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Abstract

Glial cells are critical players in every major aspect of nervous system development, function, and

disease. Other than their traditional supportive role, glial cells perform a variety of important

functions such as myelination, synapse formation and plasticity, and establishment of blood–brain

and blood–nerve barriers in the nervous system. Recent studies highlight the striking functional

similarities between Drosophila and vertebrate glia. In both systems, glial cells play an essential

role in neural ensheathment thereby isolating the nervous system and help to create a local ionic

microenvironment for conduction of nerve impulses. Here, we review the anatomical aspects and

the molecular players that underlie ensheathment during different stages of nervous system

development in Drosophila and how these processes lead to the organization of neuroglial

junctions. We also discuss some key aspects of the invertebrate axonal ensheathment and

junctional organization with that of vertebrate myelination and axon–glial interactions. Finally, we

highlight the importance of intercellular junctions in barrier formation in various cellular contexts

in Drosophila. We speculate that unraveling the genetic and molecular mechanisms of

ensheathment across species might provide key insights into human myelin-related disorders and

help in designing therapeutic interventions.
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1. Introduction

Glia, originally thought to be nothing more than neuronal structural support, have come to

be known as dynamic, multifunctional cells which are interdependent with neurons for

proper nervous system development and function (Allen and Barres, 2009; Virchow, 1860).
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In the nineteenth century, anatomist Rudolf Virchow coined the lowly term neuroglia or

“nervecement,” to characterize the supposed passive, secondary and largely structural nature

of these cells (Allen and Barres, 2009; Virchow, 1860). Today the complex and critical

nature of glia has exalted them to a pedestal close to that of the neurons—having even been

suggested to play a direct role in information processing in the brain (Kettenmann and

Verkhratsky, 2008). However, while glia are the predominant cell type in the vertebrate

central nervous system (CNS) and have been shown to play critical roles in every aspect of

nervous system development and function, the study of glia remains an exciting field due to

the many unknowns regarding the genetic, molecular, and morphological characteristics of

these cells.

Vertebrate glia have been extensively characterized, and their roles in nervous system

function are critical and diverse. In Drosophila, glia guide axons to their appropriate targets

during early development, aid in axonal pruning, provide and receive trophic support to and

from neurons, permit undisturbed nervous system function by the maintenance of ion-

selective barriers, and phagocytose dead and dying neurons (Banerjee and Bhat, 2007;

Booth et al., 2000; Freeman et al., 2003; Hebbar and Fernandes, 2010; Sepp and Auld,

2003a). It is of note that the ratio of glia to neurons increases dramatically with overall

nervous system complexity. In the Drosophila CNS, glia are outnumbered by neurons in a

10:1 ratio, while in mammals glia outnumber neurons 10:1 (Granderath and Klambt, 1999).

This inversion of neuron to glia ratio underpins the concept that glia are not only critical for

basic functions shared by simple and complex nervous systems, but play increasingly

diverse and dynamic roles in higher level nervous systems as well.

Recently, Drosophila glia have come into focus because of their striking molecular,

morphological, and functional similarities to vertebrate glia (Ebersole et al., 1996; Edenfeld

et al., 2006; Freeman and Doherty, 2006; Pereanu et al., 2005; Sidman et al., 1964).

Vertebrate astrocytes, microglia, oligodendrocytes, and Schwann cells have been recognized

to perform specialized roles in nervous system development and function, and

complementary subtypes of Drosophila glia have been identified which show a substantial

overlap in function with each major category of vertebrate glia (Edwards and

Meinertzhagen, 2010; Freeman and Doherty, 2006). Studies on Drosophila glia have

provided insights into glial function that would be difficult or impossible to obtain from the

study of vertebrate glia (Allen and Barres, 2009; Banerjee et al., 2006a, 2008; Jacobs and

Goodman, 1989). In particular, the parallel roles of Drosophila ensheathing glia with

vertebrate Schwann cells and oligodendrocytes suggest that the study of axonal

ensheathment in Drosophila is directly relevant to vertebrate nervous system function.

Furthermore, the roles of Drosophila glia in septate junction (SJ) assembly and blood–brain

barrier (BBB) formation are critical for proper neuronal function (Banerjee and Bhat, 2007).

The Drosophila nervous system is similar to the vertebrate nervous system, and it functions

only within a narrow range of extracellular concentrations of sodium, potassium, and

calcium ions. Therefore, to protect the Drosophila nervous system, the interface between the

nervous system and circulatory system must regulate ion entry and exit, facilitate nutrient

transport, and act as a barrier system to harmful molecules (Hawkins and Davis, 2005). The
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Drosophila BBB performs each of these functions to allow for proper nervous system

activity.

Here, we will focus on the roles of glia in the ensheathment of individual axons and axon

bundles (fascicles) throughout the development in embryonic (Figs. 3.1 and 3.3), larval (Fig.

