric 

tract(forceps minor), into the same model(total=3WM tracts).

To test main hypotheses concurrently, we adopted the following multivariate analytic 

approach. Level-1 Analyses: Given numerous potential demographic and clinical variables to 

include in the model(i.e.,age, sex, handedness, IQ, parental education, medication status: 
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taking versus not-taking psychotropic medications), we examined the multivariate 

relationship between each individual independent variable(variables of interest and 

covariates) and 3 dependent variables(FA across the 3WM tracts) and, using a lenient 

threshold of p<0.1 to allow inclusion of as many independent variables as possible in the 

final model, but at the same time avoid model overfitting. Level-2 Analyses: Only those 

independent variables that demonstrated significant relationships with all 3 dependent 

variables were then added to the final multivariate multiple regression model. Level-3 

Analyses: Univariate analyses examined individual relationships between any(categorical or 

dimensional) independent variable and each dependent measure in significant findings from 

Level-2 Analyses. For the main effect of independent continuous variables upon FA, 

estimated parameters were reported to assess the directionality of the relationship. Level-4 

Analyses: Post-hoc analyses(independent t-tests) were performed to interpret any significant 

finding arising from univariate analyses in Level-3 Analyses above. For example, if Level-3 

Analyses revealed a significant main effect of broader-diagnostic category upon FA in one 

of the 3WM tracts, then post-hoc independent t-tests determined the nature of between-

group differences in this tract, using Bonferroni corrections for the number of parallel 

between-group post-hoc comparisons. Correlational analyses examined any significant main 

effect of symptom dimension upon any of the 3 dependent variables. Using the same model 

proposed in Level-3, the potential effect of laterality was also examined. Here, left and right 

diffusivity measures for both bilateral tracts, rather than mean diffusivity measures, were 

entered into repeated measures analyses.

Level 2-4 Analyses were then repeated adding CONT(matched for age, sex, IQ, parental 

education, handedness).

To further understand the nature of FA changes, mean L1, RD, and volume were also 

examined, paralleling Level 2-4 Analyses performed above for FA.

Despite high rate of comorbidities in this naturalistic sample, we wished to explore(p<0.05) 

the impact of specific diagnoses within broader-diagnostic categories on main dependent 

variables(FA). The potential effect of each individual diagnosis(with vs.without) in each of 

the three WM tracts was separately examined, using univariate tests. Because AXD was 

predominantly a comorbid condition among 3-4 coexisting diagnoses(eMaterials), we could 

not analyze the impact of having AXD vs. not.

Inter-site variability—To control for inter-site differences in scanners, demographic 

variables, and proportion of diagnoses/treatments, the factor ‘site’ was always entered in 

tested models(eTable-2 reports the effect of site). To control for inter-site differences in 

signal to noise ratio(SNR), SNR was estimated and averaged across 68 images per 

participant, and tested as a covariate in Level-1 Analyses.

Results

Demographic and Clinical Characteristics

There were no significant between-group(LAMS youth vs. CONT) differences in age, 

gender ratio, handedness, parental education and IQ. As expected, LAMS youth had 
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significantly more anxious(SCARED), depressive(K-DRS) and manic(K-MRS) symptoms 

than CONT(eTable-1).

DI

Level-1 Analyses—Multivariate analyses revealed no significant effect of demographic 

and other potential confounders, such as age, gender, parental education, handedness or 

SNR upon FA. There was an effect of IQ upon FA across the 3WM 

tracts(F[3,85]=2.5;p=0.062). Using a similar approach, no medication class(stimulants, non-

stimulants, antidepressants, mood stabilizers, antipsychotics) showed a main effect upon FA.

(Table-1; eTable-2).

Multivariate analyses revealed a significant effect of broader-diagnostic 

group(F[6,160]=2.4;p=0.032;Table-1) between youth with-BehavioralDD, with-

EmotionalDD and with-Both upon FA across the 3WM tracts, and a significant effect of K-

MRS upon FA across the 3WM tracts(F[3,85]=2.8;p=0.044;Table-1).

Thus, IQ, K-MRS and broader-diagnostic group(and site) were entered as independent 

variables in Level-2 Analyses.

