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Abstract
Protease activated receptors (PARs) are widely expressed within the heart. They are activated by a
myriad of proteases, including coagulation proteases. In vitro studies showed that activation of
PAR-1 and PAR-2 on cardiomyocytes induced hypertrophy. In addition, PAR-1 stimulation on
cardiac fibroblasts induced proliferation. Genetic and pharmacologic approaches have been used
to investigate the role of the different PARs in cardiac ischemia/reperfusion (I/R) injury. In mice
and rats PAR-1 is reported to play a role in inflammation, infarct size and remodeling after cardiac
I/R injury. However, there are notable differences between the effect of a deficiency in PAR-1 and
inhibition of PAR-1. For instance, inhibition of PAR-1 reduced infarct size whereas there was no
effect of a deficiency of PAR-1. These differences maybe due to off-target effects of the inhibitor
or PAR-4 compensation of PAR-1 deficiency. Similarly, a deficiency of PAR-2 was associated
with reduced cardiac inflammation and improved heart function after I/R injury, whereas
pharmacologic activation of PAR-2 was found to be protective due to increased vasodilatation.
These differences maybe due to different signaling responses induced by an endogenous proteases
versus an exogenous agonist peptide. Surprisingly, PAR-4 deficiency resulted in increased cardiac
injury and increased mortality after I/R injury. In contrast, a pharmacological study indicated that
inhibition of PAR-4 was cardioprotective. It is possible that the major cellular target of the PAR-4
inhibitor is platelets, which have been shown to contribute to inflammation in the injured heart,
whereas PAR-4 signaling in cardiomyocytes may be protective. These discrepant results between
genetic and pharmacological approaches indicate that further studies are needed to determine the
role of different PARs in the injured heart.
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2. Introduction
Myocardial infarction is one of the leading causes of mortality and morbidity in the western
world (1). Acute myocardial infarction is caused by thrombotic occlusion of a coronary
artery after disruption of an atherosclerotic plaque. Thrombogenic factors from the plaque
promote platelet activation, adhesion and aggregation, as well as activation of the
coagulation cascade (2). Although the early restoration of circulation within the coronary
vessels is necessary to provide oxygen and nutrients to the ischemic area, reperfusion itself
also exacerbates myocardial damage by inciting a local inflammatory response (1). This
process is known as ischemia/reperfusion (I/R) injury and was first described by Jennings et
al. (3). The molecular and cellular events underlying I/R injury are complex. They include
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ion accumulation, mitochondrial dysfunction, reactive oxygen species (ROS) formation,
activation of coagulation, apoptosis, endothelial dysfunction, complement activation and
leukocyte accumulation (1). Expression of adhesion receptors on endothelial cells (EC)
promotes invasion of inflammatory cells, particularly neutrophils. Neutrophils are toxic to
the myocardium because they release proteases and generate ROS (1). Besides the
neutrophil mediated effects, there is evidence that T-cells and macrophages have a role in
the pathogenesis of myocardial damage during reperfusion (1).

Myocardial infarction leads to the structural remodeling of the heart. Cardiac fibroblasts
proliferate and form collagen-rich scar tissue that replace viable myocardium (1). The heart
compensates for the loss of myocardial tissue by the hypertrophic growth of the remaining
cardiomyocytes. However, this leads to pathologic remodeling resulting in weakening of the
ventricular wall and heart failure.

3. Protease activated receptors
PARs belong to the family of seven membrane spanning G-protein coupled receptors. There
are 4 PARs known (PAR-1 to -4) (4; 5). Proteolytic cleavage of the N-terminus of the
receptor exposes a tethered ligand which then activates the receptor (5). Numerous
proteases, including coagulation proteases have been shown to activate PARs in vitro and in
vivo (Table) (6). Binding of coagulation factor VIIa (FVIIa) to tissue factor (TF) on cell
membranes leads to the generation of coagulation proteases FXa and thrombin. Thrombin
cleaves fibrinogen to fibrin and activates PAR-1, -3 and -4 on a variety of cells (Figure).
Additionally, FXa can induce PAR-1-dependent signaling. Trypsin, tryptase and matriptase
are the major activators of PAR-2, although this receptor is also activated by FVIIa and FXa
(6; 7). PAR-2 is not activated by thrombin.

Small synthetic activating peptides (AP), corresponding to the tethered ligand, can also be
used to selective activate the different PARs (6). Importantly, several groups observed a
difference in the cellular responses of PARs activated with APs versus proteases, and even
between the different activating proteases (6).