3.2), and adult Drosophila. We will address the roles of glia in BBB, blood–nerve barrier

(BNB), and glia-like cells in blood–eye barrier (BEB) formation (Fig. 3.4), and how these

intercellular barriers are critical for proper neuronal function. We will present a detailed

analysis of many of the molecular players that participate in Drosophila axonal

ensheathment and intercellular barrier formation. Also, we will address the hallmarks of

ensheathment which are similar to vertebrate myelination. The discovery of the

morphological and molecular nature of ensheathment will likely continue to prove relevant

to the study of myelination during vertebrate development. This in turn will aid in our

understanding of demyelinating disorders and other myelin-related diseases of the human

nervous system.

2. Drosophila Axonal Ensheathment and Vertebrate Myelination

Axonal ensheathment in Drosophila and myelination of axons in vertebrates in principle

perform similar functions, forming a barrier between axons and an extracellular environment

which would otherwise disallow the conductance of electrical signals along the axons. In

both the systems the function of the barrier is to prevent ionic leakage (Hoyle, 1952; Sousa

and Bhat, 2007). In vertebrates, myelination establishes distinct axonal domains which are

critical for proper action potential propagation (Bhat et al., 2001; Poliak and Peles, 2003;

Salzer, 2003; Thaxton and Bhat, 2009). A similar domain organization is not observed in

Drosophila axons (Banerjee et al., 2006b).

The ensheathment of axons in Drosophila partitions the axons from hemolymph. This is

important because hemolymph contains a high concentration of potassium as well as levels

of other ions which fluctuate significantly after feeding, and which would inhibit electrical

conductance by upsetting the resting membrane potential of axons upon passage into the

Drosophila nervous system (Hoyle, 1952; Schofield and Treherne, 1985). In the vertebrate

nervous system, the myelination of axons increases the conduction velocity of action

potentials by insulating the internode to prevent the passive outflow of current (Hartline and

Colman, 2007). In the Drosophila PNS, an inner glial cell layer and an outer layer of

perineurial, or outer glia form around the nerve fiber to shield it from hemolymph. In the

vertebrate nervous system the perineurium is composed of a layer of fibroblasts that

surrounds the PNS nerve fasciculi to create ionic and molecular barriers (Jessen and Mirsky,

2005; Thaxton and Bhat, 2009). Various proteins that play a role in Drosophila axonal

ensheathment and vertebrate axoglial junction formation is summarized in Table 3.1.

2.1. Formation of SJs during axonal ensheathment and myelination

SJs were first identified in Hydra epithelia by electron microscopy, and were postulated

correctly to play roles in cell adhesion and as permeability barriers (Wood, 1959). The

presence of SJs has since been discovered in myriad invertebrate and vertebrate species

(Banerjee et al., 2006a,b). Electron microscopy reveals that Drosophila SJs form rows of
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electron-dense inter-membranous structures between inner glia and outer glia. SJs function

as physical barriers to diffusion, allow the regulation of solute/solvent exchange, and

maintain cell adhesion (Banerjee and Bhat, 2007; Baumgartner et al., 1996). In vertebrates,

paranodal junctions form between axons and myelinating glia (Bhat, 2003). The molecular

composition and structural similarities between Drosophila SJs and paranodal axoglial SJs

underscores profound functional similarities between the two structures (Bhat, 2003;

Thaxton and Bhat, 2009).

SJs are formed between surface glial cells in the CNS (Banerjee and Bhat, 2007), between

glial cells along the peripheral nerve, between the cap cells and scolopale cells of the

chordotonal organs (COs; Banerjee et al., 2006a), and between accessory glial cells in the

ommatidia (Banerjee et al., 2008). In the PNS and throughout the barrier systems protecting

the CNS, SJs are critical for cell adhesion and barrier formation. In the absence of SJs,

nervous system function is disabled due to BNB breakdown, leading to paralysis (Auld et

al., 1995; Baumgartner et al., 1996; Bellen et al., 1998). While in vertebrates SJs are mostly

found in the nervous system, in Drosophila SJs are present in all ectodermally derived

epithelia (Banerjee et al., 2006b). Epithelial SJs form diffusion barriers to control the flow of

solutes between the apical and basal regions. Some of the identified genes that encode SJ

proteins are: neurexin IV (nrx IV), contactin (cont), neuroglian (nrg), coracle (cora), discs

large (dlg), Na+K+ ATPase, gliotactin (gli), sinuous, (sinu), megatrachea (mega), lachesin

(lac), and scribble (scrib; Banerjee et al., 2006a; Baumgartner et al., 1996; Behr et al., 2003;

Bilder and Perrimon, 2000; Faivre-Sarrailh et al., 2004; Genova and Fehon, 2003; Llimargas

et al., 2004; Paul et al., 2003; Woods and Bryant, 1991; Wu et al., 2004).

Similar to Drosophila ensheathment, vertebrate myelination results in the formation of

specialized SJs called paranodal axoglial junctions for the proper organization of domains

along developing axons (Salzer, 2003; Thaxton and Bhat, 2009). Paranodal axoglial

junctions are orthologs of Drosophila SJs, they form a diffusion barrier at the paranodal

region in myelinated axons (Banerjee and Bhat, 2007; Bhat, 2003; Salzer, 2003). The

vertebrate axoglial paranodal junctions also display an electron-dense ladder-like

ultrastructure between axons and glia similar to Drosophila glial–glial SJs (Banerjee et al.,

2006b; Bhat et al., 2001). Paranodal SJs are formed at the interface of the paranodal axonal

region and the noncompacted myelin loops. The vertebrate paranodal axoglial junctions

separate voltage-gated sodium channels of the node of Ranvier from the juxtaparanodal

voltage-gated potassium channels, thus allowing for proper saltatory conduction along

myelinated axons, proper repolarization of the axonal membrane after an action potential,

and the maintenance of the correct anterograde direction of action potential propagation

(Bhat et al., 2001; Thaxton and Bhat, 2009).

