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Abstract
Objectives—Cytomegalovirus (CMV)-specific T-cell effectors (CMV-Teff) protect against
CMV end-organ disease (EOD). In HIV-infected individuals, their numbers and function vary
with CD4+ cell numbers and HIV load. The role of regulatory T cells (Treg) in CMV-EOD has
not been extensively studied. We investigated the contribution of Treg and Teff towards CMV-
EOD in HIV-infected individuals independently of CD4+ cell numbers and HIV load and
controlling for CMV reactivations.

Design—We matched 43 CMV-EOD cases to 93 controls without CMV-EOD, but with similar
CD4+ cell numbers and HIV plasma RNA. CMV reactivation was investigated by blood DNA
PCR over 32 weeks preceding the CMV-EOD in cases and preceding the matching point in
controls.

Methods—CMV-Teff and Treg were characterized by expression of IFNγ, IL2, TNFα, MIP1β,
granzyme B (GrB), CD107a, TNFα, FOXP3 and CD25.

Results—Sixty-five% cases and 20% controls had CMV reactivations. In multivariate analyses
that controlled for CMV reactivations, none of the CMV-Teff subsets correlated with protection,
but high CMV-GrB ELISPOT responses and CMV-specific CD4+FOXP3+%, CD4+TNFα+%
and CD8+CD107a+% were significant predictors of CMV-EOD.
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Conclusions—Since both FOXP3 and GrB have been previously associated with Treg activity,
we conclude that CMV-Treg may play an important role in the development of CMV-EOD in
advanced HIV disease. We were not able to identify a CMV-Teff subset that could be used as a
surrogate of protection against CMV-EOD in this highly immunocompromised population.
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INTRODUCTION
The incidence of cytomegalovirus (CMV)-end-organ disease (EOD) in HIV-infected
individuals has decreased since the introduction of highly active antiretroviral therapy
(HAART) in 1996, but has remained stable in recent years at 2 to 20% of its pre-HAART
incidence depending on underlying risk factors1–3. Furthermore, CMV reactivation
continues to be a frequent event in patients with HIV infection even among those receiving
HAART, as demonstrated by the 20 to 38% rate of positive CMV-DNA results in blood
monitoring studies1,2,4.

The risk of CMV-viremia and CMV-EOD depend on the integrity of the host’s immune
system. CD4-5,6 and CD8-mediated7,8 effector T-cell responses have each been associated
with control of CMV infection 8–10. The current paradigm is that CMV-specific Th1 CD4+
and/or CD8+ memory and/or early effectors rise in response to CMV active replication and
prompt the clearance of cells harboring the virus. In addition to effector-memory
characteristics, the magnitude, fine specificity and breadth of IFNγ–measured CMV T-cell
responses have also been ascribed critical importance for protection against EOD in various
populations7,8,11,12. We have previously shown that in HIV-infected individuals there is a
negative correlation of CMV-EOD, viremia and death with CMV-specific IFNγ responses
measured by ELISPOT or ELISA13,14. However, both CMV-EOD and CMV-specific IFNγ
responses of HIV-infected individuals were highly associated with CD4+ cell numbers and
with plasma HIV load (HIV-VL), confounding the interpretation of the results.

The role of regulatory T cells (Treg) in the development of CMV-EOD has been
insufficiently explored. Treg contribute to viral persistence in human and mouse chronic
infections such as hepatitis C and lymphocytic choriomeningitis viruses, respectively15–17.
In addition to CD4+ Treg, CD8+ Treg have also been demonstrated18–20. Natural Treg
originate in the thymus and are characterized by FOXP3 and high CD25 expression as well
as low CD127 21. Adaptive Treg can be generated in the periphery from CD25- or CD25+ T
cells, but less is known about the exact process. Treg use several mechanisms of action,
including stimulation through CTLA4, TNFα and IL10 secretion, granzyme (GrB)
production and ATP deaminase 22–27. We have previously demonstrated that CMV-
stimulated Treg express high levels of GrB, TGFβ and PD-1, in addition to FOXP3 and that
their regulatory activity could be blocked by anti-TGFβ neutralizing antibodies and GrB
inhibitors28.