Level-2 Analyses—Main effects of broader-diagnostic group and K-MRS, but not IQ, 

remained significant in the final model(F[6,156]=2.2;p=0.047 and F[3,78]=2.3;p=0.079).

(Table-2).

Level-3 Analyses—Univariate analyses revealed that the main effect of broader-

diagnostic group was in the forceps minor(F[2,80]=3.3;p=0.042) and uncinate 

fasciculus(F[2,80]=4.9;p=0.009) whereas the main effect of manic symptoms(K-MRS) was 

in the cingulum(F[1,80]=4.2;p=0.043). Observation of parameter estimates revealed the latter 

to be a significant positive relationship(Table-2;eTable-3).

Level-4 Analyses—Post-hoc analyses revealed significantly lower FA in youth with-

EmotionalDD vs. those with-Both(p=0.015; Bonferroni corrected at 0.05/3=0.016, to control 

for three pairwise between-group comparisons), and a trend-decrease in youth with-

EmotionalDD vs. those with-BehavioralDD(p=0.025) in forceps minor. There was 

significantly lower FA in youth with-EmotionalDD vs. those with-BehavioralDD and with-

Both(both p=0.004; Bonferroni corrected) in uncinate fasciculus(Table-2;Figure-2B).

Level 2-4 Analyses with CONT—Main findings regarding significant independent 

variables in Level 2-3 Analyses above remained after inclusion of CONT. There was 

significantly lower FA in youth with-EmotionalDD vs. CONT in forceps minor and uncinate 

fasciculus(p=0.006 and p=0.005; Bonferroni corrected at 0.05/3=0.017 to control for the 

three parallel comparisons between each LAMS broader-diagnostic group and CONT; 

eTable-4A;Figure-2B). The positive relationship between K-MRS and FA in the cingulum 

remained significant across LAMS youth and CONT(p=0.048;Level-3 Analyses), but did not 

survive in post-hoc analyses in LAMS youth with-K-MRS≥14 or with-K-MRS<14 vs. 

CONT(Footnote of eTable-4A;eFigure-1).
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Level 2-4 Analyses of L1, RD and volume—These analyses revealed significantly 

lower L1(but not RD or volume) in both forceps minor and uncinate in youth with-

EmotionalDD vs. those with-BehavioralDD and with-Both(and CONT)(all p<0.004), and a 

significant positive relationship between K-MRS and L1 in the cingulum(p=0.05), using the 

same model used for the analyses of FA.(eTable-4B-D;Figure-2C).

We did not find any significant effect of group or symptom dimension in the control 

region(corticospinal tract) using dimensional or categorical measures.(eTable-5).

Exploratory analyses: effect of conventional diagnoses—Youth with-

ADHD(including youth with ‘pure'ADHD, or ADHD comorbid with any other disorder) 

showed higher FA vs.youth without-ADHD in the uncinate(p=0.038). Youth with-

DBD(including youth with ‘pure'DBD, or DBD comorbid with any other disorder) showed 

higher FA vs. youth without-DBD in the uncinate(p=0.026; eTable-6 for further details 

regarding the effect of conventional diagnoses; eFigure-2). Youth without-DBD showed 

trend-lower FA in the uncinate vs.CONT(p=0.079).

Discussion

In 91 LAMS youth with behavioral and emotional dysregulation, we sought to identify 

relationships between behavioral and emotional dysregulation and WM structure in 3 major 

emotional regulation tracts. We examined the extent to which DI measures were associated 

with: 1) broader-diagnostic categories of behavioral and/or emotional dysregulation 

disorders, and 2) dimensions of emotional dysregulation severity. Supporting our broader 

categorical hypothesis, LAMS youth with-EmotionalDD showed significantly lower FA(and 

L1) in the 3WM tracts of interest than youth with-BehavioralDD and CONT. Specifically, 

youth with-EmotionalDD showed lower FA and lower L1 in the uncinate fasciculus(and to a 

lesser extent in the forceps minor) vs. youth with-BehavioralDD, youth with-Both and 

CONT. The significantly lower L1, associated with lower FA, may reflect a reduced number 

of axons/smaller axonal diameter in these tracts in youth with-EmotionalDD. These WM 

abnormalities may represent a neural mechanism of emotional dysregulation in youth. 