The molecular components of Drosophila SJs are strikingly similar to vertebrate axoglial

SJs. In particular, Drosophila SJ cell adhesion molecules Nrx IV, Cont, and Nrg are the

orthologs of vertebrate paranodal SJ proteins Contactin-associated protein (Caspr), Cont,

and Neurofascin 155 (NF155; Banerjee et al., 2006a; Bhat et al., 2001; Boyle et al., 2001;

Faivre-Sarrailh et al., 2004; Peles et al., 1997). In Drosophila PNS, Nrx IV and Cont are

expressed by glial cells; Nrg is expressed in both axons and glia. In contrast, vertebrates

express Caspr and Cont on the axonal side and NF155 is expressed in the glial cells.
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Furthermore, Drosophila membrane-associated cytoskeleton protein Cora, known to bind to

the C-terminus of Nrx IV, is homologous to mammalian protein 4.1B, which binds to Caspr

C-terminus (Denisenko-Nehrbass et al., 2003; Gollan et al., 2002; Horresh et al., 2010; Peles

et al., 1997; Tait et al., 2000; Ward et al., 1998). Loss of these Drosophila SJ proteins and

their vertebrate orthologs, leads to junctional destabilization and nervous system

dysfunction. The molecular, structural, and functional conservation between SJs and

paranodal junctions is striking, and it is clear that a greater understanding of SJs in

Drosophila will be very informative to provide a greater understanding of vertebrate

paranodal SJs (Hortsch and Margolis, 2003).

3. Axonal Ensheathment in the Drosophila PNS

Drosophila PNS axonal ensheathment is a dynamic and highly coordinated process that

begins during embryonic development and is completed by early larval development

(Banerjee et al., 2006a; Sepp et al., 2000; Stork et al., 2008; Fig. 3.1). Because Drosophila is

a holometabolous organism, it undergoes metamorphosis from which the adult body form

emerges (Truman, 1990). This process requires a significant restructuring of the Drosophila

nervous system, including retraction of the larval ensheathment apparatus and a second

ensheathment of the adult nervous system (Fernandez and VijayRaghavan, 1993; Hebbar

and Fernandes, 2010). In addition, PNS axonal ensheathment also takes place in the

glomeruli of the olfactory system in the antennal lobes during late larval and pupal

development ( Jhaveri and Rodrigues, 2002; Jhaveri et al., 2000; Sen et al., 2005). Here, we

discuss each phase of PNS ensheathment in Drosophila.

3.1. Axonal ensheathment in the embryonic PNS

The critical events required for axonal ensheathment in the embryonic PNS are (1) proper

differentiation of neural precursor cells into peripheral neurons and ensheathing glia, (2)

correct spatiotemporal migration of neurons and glia to allow for the intricate molecular and

cellular interactions which orchestrate axonal ensheathment, (3) the wrapping of individual

motor and sensory axons as well as nerve tracts by PNS glia, and (4) the formation of SJs,

which form an impregnable seal between glial processes to allow for the segregation of the

PNS from the surrounding potassium-rich hemolymph. However, the undoubtedly intricate

molecular events which allow for the ensheathment of individual PNS axons, as well as

entire nerve fibers, have not been fully elucidated.

Peripheral glia are born in the early embryonic ventral nerve cord (VNC). These glia arise

from neuroglioblasts which express glial cells missing (gcm), a genetic switch which

delineates glial cell fate from neuronal precursors (Hosoya et al., 1995). gcm is a master

regulator gene for glial development and gcm mutant embryos feature differentiation of

presumed glia into neurons, while overexpression of gcm switches the predominant cell fate

from neurons to glia (Hosoya et al., 1995; Jones et al., 1995; Vincent et al., 1996).

Furthermore, expression of gcm during embryonic development induces several mesodermal

glial differentiation markers (Akiyama-Oda et al., 1998; Bernardoni et al., 1998). reversed

polarity (repo) is one downstream target of gcm which has been utilized as a nuclear glial

cell marker in both CNS and PNS glia, although it is not expressed in midline glia (MG;

Banerjee and Bhat, 2008; Campbell et al., 1994; Halter et al., 1995; Jones, 2001).
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Interestingly, vertebrate gcm genes have not been shown to play any specific role in glial

cell differentiation in vivo (Kim et al., 1998).

By stage 11, the glial markers Gcm and Repo are observed in all peripheral glial nuclei

(Jones et al., 1995). At this stage the peripheral glia form a cone-shaped structure along each

hemisegment in the Drosophila VNC, at the CNS/PNS transition zone (Banerjee and Bhat,

2008; Banerjee et al., 2006a; Sepp et al., 2000). At each hemisegment during stage 12, the

anterior corner cell neuron migrates into the PNS after a “touch and pass” of the peripheral

glia (Sepp and Auld, 2003a). This pioneer motor neuron establishes the intersegmental nerve

(ISN) tract, and exhibits migration defects in the absence of peripheral glia (Jacobs and

Goodman, 1989; Sepp and Auld, 2003a; Sepp et al., 2000). The segmental nerve (SN) tract

is formed in an analogous manner (Sepp et al., 2000).