The goal of the current study was to identify immunologic markers of protection against
CMV-EOD in HIV-infected individuals that are independent of CD4+ T-cell numbers and
HIV-VL and to investigate the contribution of Treg in the development of CMV-EOD in
this population.
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SUBJECTS AND METHODS
Study design

This was a case-control study that used stored specimens from subjects enrolled in the
following trials conducted by the AIDS Clinical Trials Group (ACTG): 3601, 38429,30,
38831, 39832, A500133, A503034, A509535 and A516436. Cases were subjects who
developed CMV-EOD while participating in the above-mentioned studies. All CMV-EOD
diagnoses met published diagnostic criteria. Immunologic assays were performed on
peripheral blood mononuclear cells (PBMC) archived at the last CMV aviremic visit
(defined as CMV-DNA <1000 copies/ml of plasma or whole blood) prior to the
development of CMV-EOD. For subjects enrolled in studies that did not include CMV-DNA
monitoring, we measured CMV-DNA by PCR in stored plasma.

Control subjects were matched to the cases based on their characteristics at the visit when
PBMC for immunologic assays were obtained. Controls were CMV-seropositive, had no
history of CMV-EOD and had CMV-EOD and death-free follow-up, including normal
routine eye exams, while participating in the ACTG study. Controls were matched 2:1 to the
corresponding case by ACTG study, sex, CD4 category (≤25, 26–50, 51–100, 101–150,
151–200, 201–250, 251–300, 301–350, 351–400, 401–450, 451-<500, and ≥501 cells/µL)
and HIV-VL category (<400, 400-<1000, 1000-<10000, 10000-<100000, and ≥100000
RNA copies/mL). Controls had event-free follow-ups after the matching point at least as
long as the interval between the matching point and the diagnosis of CMV-EOD in the
corresponding cases. Exclusion criteria were immunosuppressive medication or
immunosuppressive disease other than HIV and CMV infections, systemic opportunistic
infection in the preceding 4 weeks and CMV antiviral therapy. All ACTG studies were
approved by the site institutional review boards and all participants provided written
informed consent.

Additional PBMC samples from 11 HIV- and CMV-infected de-identified subjects were
used for phenotypic characterization of GrB-producing PBMC.

CMV-DNA measurements
In ACTG 3601 and A503034 studies, CMV-DNA was prospectively measured at regular
intervals using the COBAS Amplicor CMV Monitor Test (Roche Molecular Systems) with a
limit of detection of 400 copies/mL of plasma and/or the Hybrid Capture 2CMV-DNA Test
(Digene) with a limit of detection of 200 copies/mL of whole blood. Both assays were
performed as per manufacturers’ instructions. For subjects in all other ACTG protocols,
CMV-DNA was measured in banked plasma using a CMV Real-Time PCR assay with a
limit of detection of 100 copies/mL. DNA was extracted from 200 µl of specimen using the
MagNApure instrument (Roche Molecular Systems) and DNA extraction kit (Qiagen). Five
µl of extracted DNA were added to 15 µl of CMV-DNA PCR master mix containing
LightCycler FastStart DNA reaction mix (Roche), Eco R1 region D CMV primers
GGCAGCTATCGTGACTGG and GATCCGACCCATTGTCTAAG (0.5 µM each) and
probes CGACGGTGATTCGTGGTCGT-fluorescein and LC Red640 –
CCAACTGGTGCTGCCGGTCG-phosphate elongation block (0.2 µM each) and MgCl2 (3
mM). The reaction developed over 45 cycles in the LightCycler™ apparatus (Roche). The
number of CMV-DNA copies/mL was calculated by comparison with CMV standards
containing a previously defined number of DNA copies (Advanced Biotechnology Inc.)
amplified in parallel with the test samples.
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Immunologic Assays
Cryopreserved PBMC were stored and shipped in liquid nitrogen. Cells were thawed and
assays were performed without knowledge of the subject’s case/control group. Functional
assays were performed on cells with ≥66% viability based on our previous studies37.