Pharmacologic PAR-specific inhibition is mediated by antagonists or pepducins (6, 8).
Pepducins are cell-permeable peptides derived from the third intracellular loop of either
PAR-1 or PAR-4 and they disrupt signaling between the receptors and the specific G-
proteins (8). The PAR-4 pepducin, P4pal10, inhibits intracellular PAR-4 signaling in
platelets (8).

Interestingly, receptor dimerization has been described for the different PARs. PAR-1 can
form homodimers as well as heterodimers with either PAR-2, PAR-3 or PAR-4 (8).
Furthermore, activation of PAR-1 can lead to trans-activation of PAR-2 or PAR-4 (8; 9).
Recently, it was shown that thrombin activation of PAR-3 in human lung epithelial cells led
to Rho- and calcium dependent ATP release which was PAR-1 and PAR-4 independent
(10). Mouse PAR-3 does not signal (6; 8) but acts as cofactor and induces signaling in
combination with PAR-1, PAR-2 or PAR-4 (8).

4. Tissue factor, coagulation proteases and myocardial infarction
Golino and colleagues (11) observed that rabbit hearts had increased TF activity after I/R
injury and that administration of anti-TF antibodies restored coronary blood flow in the
injured heart. The authors proposed that the observed effects were due to ROS-mediated
induction of TF expression in the endothelium of the heart without a disruption of its
integrity (11). Later, the same group used active site-inhibited human FVII (FVIIai) to
inhibit the TF:FVIIa complex during cardiac I/R injury (12). Administration of human
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FVIIai reduced infarct size, fibrin deposition and platelet accumulation within the damaged
rabbit hearts (12). In addition, administration of human FVIIa during cardiac I/R injury
resulted in an increase in infarct size (12). In this study, the authors did not exclude the
possibility that pre-existing subendothelial TF played a role in activation of coagulation.

Our group observed a reduction in infarct size when anti-TF antibodies were administrated
to rabbits subjected to cardiac I/R injury (13). In our model, rabbit hearts exhibited an
increase in cardiomyocyte TF expression but not EC TF. Importantly, we observed extra-
vascular fibrin depositions after I/R injury that co-localized with TF-positive
cardiomyocytes (13). Further, inhibition of TF reduced myocardial cytokine expression and
cellular infiltration (13). Due to the presence of fibrin within the myocardium, we proposed
that I/R injury disrupts the integrity of the endothelium and allows leakage of clotting
factors from the plasma into the myocardium (13). Subsequent activation of the clotting
cascade results in fibrin deposition within the myocardium (13; 14).

Recently, Loubele et al. (15) reported a reduction in cardiac injury and neutrophil infiltration
in the myocardium of injured mice treated with murine FVIIai. In addition, FVIIai reduced
NFκB activation and inflammatory gene expression (15). However, it is not clear whether
the observed results were due to reduced thrombin generation and fibrin deposition, or
reduced TF:FVIIa signaling via PAR-2 (16).

Our group showed that inhibition of thrombin with hirudin decreases infarct size in rabbits
and mice (13; 17). This was most likely due to reduced fibrin generation because we found
that PAR-1 deficiency had no effect on infarct size (17). In addition, a reduced infarct size
was observed in fibrinogen deficient mice (18). The authors showed that the deleterious
effects of fibrin are mediated by a degradation product of fibrin called E1 (Figure). This
fibrin fragment facilitates neutrophil/EC interaction which leads to neutrophil infiltration
into the myocardium after I/R injury (18).

Despite older studies suggesting that platelets play no or a minimal role in cardiac I/R (19),
more recent studies showed that platelet activation and accumulation within the damaged
heart contribute to local inflammation, ventricular remodeling and rupture (20).

5. Role of PARs in myocardial infarction and remodeling
In the following sections we will present a summary of the roles of PAR-1, -2 and -4 in
hypertrophy of cardiomyocytes, proliferation of cardiac fibroblasts and in cardiac I/R injury.