Ensheathment of the peripheral axon tracts begins immediately upon glial exit from the CNS

(Banerjee et al., 2006a). Peripheral glia follow motor neurons across the CNS/PNS transition

zone out of the VNC at stage 13 (Sepp et al., 2000). Just as peripheral glia are required for

the proper migration of pioneer neurons into the PNS, likewise in the absence of ISN

neurons, ensheathing glia cannot migrate into the periphery (Sepp and Auld, 2003a). At the

onset of peripheral glial migration out of the CNS, the glial processes extend into the

periphery along the axons tracts while the glial cell body follows behind. Notably, glia are

interconnected as they migrate into the periphery along the pioneer neurons (Sepp et al.,

2000). This migration out of the CNS by ensheathing glia requires a dramatic rearrangement

of the glial actin cytoskeleton (Sepp and Auld, 2003b). The glial cell which leads this train

of ensheathing glia out of the CNS along the ISN exhibits a distinct, spike-shaped, actin-rich

filopodial protrusion. It has been suggested that the leading glial cell may be solely

responsible for path finding duties along the ISN, and the following glia may simply adhere

to the leading cell (Sepp and Auld, 2003b).

Sensory neuronal precursors are identified in the dorsolateral region of the embryo at stage

11 (Bodmer et al., 1989). Sensory neurons are born in the periphery in the dorsolateral

region of the developing embryo at stage 12, and sensory axons begin extending toward the

VNC in a stereotyped pattern in each hemisegment immediately (Banerjee and Bhat, 2008;

Hartenstein, 1993). At stage 13, sensory and motor axons begin to connect, and by stage 14,

all hemisegments show axon tracts which have formed a continuous motor/sensory axon

fascicle (Sepp et al., 2001). These peripherally derived sensory neurons are dependent upon

the already-present motor neurons and glia to guide their axons toward the CNS (Parker and

Auld, 2006; Sepp et al., 2001). Interestingly, peripheral glia preferentially extend their

cytoplasmic processes along sensory axons as opposed to motor axons, suggesting that the

molecular profile of sensory axons is more favorable to interactions with ensheathing glial

cells (Sepp et al., 2000). This extension of glial cytoplasmic processes is a critical aspect of

axonal ensheathment, and is prevented by overexpression of a constitutively activated form

of Rho1 GTPase. The PNS sensory axons are fully ensheathed by glia by the end of

embryogenesis, while the motor neurons are not completely ensheathed until the larval

stages (Sepp et al., 2000). Motor neuron ensheathment is completed when the ensheathing

glial processes reach the larval neuromuscular junction (NMJ; Banerjee et al., 2006a).

Further analysis of the ensheathment of sensory and motor axons has found that these
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distinct tracts are kept separate by ensheathing glia beginning with the ensheathment of

sensory axons during embryogenesis and continuing with completion of larval ensheathment

of the motor tracts (Stork et al., 2008). It would be interesting to determine whether the

preference for glial interactions with sensory axons over motor axons is due to a differential

chemotactic expression profile between the two neuronal subtypes, a differential cell

adhesion molecule profile, or for some other reason.

Crooked Neck (Crn), a splicing factor, has been shown to be required for PNS axonal

ensheathment because it is critical for migration and subsequent differentiation of

ensheathing glia. In crn mutants, ensheathing glia assemble at the CNS/PNS transition zone,

but they do not form the continuous sheath around ISN and SN tracts that is essential for

partition from the hemolymph and proper conduction (Edenfeld et al., 2006). In crn mutants,

while thin inner glial processes are observed around PNS nerve fibers, the glial processes

fail to wrap the nerves. Further, perineurial glia appear to be absent in these fibers, and many

axons appear to be free from contact with any glial cell membranes. Even in the rare

instances of contact between axonal and glial membranes, a total lack of SJs is observed

(Edenfeld et al., 2006).

The roles for Crn in migration, differentiation, and axonal ensheathment are mediated

through its interactions with Held Out Wings cytoplasmic protein [HOW(S)]. how mutants

exhibit similar, though less severe glial migration, differentiation, and axonal ensheathment

defects as crn mutants. HOW(S), but not nuclear HOW[HOW(L)], directly interacts with

Crn, and these proteins may form a cytoplasmic protein complex that regulates mRNA

splicing components required for glial cell differentiation, glial ensheathment of axons, and

formation of SJs (Edenfeld et al., 2006). Evidence suggests that Crn and HOW(S) may

regulate splicing of nrx IV, whose protein product has been found to be essential for SJ

assembly and proper BNB formation (Banerjee and Bhat, 2007; Banerjee et al., 2006a;

Baumgartner et al., 1996; Edenfeld et al., 2006). Crn and HOW(S) may also regulate

splicing of nervana 2, whose protein product is localized to SJs (Genova and Fehon, 2003).