ELISPOT assays
IFNγ ELISPOT was performed as previously described14. A positive result was defined by
differences ≥2-fold between CMV- and mock-infected control stimulated wells; and ≥20
spot forming cells (SFC)/106 PBMC (representing mean+2S.D. of results in CMV-
seronegative adults) in CMV-stimulated wells. GrB ELISPOT used Granzyme B ELISpot
ALPD kit (Mabtech) with the following specific conditions: 100,000 PBMC/well in
duplicate wells were infected for 48 h with a clinical strain of CMV (to allow presentation
through MHC class I and II), mock-infected control and PHA. SFC were revealed following
the manufacturer’s instructions and read with an ImmunoSpot Series 3B Analyzer (C.T.L.
Cellular Technologies, Ltd). A positive result was defined by differences ≥2-fold between
CMV- and mock-stimulated wells; and ≥60 SFC/106 PBMC (representing mean+2S.D. of
results from CMV-seronegative adults) in CMV-stimulated wells.

Flow cytometric enumeration of T-cell subpopulations
The following mAbs were used for Treg and T-cell effector (Teff) measurements: TNFα-
FITC (Becton Dickinson), CD3-PerCP, PE or APC-Cy7 (Becton Dickinson), CD25-FITC
(Becton Dickinson), IL-2-FITC (Becton Dickinson) CD27-FITC (Becton Dickinson),
CD28-FITC (Becton Dickinson), CD107a-PE-Cy5 (Becton Dickinson) or PE (Myltenyi
Biotec), FOXP3-PE (eBioscience) or AlexaFluor 647 (Becton Dickinson), MIP1β-PE
(eBioscience), CD4-PE-Cy7 (Beckman Coulter), TGFβ-PE (Cedarlene), anti- GrB-FITC
(Becton Dickinson), CD16-PE (Becton Dickinson), CD161-PE-Cy5 (Becton Dickinson), γδ-
APC (Becton Dickinson).

Circulating Tregs were measured in freshly thawed PBMC, which were washed, counted
and stained with the appropriate monoclonal antibodies. Events were counted with Guava
EasyCyte (Millipore) and analyzed with FlowJo (Treestar). T-cell subsets were expressed as
percentages of CD4+ or CD8+ parent populations.

CMV-specific Teff and Treg were measured after in vitro stimulation. PBMC were
incubated for 4 days at 37°C and 5% CO2 with CMV- or mock-infected lysate at the pre-
optimized concentration of 1:200 after which cells were washed and stained with the
appropriate fluorochrome-conjugated mAbs. Preliminary optimization assays showed the
following: 1) CMV lysate provides potent CD4+ and CD8+ T-cell stimulation equal to live
viral in vitro infection and more potent than pp65 or IE1 overlapping peptide mixtures; 2)
peak cytokine production in HIV-infected individuals occurs after 4 days of CMV in vitro
stimulation. Fig 1S shows the gating strategy for these assays.

For the phenotypic characterization of GrB-producing cells, PBMC were infected with a
clinical strain of CMV in tissue culture tubes following the same procedure used for the GrB
ELISPOT. After 48 h, cells were washed and stained with the appropriate mAbs.

Statistical analysis
Descriptive statistical analyses (median, 25th and 75th percentile) were used to summarize
patient characteristics and immunologic responses. Statistical comparisons between cases
and controls were done using conditional logistic regression with strata based on parent
study, CD4+ cells and HIV RNA levels. For the adjusted odds ratios (OR) a simplified
model with 15 strata based on CD4+ cells and HIV RNA was used. Sensitivity analyses
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(data not shown) generally showed consistent results for varying stratification approaches.
All OR are scaled by interquartile range (IQR). ORs for continuous predictors are presented
in terms of a one IQR (interquartile range) difference in the value of the predictor; the IQR
was obtained pooling cases and controls. No adjustments were made in the univariate
analysis for multiple comparisons, but multivariate analyses were subsequently performed
for immunological results that yielded significant differences in the univarate analyses.