5.1 PAR-1
In the heart, PAR-1 is expressed by cardiomyocytes, fibroblasts, smooth muscle cells (SMC)
and EC. Furthermore, PAR-1 is also expressed on circulating cells, such as leukocytes, and
in human platelets. PAR-1 expression is increased in the hearts of patients with ischemic and
idiopathic dilated heart failure (21; 22). In addition, PAR-1 expression is increased in the
left ventricle in a mouse model of chronic heart failure and after cardiac I/R injury (21; 22).
In vitro studies with cardiomyocytes demonstrated that activation of PAR-1 led to calcium
influx, increased protein synthesis, cell size, rearrangement of sarcomere organization, and
expression of the pro-hypertrophic atrial natriuretic factor (ANF) (7; 23). These are all
characteristic of hypertrophic growth. Cardiac fibroblasts respond to PAR-1 activation with
a transient increase of intracellular calcium levels and enhanced cell proliferation (7; 23). In
addition, PAR-1 activation leads to trans-activation of the epidermal growth factor receptor
(EGFR) in cardiac fibroblast via increased phospholipase C and Src kinase activity (23).
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We showed that an absence of PAR-1 did not affect infarct size in mouse model of heart I/R
injury. We also did not observe any differences in the expression of inflammatory mediators,
such as interleukin (IL)-1, IL-6, macrophage inflammatory protein 2 and monocyte
chemotactic protein-1 (17). However, PAR-1 deficient mice had reduced cardiac remodeling
and dilatation of the left ventricle 2 weeks after ischemia (Figure) (17).

In contrast to our observations with PAR-1 deficient mice, administration of the PAR-1
antagonist SCH79797 was shown to reduce the infarct size in rat hearts after cardiac I/R
injury in vivo (24). This was associated with activation of cardioprotective pathways,
including phosphatidylinositol 3-kinase (PI3K)/Akt, nitric oxide synthase (NOS), and
potassium channels (24). In this model, PAR-1 AP had no effects on the functional recovery
or infarct size (24).

The differences between this observation and our results with PAR-1 deficient mice may be
explained by off-target effects of SCH79797. One study reported that SCH79797 interfered
with the growth of human and mouse cell lines and that the anti-proliferative activity of
SCH79797 was PAR-1 independent (25). An alternate explanation for the different findings
might be that PAR-4 may compensate for PAR-1 deficiency (26).

Recently, it has been shown that 41-amino acid peptide released after thrombin cleavage of
PAR-1 N-terminus (parstatin) can inhibit PAR-1 signaling (27). Strande et al. (28) found
that parstatin mediates cardioprotective effects on cardiomyocytes and coronary flow after I/
R injury in rats. These protective effects were linked to activation of the Gi-protein pathway,
which includes p38, extracellular signal-regulated kinase (ERK) 1/2, NOS, and potassium
channels (28). A shorter version of parstatin (1–26) exhibited beneficial Gi-protein-
dependent effects in I/R injury, including improved mitochondria function and activation of
Akt and NOS (29). This leads to increased nitric oxide and cyclic guanosine monophosphate
levels in the heart. However, it is unclear if all the effects of parstatin are due to inhibition of
PAR-1 or some may be due to off-target effects of this inhibitor.

To analyze the role of PAR-1 in heart hypertrophy, we generated mice with cardiomyocyte
specific overexpression of PAR-1. These transgenic mice develop eccentric hypertrophy
with dilated cardiomyopathy manifestation at 12 months of age (17). Eccentric hypertrophy
results from an increase in serial but not parallel assembly of sarcomeres in cardiomyocytes
(17). Interestingly, intercrossing of PAR-1 overexpressing mice with mice lacking TF in
cardiomyocytes reduced the eccentric heart hypertrophy in the PAR-1 transgenic mice (17).
This suggests that TF-dependent coagulation proteases activate the overexpressed PAR-1
and induces hypertrophy.

5.2. PAR-2
Expression of PAR-2 within the heart was first described by Sabri and colleagues and
localized to cardiomyocytes, SMC and EC (30). At present, it is not clear whether cardiac
fibroblasts express PAR-2. Sabri and coworkers (30) were not able to detect PAR-2 mRNA
in rat cardiac fibroblasts. However, a recent publication claimed that trypsin and PAR2 AP
induce the proliferation of avian cardiac fibroblasts (23). PAR-2 activation on
cardiomyocytes promotes inositol trisphosphate accumulation, stimulates mitogen-activated
protein kinases (MAPKs), such as p38 and ERK1/2, and elevates calcium influx (30).
Furthermore, PAR-2 stimulation induces cardiomyocyte hypertrophy in vitro (30). We
found that PAR-2 AP stimulated hypertrophy of neonatal rat cardiomyocytes was blocked
by inhibition of the MAPKs p38 and ERK1/2 (Antoniak, Mackman and Pawlinski
unpublished data).