Ultrastructural analysis of Drosophila peripheral nerves has revealed that individual sensory

and motor axons are wrapped by inner glial cells which express nervana 2. These inner glial

cells are then ensheathed by outer (perineurial) glia (Bellen et al., 1998). SJs are present

between these outer and inner glial cells (Banerjee et al., 2006a,b; Fig. 3.2). One recent

study also categorizes a thin glial cell layer between inner and outer glia termed the

subperineurial glial cell layer (Stork et al., 2008). This cellular layer is composed of glia

which express moody (Bainton et al., 2005). SJs form a seal around the PNS to preclude the

disruption of signal transduction via potassium-rich hemolymph influx into the neural

microenvironment, and the absence of SJs causes compromised BNB function (Auld et al.,

1995; Banerjee and Bhat, 2007; Baumgartner et al., 1996).

The Drosophila late embryonic PNS offers an advantageous environment in which to study

SJs. Intact glial SJs are critical for PNS function in Drosophila embryos due to their role in

BNB formation and maintenance. This glial BNB protects the nascent PNS from the

potassium-rich hemolymph, which would otherwise inhibit the action potential propagation
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if allowed to contact the peripheral neurons and therefore the BNB is an integral component

of the Drosophila PNS (Hoyle, 1952).

Three of the proteins which comprise neuroglial SJs in the PNS are Nrx IV, Cont, and Nrg.

These three proteins are interdependent for localization to PNS glial–glial SJs, and each is

crucial for proper SJ formation and BNB function (Banerjee and Bhat, 2007; Banerjee et al.,

2006a). Interestingly, the intermembrane distance between apposing glial cells is drastically

increased in nrg null mutants, suggesting that Nrg may play a role in cell–cell interactions

and cell adhesion between glia in junctional organization during early embryonic

development (Banerjee et al., 2006a). Because Nrg is expressed in PNS axons as well as

glia, and axonal defects are observed in nrg mutants, it is possible that Nrg is also critical for

cell adhesion between axons and glia (Hall and Bieber, 1997). Interestingly in the PNS, Nrg

is expressed in both neurons and glia, whereas Nrx IV and Cont are expressed in the glia.

This raises interesting questions about the requirements for SJ organization by these two cell

types across species. However, Nrx IV is expressed in neurons in the CNS. It is likely that

the organizational mechanisms of SJs have switched during evolution as Caspr and Cont are

expressed in the neurons and NF155 is expressed in the myelinating glia (Banerjee et al.,

2010; Bhat et al., 2001; Stork et al., 2009; Thaxton and Bhat, 2009; Wheeler et al., 2009).

3.2. Axonal ensheathment in the larval and pupal PNS

3.2.1. fray mutants exhibit ensheathment defects—Peripheral glia complete the

ensheathment of the motor axon tracts during the late larval instar stages. Mutations in fray,

a member of the PASK Fray (PF) kinase family with a serine threonine kinase domain,

uncovered a striking phenotype in the Drosophila larval PNS. Null fray mutants feature

large swellings along the peripheral nerve fibers, and these mutants die during larval

development (Leiserson et al., 2000). Analysis of the fray mutant larval peripheral nerve

ultrastructure revealed that the inner glial processes fail to properly wrap individual axons.

Interestingly, no defects are observed in the perineurial glial cells. The fray mutant

phenotype can be rescued by the ectopic expression of Fray, and strikingly the fray

phenotype can also be rescued with rat PASK, a mammalian homolog of Fray which is

expressed in the nervous system, suggesting a high degree of functional conservation

between these proteins. It has been speculated that the neuronal ultrastructural defects in

fray mutants may underscore a role for Fray in the inner glial cell cytoskeleton, specifically

affecting the ability of glial cell processes to ensheath axons (Leiserson et al., 2000).

3.2.2. Axonal ensheathment during morphogenesis and in the adult PNS—The

Drosophila nervous system undergoes rapid and significant restructuring during

metamorphosis to generate the adult nervous system (Consoulas et al., 2002; Fernandez and

VijayRaghavan, 1993; Truman, 1990). Recently glial ensheathment of the pupal Posterior

Dorsal Mesothoracic Nerves (PDMNs) was characterized from 6 to 38 h after puparium

formation (APF; Hebbar and Fernandes, 2010). Since PDMNs innervate dorsal longitudinal

flight muscles (DLMs) and are easy to identify, DLMs have served as an informative model

for adult neural development (Hebbar and Fernandes, 2010; Ikeda and Koenig, 1988).

Interestingly, from 10 to 18 h APF during metamorphosis axonal ensheathment of the

PDMNs is remodeled: ensheathing glia retract during adult arbor formation and axonal

Blauth et al. Page 8

Int Rev Cell Mol Biol. Author manuscript; available in PMC 2014 May 14.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



outgrowth, leaving the developing PDMN axonal arbors without a protective barrier for

about 10–12 h (Hebbar and Fernandes, 2010). During this time of axonal outgrowth glia

remain relatively stable in their retracted positions. Maximum axonal outgrowth is followed

by a period of migration by glia along the PDMN, beginning around 20–22 h APF. The

ensheathing glia enwrap the PDMN nerve trunk during this period, corresponding to the

timing of higher order branching of the axonal arbors (Hebbar and Fernandes, 2010).