RESULTS
Characteristics of study participants

The study used PBMC and plasma cryopreserved between 1997 and 2007 from 136 ACTG
study participants, including 43 cases with CMV-EOD and 93 matched CMV-seropositive
controls without CMV-EOD. CMV-EOD included 27 cases of retinitis, 3 colitis, 5
esophagitis, 3 pneumonitis, 2 gastroenteritis and 1 each of encephalitis, proctitis and
mucocutaneous ulcers.

Cases and controls had similar demographic and HIV-disease characteristics by design
(Table 1) including CD4+ cell numbers (median=23 cells/µL for all subjects), HIV-VL
(median=141,032 RNA copies/mL) and sex (12% females). Race, age (median=39 years),
CD8+ cell numbers and use and duration of ART were also similar in the two groups.
However, cases had a 65% incidence of CMV-viremia in the 32 weeks preceding the CMV-
EOD diagnosis and 40% before the PBMC for immunologic assays were obtained. In
contrast only 20% of the controls had CMV-viremia detected in the 32 weeks preceding the
matching point (p=0.008).

At the time when the PBMC for the immunologic assays were obtained, all subjects had
undetectable CMV-DNA with the exception of 2 with CMV-EOD (5%) and 6 controls (6%)
who had CMV-DNA above the level of detection, but <1000 c/mL. Cases developed CMV-
EOD at a median (Q1-Q3) of 0.52 years (0.15–1.22) after the matching time point, when
PBMC were obtained, which was exceeded by the CMV-EOD- and death-free interval from
the matching time point to the end of follow-up that controls had on their parent ACTG
study [median; Q1-Q3 of 1.97 years (0.77–2.99)].

CMV GrB ELISPOT responses and the risk of CMV-EOD
Subjects with CMV-EOD had median (Q1- Q3) GrB ELISPOT values of 128 (15–375)
SFC/106 PBMC, whereas controls had 20 (5–150) SFC/106 PBMC (Table 2). Furthermore,
65% cases and 35% controls had positive values defined by ≥60 SFC/106 PBMC, the
threshold previously established by comparing results of CMV-seropositive and
seronegative healthy adults. CMV GrB ELISPOT responses were associated with a 3.87
higher odds ratio (OR) of developing CMV-EOD (p<0.01). Results (ORs) were similar
when separately analyzing the CMV retinitis and non-retinitis cases (Tables 1S and 2S).

Because of the strong association of high CMV GrB SFC with increased risk of CMV-EOD,
we sought to determine the cell type responsible for the GrB production. Using PBMC from
11 HIV-infected de-identified donors (not included in the study cohort), we determined that
CD8+ cells accounted for an average of 60% of the lymphocytes that secreted GrB in
response to CMV stimulation, followed by CD4+ (12%), NK (9%), NKT (9%) and γδ cells
(5%; Fig 2S).

CMV-IFNγ ELISPOT responses
IFNγ ELISPOT values were low both in cases [median (Q1- Q3) of 1 (0- 7) SFC/106

PBMC] and controls [4 (0- 71) SFC/106 PBMC; Table 2]. Only 18% of the cases and 34%
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of the controls had positive IFNγ ELISPOT values defined as ≥20 SFC/106 PBMC, the
threshold previously established by comparing results of CMV-seropositive and
seronegative healthy adults. CMV-IFNγ ELISPOT responses were associated with a 0.44
OR for CMV-EOD (p=0.17). Results (ORs) were similar when separately analyzing the
CMV retinitis and non-retinitis cases (Tables 1S and 2S).