Antoniak et al. Page 4

IUBMB Life. Author manuscript; available in PMC 2012 June 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



We observed increased expression of PAR-2 in human hearts with ischemic heart failure and
increased PAR-2 expression after cardiac I/R injury in mice (Figure) (21). In addition to
myocardial cells, PAR-2 is expressed on neutrophils, mast cells, and other circulating
leukocytes. PAR-2 activation contributes to the inflammatory response by activating
neutrophils, inducing mast cell degranulation and stimulating inflammatory gene expression
(31).

Recently, we showed that PAR-2 deficiency results in reduced cardiac I/R injury in mice.
PAR-2 deficient mice had a reduced oxidative stress and infarct size compared to wild-type
littermates (21). We also observed reduced expression of inflammatory cytokines/
chemokines and MAPK activation. PAR-2 deficient mice had less remodeling and exhibited
less impairment in heart function after cardiac I/R injury (21). However, this may be due to
a smaller infarct in PAR-2 deficient mice (21).

At present, the proteases that activate PAR-2 during cardiac I/R injury are not known. One
candidate is FVIIa (7; 8). The inhibition of the TF:FVIIa complex may be protective, in part,
by reducing PAR-2 signaling (16). Treatment with FVIIai during I/R injury reduced infarct
size and inflammation (12; 15). However, PAR-2 can be activated by other proteases, such
as mast cell tryptase (7; 8). Mast cells have been found between muscle fibers in the heart,
and mast cell–deficient mice exhibit reduced infarct size and inflammation after cardiac I/R
injury (32). This may be due, in part, to a reduction in PAR-2 activation (33).

In contrast to studies showing a pathologic contribution of PAR-2 in cardiac I/R injury,
studies with PAR-2 AP in wild-type mice showed that PAR-2 mediates protective effects in
cardiac I/R injury. Napoli et al. (34; 35) were the first to describe that PAR-2 activation
protects the heart from experimental I/R injury in vivo, and in Langendorff-perfused hearts.
PAR-2 AP improved the recovery of myocardial function and decreased oxidative I/R
injury. The ischemic risk zone, creatine kinase release, and cardiac inflammation were also
reduced after PAR-2 AP treatment. The effects of PAR-2 AP on the coronary flow were
nitric oxide and tyrosine kinase independent. However, in this model the authors observed
increased expression of tumor necrosis factor-α and induction of PAR-2 expression (34; 35).
An independent study showed that PAR-2 activation causes endothelium-dependent
coronary vasodilatation. PAR-2 activation led to the release of endothelium derived
hyperpolarizing factor and activation of vanilloid receptor on C-fibers (36). The vanillioid
receptor activation was due to PAR-2-dependent activation of the protein kinase (PK) C-
epsilon and PKA pathways (37). The protective effects of PAR-2 AP were further associated
with enhanced ERK1/2, B-cell lymphoma 2 (Bcl-2)-associated death promoter (BAD)
expression, and PKC phosphorylation (38). PAR-2 activation with AP in rats before
reperfusion reduced the myocardial apoptosis by upregulating of Bcl-2 and PAR-2, and
downregulating Bcl-2–associated X protein (Bax) (39).

How can we explain the contradictory results with PAR-2 deficient mice and PAR-2
activation in wild-type mice? PAR-2 is not only coupled to G-proteins, but also to other
proteins, such as β-arrestins (6). β-arrestins were first described as adaptor proteins which
maintain receptor internalization and desensitization (40). Recent studies suggest that β-
arrestins are responsible for the observation that different ligands acting at the same G-
protein coupled receptor can produce distinct signaling responses (40). This so-called
‘biased agonism’ is dependent on the conformational changes within the receptor after
activation (40). PAR-2 activation with AP may lead to a different change in the receptor’s
three dimensional structure compared to activation by proteases. These changes could lead
to a different phosphorylation pattern of intracellular components of the receptor and altered
G-protein coupling or β-arrestin activation (6; 40). β-arrestin dependent signaling is often
restricted to the cytoplasm and involves different MAPKs, such as ERK1/2 (6; 41). It is
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slower and more sustained than G-protein signaling (6; 41). Furthermore, β-arrestin prevents
phosphorylation and degradation of IκBα and thus attenuates activation of NFκB and
transcription of NFκB-target genes (41). β-arrestins have been shown to mediate anti-
inflammatory and cytoprotective effects (41). Further, the activity of β-arrestins was linked
to cardio-protection via trans-activation of EGFR (42). It is possible that the described
biased signaling might be responsible for the protective effects of PAR-2 AP stimulation in
wild-type mice during cardiac I/R injury.