Ensheathing glia continue along the primary branches which extend to the main nerve trunk

during the pruning of the second order branches. Ensheathment of the secondary branches

appears completed by 38 h APF, resembling the adult ensheathment pattern of the PDMN

(Hebbar and Fernandes, 2010). An elaborate, multistage arborization and pruning process

enables the proper innervation of the DLMs by axonal synapses at the muscle surface. Thus

the PDMNs can be used as a model to study axonal ensheathment and guidance during later

stages of Drosophila development.

3.2.3. Axonal ensheathment in the olfactory system—The Drosophila olfactory

system forms during pupation in a complex and interactive series of events which take place

in the olfactory lobe of the brain and in the antenna in the periphery (Jhaveri and Rodrigues,

2002; Sen et al., 2005; Stocker, 1994). Similar to vertebrate olfaction, these connections

between the olfactory sensory organs in the periphery and the CNS produce a spatial map in

which specific external chemical stimuli are ultimately reflected by a unique pattern of

neural activity in the glomeruli of the olfactory lobes of the brain (Galizia et al., 1999;

Jhaveri et al., 2000). In short, three distinct types of sensory organs populate the third

segment of the adult antenna, as well as the maxillary palps. These are the sensilla

basiconica, the trichoidea, and the coeloconica (Stocker, 1994). Between one and four

sensory neurons innervate each of these sensory organs and ultimately these project to the

antennal lobe where they terminate in the glomeruli. A detailed description of olfactory

development in Drosophila has been recently described (Jefferis et al., 2004). Here, we will

briefly address olfactory development with a focus on ensheathment which occurs in the

antenna during pupal development.

One interesting emerging area involving axonal ensheathment by Drosophila glia is the

wrapping of sensory neurons and individual glomeruli of the olfactory system which takes

place during morphogenesis (Jhaveri and Rodrigues, 2002; Jhaveri et al., 2000; Sen et al.,

2005). About 20 h APF, developing sensory axons which originate from olfactory receptor

neurons (ORNs) in the third segment of the antenna reach the brain. Repo-positive Mz-317

peripheral glia of the atonal lineage are already present in the third lobe of the antenna; these

glia are found in close association with the developing axon tracts (Sen et al., 2005). Upon

the arrival of the sensory axons in the brain, GH-146 glial cells begin to appear along the

antennal nerve, and these cells seem to undergo mitosis as they travel along the antennal

nerve out of the brain and toward the ORNs from which the axons originated in the

periphery. GH-146 glia line the entire length of the axons by 30 h APF, from the olfactory

lobe to the third segment of the antenna (Sen et al., 2005). During this same developmental

timepoint, the Mz317-glial cells begin to associate more closely with the ORN cell bodies in

preparation for the ensheathment of these neurons. By 36 h APF, glial ensheathment of the

olfactory axonal tracts appears to be complete, with the brain-derived GH-146 positive glia
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associating closely with the axon tracts, similar to the inner glia which ensheath the

peripheral nerves along the ISN, and the Mz317 glia form an outer layer around the axon

tracts, perhaps in a similar fashion to the perineurial glia which wrap around the exterior of

the ISN axon tracts (Banerjee et al., 2006a; Sen et al., 2005; Sepp et al., 2000). It would be

interesting to know whether SJs are present between these glial cell types, and little is

known about the molecular mechanisms that take place to allow for ensheathment in this

organ. It would also be interesting to see if the molecular mechanisms responsible for

ensheathment in the peripheral and central side of this dynamic neurological system are

similar to those seen in the peripheral nerves PNS and/or the VNC.

4. Axonal Ensheathment in Drosophila CNS

4.1. Axonal ensheathment in the VNC

The two halves of the Drosophila VNC are connected by axonal commissures which span

the distance between the longitudinal connectives which undergo ensheathment by glial cells

during embryogenesis. This ensheathment is critical for neuron and glial survival as well as

proper nervous system function. In the developing VNC, diverse glial subtypes play a host

of roles in neural migration, axon guidance, separation of commissures, and axonal

ensheathment (Banerjee et al., 2010; Klambt and Goodman, 1991; Noordermeer et al., 1998;

Stork et al., 2009; Wheeler et al., 2009). VNC glia are critical during every stage of CNS

development, and the ablation of glia leads to defects in neuronal differentiation, axon

pathfinding, and cell survival (Banerjee et al., 2010; Hidalgo et al., 2001; Klambt and

Goodman, 1991). Among the various glial subtypes in the CNS, the MG perform

ensheathment of commissural axons while longitudinal glia (LG) ensheath the longitudinal

axon trajectories ( Jacobs, 2000). The various glial subtypes and their developmental

profiles have been discussed in detail elsewhere (Ito et al., 1995). Here, we will examine the

role of LG and MG in the ensheathment of axons in the VNC.

4.1.1. LG ensheath longitudinal axon tracts—During early embryogenesis, LG are

derived from lateral glioblasts which arise out of the neuroblast layer at the edge of the

neuroectoderm (Doe et al., 1998; Jacobs and Goodman, 1989). These LG help forms the

glial scaffold that help guide the axon tracts of the VNC (Jacobs and Goodman, 1989). LG

are overproduced in wild-type embryos, and many undergo apoptosis during development.