Circulating Treg
CD4+CD25+FOXP3+%, CD8+CD25+FOXP3+%, total CD4+FOXP3+% and total
CD8+FOXP3+% cells were measured in freshly thawed PBMC (Table 3). In the univariate
analysis, higher circulating CD4+FOXP3+% were predictive of CMV-EOD with OR = 1.45
(p=0.03, Table 3).

CMV-specific T-cell responses
The CMV-EOD predictive value of the T-cell subpopulations stimulated by CMV or mock-
infected control is presented in Table 4. Higher frequencies of CD4+ lymphocytes that
expressed IL2, TNFα, FOXP3 or both FOXP3 and CD25 in response to CMV stimulation
were significantly associated with CMV-EOD in the univariate analysis (OR of 2.3 to 4.7; p
of 0.01 to 0.05). However, higher CD4+IL2+% and CD4+FOXP3+% were also observed in
mock-stimulated cultures of PBMC obtained from cases compared with controls and were
associated with OR of 4.3 and 1.8, respectively (p of 0.02 and 0.04, respectively) for CMV-
EOD. Among CD8+ subpopulations, higher frequencies of cells expressing IL2, TNFα or
CD107a in response to CMV in vitro stimulation were predictive of CMV-EOD in the
univariate analysis (OR of 1.5 to 4.3, p of <0.01 to 0.05). Of note, mock-stimulated PBMC
of study subjects had activated CD4+ and CD8+% manifold higher than control PBMC from
HIV-uninfected donors (Fig 3S).

Multivariate analysis
Because CMV-viremia was a very strong predictor of CMV-EOD, it was further used as a
covariate in multivariate analyses of the relationship of ELISPOT, Treg and Teff with
CMV-EOD. In the CMV-specific Teff and Treg multivariate analyses, both CMV- and
mock-infected control-stimulated conditions were included in the analysis of each T-cell
subset. After adjustment for CMV-viremia in the 32 weeks prior to the PBMC collection in
cases and controls, GrB ELISPOT positive values remained significantly associated with
CMV-EOD (OR=4.73, p<0.01; Fig 1) and the relationship for IFNγ ELISPOT with CMV-
EOD remained nonsignificant (OR=0.45, p=0.19; Fig 1). Other T-cell subsets including
CMV-stimulated CD4+FOXP3+% (OR=2.4; p=0.05), CD4+TNFα+% (OR=6.2; p=0.02)
and CD8+CD107a+% (OR=7.1; p=0.03) remained significant predictors of CMV-EOD.

DISCUSSION
This study showed that CMV-specific Treg may play an important role in the development
of CMV-EOD in HIV-infected individuals with low CD4+ T-cell numbers. Among the T-
cell subsets with previously described Treg characteristics, CMV-specific CD4+FOXP3+%
and GrB ELISPOT responses remained significantly associated with increased risk of CMV-
EOD after controlling for CMV reactivation. FOXP3 is a transcription regulatory factor
necessary for the initiation of the T-cell regulatory program38. More recent studies have
shown that activated conventional T cells, may also transiently express FOXP339 such that
not all FOXP3+ T cells may truly represent Treg. However, the FOXP3+ conventional T
cells have lower and delayed cytokine production when compared with FOXP3- cells and
may evolve into Treg 40–42. Other phenotypic characteristics that in conjunction with
FOXP3 expression provide a more precise identification of Treg include high CD25
expression. In this study, high proportions of CMV-specific CD4+CD25+FOXP3+ T cells
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were significantly associated with CMV-EOD in the univariate, but not in the multivariate
analysis.