5.3. PAR-4
Steinberg’s group first described the present of functional PAR-4 on cardiomyocytes (43).
Later, PAR-4 expression was also confirmed in SMC but not fibroblasts and EC in human
and rodent hearts (44; 45). Hearts of patients with ischemic cardiomyopathy exhibit elevated
levels of PAR-4 (44). Activation of PAR-4 on cardiomyocytes produces a unique signaling
signature that is different to that produced by the activation of PAR-1. Activation of PAR-4
leads to enhanced p38 phosphorylation (43). The increased p38 activity was due to Src and
EGFR kinase activity and human epidermal growth factor receptor 2 (ErbB2/HER2) via a
PP1 sensitive pathway (43). Importantly, platelets are the main cellular source of PAR-4 in
the circulation in the mouse. In addition, leukocyte sub-populations also respond to PAR-4
APs with increased chemotaxis and release of inflammatory mediators (46; 47).

Considering the fact that PAR-4 activation leads to platelet aggregation in mice and that,
further, PAR-4 contributes to inflammation, it could be hypothesizes that inhibition of
PAR-4 would improve outcome during cardiac I/R injury due to reduce platelet activation
and inflammation. However, PAR-4 deficiency in mice resulted in a significantly lower
survival rate due to increased left ventricular dilatation and decreased contractility after I/R
injury (Figure) (44). PAR-4 deficient mice had larger infarcts and more myocardial
apoptosis compared to wild-type littermates. The authors concluded that a lack of PAR-4
exacerbates myocyte loss, fibrosis, ventricular remodeling, and decline of function after I/R
injury (44). In addition, our group observed increased levels of cardiac troponin I in plasma
from PAR-4 deficient mice compared to wild-type littermates after short term I/R injury
(Antoniak and Mackman unpublished data). These observations suggest that PAR-4
activation during cardiac I/R injury mediates a protective signal in the heart, possibly on
cardiomyocytes, and that this signal may overcome any beneficial effects of reduced platelet
activation.

In contrast to results with PAR-4 deficient mice, rat cardiac I/R injury experiments with
different PAR-4 antagonists had the opposite effect (45). The authors used a pepducin
against PAR-4 in their study (45). P4pal10 treatment of rats reduced infarct size at any time
point of administration in vivo. In addition to P4pal10, PAR-4 inhibition by trans-
cinnamoyl-YPGKF-amide (tc-Y-NH[2]) before ischemia decreased infarct sizes of rat hearts
ex vivo under platelet free conditions. The authors proposed that the protective effects of
P4pal10 and tc-Y-NH(2) were due to unmasking of adenosine receptor signaling (45).
Further, they hypothesized that PAR-4 inhibition may uncouple adenosine receptors and
allow adenosine signaling, that conferred a cardioprotective effect (45). However, these
authors did not show that the PAR-4 antagonists were ineffective in PAR-4 deficient mice or
that PAR-4 activation increases cardiac injury.

Again, there are significant differences between a genetic absence of PAR-4 and a
pharmacologic inhibition of this receptor. The differences may be due to accessibility of the
PAR-4 inhibitor to the target cells. The PAR-4 pepducin may not reach all myocardial cells
and the authors may see only effects of a partial PAR-4 inhibition which does not correlate
with a global knock-out of PAR-4. Further, the PAR-4 pepducin may interfere with G-
protein binding and shifts the coupling from one G-protein subtype to another. More
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importantly, Hollenberg et al. (48) showed that tc-Y-NH(2) and P4-pal10 were potent
antagonists of both thrombin and the PAR-4 AP in a PAR-4 dependent rat platelet
aggregation assay in vitro. However, both investigated antagonists were quite active as
agonists in an endothelium-dependent nitric oxide mediated rat aorta relaxation assay and in
a gastric longitudinal muscle contraction assay (48). Furthermore, the authors claimed that
one needed to be caution in interpretation of in vivo experiments with the two PAR-4
antagonists due to their complex pharmacological properties (48).

6. Conclusions and perspectives
These studies demonstrate multiple roles for PARs in the injured heart. Further studies are
needed to determine if PARs are viable targets for drugs to treat myocardial infarction,
cardiac remodeling and heart failure.
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Figure 1. Model showing a summary of the effects of activation of different PARs by coagulation
proteases after cardiac I/R injury
The model is based on the phenotype of mice deficient in the different PARs and does not
represent the different results observed with pharmacologic inhibitors. It should be noted
that model uses pathways established from in vitro experiments with culture cells. At
present, the proteases that activate the different PARs in vivo are unknown. Tryptase is
shown as an example of a protease not involved in coagulation that can activate a PAR-2.
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