This apoptosis is prevented by LG interactions with pioneer neurons, and ablation of pioneer

neurons results in the loss of LG (Kinrade et al., 2001). When pioneer neurons expressing

the epidermal growth factor receptor (EGFR) ligand Vein come into contact with LG

expressing Drosophila epidermal growth factor receptor (DER), it activates the Ras/

MAPkinase survival pathway, preventing apoptosis of LG (Hidalgo et al., 2001). Thus, the

surviving LG with Vein-activated Ras/MAPkinase pathway ensheath the longitudinal axon

tracts during embryonic development (Jacobs and Goodman, 1989).

Axonal ensheathment of the longitudinal axon tracts by LG also requires the fibroblast

growth factor receptor Heartless (Htl/DFR1; Shishodo et al., 1997). In htl mutants, LG

exhibit reduced migration rates, inability to extend cytoplasmic processes, failure to properly

position themselves for the ensheathment of longitudinal axons, and ultimately a failure to

effectively wrap the developing longitudinal axon tracts (Shishodo et al., 1997). This
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suggests that FGF signaling is critical for the ensheathment of axons. Related experiments in

the grasshopper CNS support this conclusion, indicating that FGF signaling induces glial

morphogenesis in response to a localized FGF signal by extending membranous processes

around the signal, ultimately leading to glial ensheathment of the source of the FGF signal

(Condron, 1999).

4.1.2. MG ensheath anterior and posterior commissures in the CNS—MG can

be subdivided into anterior MG (AMG) which express high levels of Wrapper and posterior

MG (PMG) which express Engrailed (En; Noordermeer et al., 1998; Wheeler et al., 2006).

Throughout embryonic development, MG perform an impressive variety of functions,

including production of chemotactic gradients to control axon guidance and sculpt the VNC,

induction of the differentiation of neural subtypes, separation of anterior commissure (AC)

and posterior commissure (PC), and ensheathment of commissural axons (Kidd et al., 1999;

Menne et al., 1997; Wheeler et al., 2009). AMG, but not PMG, send out elaborate

membranous processes that completely enwrap the commissures and penetrate the

commissural axon bundles to extensively ensheath these axons and divide the commissures

into subdomains (Stollewerk et al., 1996). A role for PMG during VNC development has not

been determined, and all PMG undergo apoptosis by the end of embryonic development.

Here, we will focus on the mechanisms of the ensheathment of commissural axons by AMG.

Ten MG derive from mesectodermal cells in each segment at the midline of the

neuroepithelium in the VNC. After four MG undergo reaper- and grim-mediated apoptosis

six glia remain per segment (Zhou et al., 1997). These six MG compete for survival; only

three ultimately avoid apoptosis (Bergmann et al., 2002; Sonnenfeld and Jacobs, 1995). MG

compete for access to axons, and the surviving glia escape apoptosis via activation of the

EGFR/RAS/MAPK pathway by direct interaction with axons and neuronally secreted

SPITZ, and ultimately suppression of proapoptotic protein HID by activated MAPK

(Bergmann et al., 2002). Early stage 12 of embryonic development marks the beginning of

CNS axonogenesis, and during this stage MG are positioned in close contact with the

pioneering axons which are together in a single axon bundle (Wheeler et al., 2009). During

early stage 12, three AMG contact the anterior of the commissure, and a fourth undergoes

apoptosis (Bergmann et al., 2002). In late stage 12 of development, membranous processes

begin to extend from the AMG across the dorsal and ventral surfaces of the commissure and

in between the dividing AC and PC (Jacobs, 2000; Wheeler et al., 2009). The AC is

completely ensheathed by a glial process by stage 13 and by stage 14 of embryonic

development, an AMG moves to a position between the AC and PC (Klambt and Goodman,

1991; Wheeler et al., 2009). During stage 15 one single AMG migrates across the dorsal

surface of the PC, and extends elaborate processes posteriorly across the dorsal side of the

PC which cover the entire dorsal surface commissural tract from one longitudinal connective

to the other (Klambt and Goodman, 1991; Noordermeer et al., 1998; Wheeler et al., 2009).

At this timepoint, long intricate membranous processes begin to extend from the MG across

the ventral surface as well. At stage 16 the glial processes completely cover the dorsal

surface of the commissures, extend into the commissural axon bundles for the purpose of

axonal ensheathment, and enwrap the ventral surface of the commissures (Fig. 3.3; Jacobs,

2000; Noordermeer et al., 1998). Throughout stages 15–17, AMG extend elaborate
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cytoplasmic projections into the AC and PC which divide each commissure into subdomains

and ensheath individual axon fascicles (Stollewerk et al., 1996; Stork et al., 2009). Detailed

molecular mechanisms of axonal ensheathment in the CNS involving MG and LG remain to

be further investigated to identify adhesion molecules that underlie intercellular neuron–glial

interactions.