Indeed, decreased FA has previously been reported in these tracts in youth and adults with 

BPSD and DD29,48-52(for a meta-analysis, see53).

Interestingly, youth with-Both(vs.CONT) did not show lower FA in the above tracts, 

suggesting that emotional dysregulation symptoms in youth with behavioral dysregulation 

disorders may have different underlying neural mechanisms from emotional dysregulation 

disorders without behavioral dysregulation comorbidity. Unavailability of a more 

appropriate diagnostic category for youth presenting with both behavioral and emotional 

dysregulation may have contributed to a “default” diagnostic grouping of BPSD or DD 

comorbid with ADHD/DBD. Additional evidence for a different pattern of WM 

abnormalities in youth with-Both relative to youth with-EmotionalDD comes from our 

exploratory analyses based on conventionally-defined diagnoses. Contrary to expectations, 

youth with-BPSD(or with-DD) did not show lower FA in the uncinate and/or forceps minor 

versus those without-(these)disorders. However, most youth with BPSD or DD also had 

comorbid ADHD/DBD, putting them in the “Both” category, which may contribute to this 
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null finding. While youth with-DBD had significantly higher FA in the uncinate than youth 

without-DBD, as previously shown38, the without-DBD group(predominantly comprising 

youth with-BPSD, DD and/or ANX) showed trend-lower FA in the uncinate vs. CONT, 

consistent with our main findings in youth with-EmotionalDD vs. CONT.

Although youth with-EmotionalDD showed low levels of manic symptoms, possibly 

explained by fluctuating mood symptoms over time and medication effects54, there was a 

significant relationship between mania severity and cingulum FA(and L1) across all LAMS 

youth. Greater collinearity of cingulum axons may result in greater connectivity between 

anterior cingulate cortex and temporal regions. While lower connectivity has been 

associated with functional impairment in pathologic vs. healthy conditions55,56; the role of 

abnormally elevated WM connectivity in psychiatric disorders remains unclear30,37,38,57-65. 

Further studies are needed to clarify this.

Further considerations from a developmental point of view are needed. Decreased uncinate 

fasciculus and forceps minor FA has been consistently associated with higher RD in adults 

with mood disorders51,52,62,66-68, suggestive of abnormal reorganization of axonal 

architecture(i.e.,high degree of non-collinear axons) and/or myelin or axonal damage. Lower 

L1, rather than higher RD, however, suggests an abnormally reduced number of collinear 

axons in these tracts in youth with-EmotionalDD. This may lead to an abnormal, 

compensatory increase of both collinear and non-collinear axons over development, given 

findings of both higher RD and normal L1 in these tracts in adults with mood 

disorders51,52,62,66-68. This may underlie the patterns of aberrant functional connectivity 

between prefrontal regions and amygdala observed in adults with emotional dysregulation 

disorders such as BPSD69-71.

There are limitations to the present study. We used the averaged FA(L1 and RD) across all 

voxels reconstructed within a tract of interest. We show significantly decreased FA in the 

uncinate fasciculus in youth with-EmotionalDD vs. those with-BehavioralDD, and those 

with-Both. One interpretation is that there may be different neural mechanisms underpinning 

emotional dysregulation in youth with-EmotionalDD relative to youth with-Both, but we 

cannot exclude the possibility that more subtle abnormalities in WM tracts, which may not 

have been captured by measurement of mean FA, may differentiate these two groups. Using 

a probabilistic algorithm based on a-priori knowledge of well-known WM tracts(i.e., global 

tractography), we focused on major WM tracts supporting emotional regulation21-24. We 

acknowledge that the involvement of other tracts, such as those in indirect cortico-thalamic-

striatal-lenticular-cortical circuits, may also be important in emotional regulation. Further 

studies employing a more exploratory approach(e.g., local tractography) are needed to 

examine additional tracts, including those not primarily involved in emotional regulation. 