GrB was originally described as a mediator of cytotoxicity used by effector T cells and NK
cells, but more recently its role in immune regulation has been recognized23,28,43,44. GrB
stimulates the intrinsic pathway of apoptosis by activating Bid, which releases the inhibition
of Bax and Bad imposed by the Bcl-2 family of molecules. Recent evidence suggests that
GrB may activate additional mechanisms that result in programmed cell death. Historically,
the first described Treg were CD4+. However, it was soon recognized that other cell types,
including CD8+ T, CD19+ B, and dendritic cells may acquire regulatory function and use
GrB as a mediator23,43–45. In this study, CD8+ T cells accounted for the majority of the
CMV-specific GrB production. It is interesting to note that CD4 T-cell depletion in mice in
the context of a chronic viral infection results in differentiation of viral-specific CD8+ Teff
into Treg46. CD4 T-cell depletion is also the hallmark of AIDS and might contribute to Treg
differentiation. Others have previously shown that HIV-specific Treg are abundant in
chronic HIV infection and may contribute to the downregulation of protective T cell
responses against HIV22,26,47–50.

High CMV-specific CD8+CD107a+% was also associated with increased risk of CMV-
EOD. CD107a is a lysosomal membrane component that is typically found on the cell
surface as a consequence of cytotoxicity-associated degranulation. The expression of
CD107a may overlap with production of GrB, since both are components of cytotoxicity.
We found that in HIV-infected and uninfected CMV-seropositive donors, roughly 25% of
the CMV-stimulated CD3+GrB+ cells co-expressed CD107a and vice versa (data not
shown). It is possible that CMV-stimulated CD8+CD107a+ cells may include a Treg subset,
similarly to the GrB+ T cells, but this hypothesis still needs to be tested.

We did not find significant associations between CD8+FOXP3+% or CD8+CD25+FOXP3+
% subsets and CMV-EOD. However, in the univariate analysis CMV-specific CD8+TGFβ+
% were associated with an increased risk of CMV-EOD. It is well known that IL10+ and
TGFβ+ regulatory T cells, also known as Tr1 and Th3 cells, downregulate FOXP3
expression51. Less is known about the kinetics of FOXP3 expression in GrB+ Treg, an
aspect that needs to be further evaluated.

Another T cell subset that positively correlated with the development of CMV-EOD was the
CMV-CD4+TNFα+%. TNFα is an inflammatory cytokine traditionally associated with Th1
responses. Although Th1 responses have a critical role in immune protection against CMV,
TNFα has not been described as an important contributor to anti-CMV defenses. The
function of CD4+TNFα+ cells in the context of CMV infection needs further elucidation.

In this study, multiple T-cell subsets with both Teff and Treg phenotypic characteristics
were associated with higher risk of CMV-EOD in the univariate, but not in the multivariate
analysis that controlled for CMV-viremia. These subsets included CMV-specific and/or
nonspecific CD4+IL2+%, CD8+IL2+%, CD4+FOXP3+%, CD4+TNFα+%, CD8+TNFα+
%, CD4+CD25+FOXP3+% and CD8+TGFβ+%. This observation suggests that CMV
reactivation may play an important role in the differentiation or selection of these CMV-
specific and/or nonspecific Treg and Teff subsets. This is an important hypothesis to be
further investigated, because the activation of both Treg and Teff may contribute to some of
the indirect adverse effects ascribed to CMV infection, such as increased risk of death in
HIV-infected4 and very old individuals52; increased frequency of opportunistic infections in
transplant recipients53; graft rejection54; and atherosclerosis55,56.

In contrast to previous studies8,14, we did not find a CMV-specific Teff subset that
correlated with protection against CMV-EOD. Our study differs from most previous ones in
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that we matched the cases and controls by CD4+ cell numbers and plasma HIV-VL, thus
minimizing the potential analytic bias of these very strong determining variables. Jacobson
et al. also showed in a smaller study that CMV-specific CD69+IFNγ+% Teff did not predict
protection against CMV retinitis in a CD4-matched case-control investigation of HIV-
infected individuals57. In the current report, we expand on those findings by studying a
larger number of subjects and using a more comprehensive Th1 panel. Recent studies in
transplant recipients, who also have a high risk of developing severe CMV infection,
showed that the balance between Treg and Teff ultimately determines the risk of CMV-EOD
CMV-EOD58. In our study participants with advanced HIV-infection, the protective role of
Teff was completely obfuscated.

This raises the question of what mechanisms allow Treg to outlive or outperform Teff in
individuals with AIDS. Several scenarios can be postulated including that CD4+ Treg
survive longer than CD4+ Teff in the context of chronic HIV infection, perhaps due to lower
permissivity to HIV infection 59. Furthermore, Treg may increase with HIV replication and/
or disease progression60,61. Other possibilities are that in persons with low CD4+ cell
numbers, CD4-mediated help, which is necessary for the CD8+ Teff function, is not
available, whereas Treg function may not require the same amount of CD4+ help19, or that
CD4+ and/or CD8+ Teff are exhausted and function poorly in patients with AIDS.

A limitation of this study was the number of cells available for functional analyses and the
low viability of some PBMC preparations, which precluded functional assays (sample sizes
shown in the tables). The flow cytometric analysis did not use a vital dye to exclude dead
cells, which may bind mAbs in a nonspecific fashion and inflate the frequency of positive
events. However, this equally affected cases and controls without skewing the results of the
comparisons between the 2 groups. For interpretation of the effect of immunologic
measures, which had varying frequencies in the CD4+ and CD8+ cell populations, we
presented OR in terms of a difference of one IQR in the immunologic parameter. Since there
was differing precision in estimating the OR, there was not a direct relationship between the
magnitude of the OR and the level of significance.

Overall, our data support the hypothesis that Treg play a role in the development of CMV-
EOD in HIV-infected patients. Our results complement previous studies that showed
associations of high Treg frequencies with progression of HIV and hepatitis C virus
infections17,50,62,63. It has been suggested that a low absolute number of Treg in the early
stages of HIV infection may be responsible for high levels of CD4+ T-cell activation64,65

and faster disease progression. Our data suggest that in advanced stages of HIV infection, it
may be beneficial to have lower proportions of Treg, thus decreasing the risk of CMV-EOD
and, perhaps, of other opportunistic infections. As new immune modulators are evaluated in
the context of HIV infection66, including agents that act on Tregs, it is important to be aware
of the multiple potential effects of Treg manipulations.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Odds Ratio (OR) for CMV-EOD, from conditional logistic regression models, adjusted
for CMV-viremia
ELISPOT ORs are for comparison of positive versus negative responses. For the CMV-
specific T-cell subpopulations, OR are for the association with a one interquartile range (Q3-
Q1) higher level; these models additionally adjust for mock-stimulated PBMC results.
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Table 1

Demographics and clinical characteristics at the time of testing

Variable Cases (N=43) Controls (N=93)

Age [median (Q1; Q3) years] 38 (33; 43) 39 (34; 45)

Sex (F:M) 5:38 11:82

Race (B:H:W:O) 11:11:20:1 36:26:28:3

CD4+ [median (Q1; Q3) cells/µL)] 20 (10; 54) 23 (10; 52)

CD8+ [median (Q1; Q3) cells/≤µL)] 466 (263; 766) 579 (323; 784)

Plasma HIV RNA [median (Q1; Q3) c/mL)] 135,423
(44,261; 324,630)

141,040
(21,238; 363,049)

Subjects on HAART (%) 32 (74%) 59 (63%)

Time since first ART use (median; Q1-Q3 years) 1.44 (0.36–3.41) 1.05 (0.08–3.21)

Subjects with CMV-viremia in the 32 weeks preceding CMV-EOD or matching point (%)* 26 (65) 19 (20)

Bold-facing indicates significant differences (p<0.05) based on conditional logistic regression.

*
Three cases were excluded from this analysis because their last available CMV-viremia data were earlier than 32 weeks before the CMV-EOD

diagnosis. 17 (40%) of the subjects with CMV-EOD and valid viremia information had documented CMV-viremia prior to the matching point.
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