Diagnoses were mostly comorbid, reflecting the naturalistic nature of this study. Further 

studies should confirm our findings in noncomorbid PDY. While there was no significant 

effect of psychotropic medications upon WM, randomized clinical trial platforms would 

facilitate assessment of effects of medications upon WM tracts in PDY.

Versace et al. Page 9

JAMA Psychiatry. Author manuscript; available in PMC 2015 April 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusions

This is the first study to implement broader-diagnostic categories of behavioral and 

emotional dysregulation in neuroimaging. The proposed approach accounts for high rates of 

PDY comorbidities, and suggests that neural mechanisms underlying emotional 

dysregulation may differ between youth with-EmotionalDD and youth with-Both.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure-1. 
Panel A. Pie graph represents proportions and corresponding percentages of youth with-

BehavioralDD(in blue), youth with-EmotionalDD(in red) and youth with-Both(in purple) in 

the LAMS neuroimaging sample.

Panel B. Pie graph represents proportions and corresponding percentages of different 

diagnoses in LAMS youth. Single diagnoses(blue tones): ADHD(11%), BPSD(6%), 

DBD(2%), DD(2%), and AXD(1%). Lifetime comorbidities(grey tones): DD+DBD

+ADHD(18%), DBD+ADHD(13%), BD+DBD+ADHD+AXD(11%), BD+DBD
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+ADHD(8%), DD+DBD+ADHD+AXD(8%), BD+AXD(5%), BD+ADHD(3%), BD

+ADHD+AXD(3%), BD+DBD+AXD(3%), DD+ADHD+AXD(2%), ADHD+AXD(1%), 

DBD+ADHD+AXD(1%), DD+ADHD(1%), DD+AXD(1%), DD+DBD(1%), DD+DBD

+AXD(1%).
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Figure-2. 
Panel A. Reconstruction of forceps minor(red), uncinate fasciculus(blue) and 

cingulum(green) in one of our participants, using the global probabilistic algorithm proposed 

in TRACULA. The cortico-spinal tract(purple) served as ‘control region’. On the left side, 

three boxes show the same tracts reconstructed in the same participant using the 

deterministic algorithm proposed in ExploreDTI, for graphical comparison. Here, different 

colors within tracts represent the orientation of the fiber segments(red: segments with a left 

to right orientation of the fibers; green: segments with an anterior to posterior orientation of 
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the fibers; blue: segments with an inferior to superior orientation of the fibers), based on the 

color coding convention used in DI.

Panel B. Estimated Marginal Means and Standard Error of FA in forceps minor(left) and 

uncinate fasciculus(right) in youth with-BehavioralDD(in blue), youth with-EmotionalDD(in 

red), youth with-Both(in purple) and CONT(in green), after controlling for site and IQ.

Panel C. Estimated Marginal Means and Standard Error of L1 in forceps minor(left) and 

uncinate fasciculus(right) in youth with-BehavioralDD(in blue), youth with-EmotionalDD(in 

red), youth with-Both(in purple) and CONT(in green), after controlling for site and IQ.

FA: fractional anisotropy; IQ: intelligence quotient; Youth with-Behav.DD: youth with 

behavioral dysregulation disorders; Youth with-Emot.DD: youth with emotional 

dysregulation disorders; Youth with-Both: youth with both behavioral and emotional 

dysregulation disorders, CONT: typically developing youth.
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Table-1 Level-1 Analyses. Multivariate Analyses upon FA(forceps minor, cingulum and uncinate fasciculi)

Effect of DEMOGRAPHIC and CLINICAL VARIABLES

POTENTIAL CONFOUNDERS Wilks' Lambda STATS Sig.

AGE AT SCAN 1.000 F[3,85]= 0.0 1.000

GENDER .971 F[3,83]= 0.8 .486

IQ .918 F[3,85]= 2.5 .062

YEARS OF PARENTAL EDUCATION(Lower; Higher) .963 F[3,85]= 0.3 .967

HANDEDNESS .995 F[3,83]= 0.1 .940

SNR .985 F[3,85]= 0.4 .729

CAREGORICAL VARIABLES(PRIMARY HYPOTHESIS) Wilks' Lambda STATS Sig.

Broader-diagnostic GROUP (Youth with-Behav.; Youth with-Emot.; Youth with-Both) .843 F[6,160]= 2.4 .032

DIMENTIONAL VARIABLES(SECONDARY HYPOTHESIS) Wilks' Lambda STATS Sig.

PGBI-10M .992 F[3,85]= 0.2 .884

K-MRS .910 F[3,85]= 2.8 .044

K-DRS .957 F[3,85]= 1.3 .290

SCARED
a .999 F[3,85]= 0.0 .993

Effect of MEDICATIONS Wilks' Lambda STATS Sig.

STIMULANT MEDICATION .913 F[6,160]= 1.2 .290

NON-STIMULANT MEDICATION .949 F[6,160]= 0.7 .647

ANTIDEPRESSANT MEDICATION .977 F[6,160]= 0.3 .931

MOOD STABILIZER MEDICATION .972 F[6,160]= 0.4 .887

ANTIPSYCHOTIC MEDICATION .943 F[6,160]= 0.8 .572

SITE was covariate of no-interest in all the models

a
Missing info in 4 LAMS youth
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Table-2

Level-2 analyses. Multivariate Multiple Regression Analysis upon FA(w/o CONT)

Effect Wilks' Lambda STATS Sig.

IQ .941 F[3,78]= 2.0 .126

K-MRS .917 F[3,78] = 2.3 .079

Broader-diagnostic GROUP .875 F[6,156]= 2.2 .047

Level-3 analyses. Univariate Multiple Regression Analysis upon FA(w/o CONT)

Effect RECONSTRUCTED TRACTS [FA] STATS Sig.

IQ FORCEPS MINOR F[1,80]= 2.6 .111

CINGULUM F[1,80]= 0.0 .870

UNCINATE FASCICLUS F[1,80]= 1.2 .280

K-MRS FORCEPS MINOR F[1,80]= 0.3 .607

CINGULUM F[1,80]= 4.2 0.043 
a

UNCINATE FASCICLUS = 0.2 .650

Broader-diagnostic GROUP FORCEPS MINOR F[2,80]= 3.3 .042

CINGULUM F[2,80]= 0.1 .872

UNCINATE FASCICLUS F[2,80]= 4.9 .009

Level-4 analyses. Post-hoc Pairwise Comparisons upon FA(w/o CONT)

RECONSTRUCTED TRACTS [FA] VS. Mean Difference
b

Sig.
c

FORCEPS MINOR Youth with-Emot.DD Youth with-Behav.DD −0.037 .025

Youth with-Both −0.038 .015

CINGULUM 
d Youth with-Emot.DD Youth with-Behav.DD −0.005 .759

Youth with-Both −0.008 .611

UNCINATE FASCICLUS 
e Youth with-Emot.DD Youth with-Behav.DD −0.043 .004

Youth with-Both −0.040 .004

SITE was covariate of no-interest in all the models

a
Parameter Estimates(Beta=0.188; t=2.1; p=0.043) showed a positive relationship between K-MRS and FA in the CINGULUM across all LAMS 

youth. Further between-group comparisons revealed trend-higher FA values(Mean Difference=0.031; Sig.P value=0.084) in LAMS youth with k-
MRS>14 versus those with K-MRS<14 in the CINGULUM, after controlling for SITE and IQ.

b
The mean difference is based on the estimated marginal means

c
Adjustment for multiple comparisons in univariate and post-hoc analyses: Bonferroni(0.05/3=0.016; in bold). Trend levels of significance are 

>0.016 and ≤0.05(in italic bold).

d
There was a main effect of laterality(F[1,80]=11.6;p=0.001), but there was no laterality by Broader-diagnostic GROUP 

interaction(F[2,80]=0.1;p=0.915) and no laterality by K-MRS interaction(F[1,80]=0.7;p=0.390) in the CINGULUM. FA was higher in the left 
CINGULUM than right CINGULUM across all participants.

e
There was no effect of laterality(F[1,80]=0.4;p=0.538), no laterality by Broader-diagnostic GROUP interaction(F[2,80]=0.1;p=0.890) and no 

laterality by K-MRS interaction(F[1,80]=0.3;p=0.610) in the UNCINATE FASCICULUS.
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