4.1.2.1. Wrapper and Nrx IV mediate axonal ensheathment at the embryonic midline:
AMG-expressing Wrapper interacts with midline neurons expressing Nrx IV in trans to

promote ensheathment of axon commissures (Noordermeer et al., 1998; Stork et al., 2009;

Wheeler et al., 2009). Wrapper is a member of the Ig-superfamily and contains a signal

peptide followed by three Ig domains, a fibronectin domain and a GPI-linkage

(Noordermeer et al., 1998). Wrapper has been a known player in MG-neuron adhesion for

over a decade, as wrapper mutants showed a failure of MG to ensheath the commissural

axons (Noordermeer et al., 1998). More recent studies have explored the role of wrapper in

MG migration and axonal ensheathment (Stork et al., 2009; Wheeler et al. 2009). Embryonic

stage 12 wrapper mutants show normal AMG and PMG migration in the VNC and appear to

be positioned properly between the AC and PC. By stage 15, as the AMG comes into

contact with the AC, wrapper mutants begin to show MG ensheathment defects. During this

stage, while wild-type MG processes have wrapped the entire dorsal surface of the AC,

wrapper mutant MG show a lack of membranous process extension around the dorsal

surface, and this defect is especially apparent at the lateral side of the commissures near the

area where the commissures meet the longitudinal tracts (Noordermeer et al., 1998; Wheeler

et al., 2009). Furthermore, the AMG does not become properly positioned between the AC

and PC during this time (Wheeler et al., 2009). By stage 16, some MG in wrapper mutants

die prematurely, likely due to lack of contact with and ensheathment of the PC, and those

remaining MG fail to enwrap the commissural axon bundles or extend processes to penetrate

and ensheath axons throughout the commissures (Bergmann et al., 2002; Noordermeer et al.,

1998).

Interestingly nrx IV mutant embryos also revealed a failure of VNC commissure separation

(Wheeler et al. 2009). Although Nrx IV is known as a component of SJs, ultrastructural

analysis has not revealed the presence of any septate-like junctions in the embryonic midline

so far (Stollewerk and Klämbt, 1997; Stollewerk et al., 1996). Furthermore, many of the

molecular components of SJs are not expressed in the embryonic midline (Stork et al.,

2009). Recent studies showed Nrx IV and Wrapper bind to mediate the MG migration, and

subsequent ensheathment and subdivision of the axonal commissures at the midline (Stork et

al., 2009; Wheeler et al., 2009). Wild-type Nrx IV expression is sharply concentrated at the

MG-commissural axon contact points, adjacent to Wrapper expressed by MG. Furthermore,

nrx IV mutants show striking similarities in the MG migration and ensheathment defects

with wrapper mutants (Banerjee et al., 2010; Stork et al., 2009; Wheeler et al., 2009). In nrx

IV null mutants, AMG migrate normally to the commissure at stage 12, but instead of

beginning commissural ensheathment, the AMG migrate past the AC toward the PC

(Wheeler et al., 2009). Furthermore, AMG fail to elaborate cytoplasmic projections to divide

the commissures into subdomains (Wheeler et al., 2009). When Nrx IV expression was

driven in a subset of commissural axons in the nrx IV null mutant background, glial
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wrapping defects were often rescued specifically in the Nrx IV-expressing fascicles (Stork et

al., 2009). Furthermore, expression of Nrx IV with a strong neuronal driver caused the

expansion of the Wrapper expression domain within the commissures, and the expression of

Nrx IV in only a few ipsilaterally-projecting neurons, Wrapper localization was redistributed

and long MG protrusions along the Nrx IV-positive axons (Stork et al., 2009). Conversely,

ectopic expression of Wrapper redirected Nrx IV expression in the midline and in other

tissues as well (Stork et al., 2009). Nrx IV and Wrapper bind in co-immunoprecipitation

experiments (Wheeler et al., 2009). Adhesion experiments in S2 cell culture confirmed that

Nrx IV and Wrapper bind in trans and mediate cell adhesion (Stork et al., 2009; Wheeler et

al., 2009). Interestingly, Wrapper exhibited a stronger affinity for the Nrx IV splice variant

that is present in neurons more so than the one specific to epithelial cells (Stork et al., 2009).

These studies established for the first time that Nrx IV and Wrapper trans interactions

underlie the establishment of the midline neuron–glial scaffold for proper neuronal

development.

4.2. Axonal ensheathment in the Drosophila brain

An interesting but largely unexplored area is to understand how the process of ensheathment

works in the Drosophila brain. During embryonic brain development, neuroblasts generate

primary neurons and glial lineages which later develop into the functional larval brain. The

neurons extend neurites which are directed and nourished by glia and are assembled into

neuropile compartments (Pereanu et al., 2005; Younossi-Hartenstein et al., 2003). Secondary

neurons are produced in the brain during larval development. These neurons cross the cortex

in large bundles and join the primary neurons in the neuropile (Dumstrei et al., 2003). The

adult Drosophila brain is formed during pupal development, when axonal and dendritic

branching from secondary neurons form connections with the primary neurons in the adult

brain neuropile (Pereanu et al., 2005). Glial cells in the Drosophila brain have been

classified by various criteria, and this has led to some confusion about the nomenclature for

brain glia (Awasaki et al., 2008; Freeman and Doherty, 2006; Hoyle, 1986). The most basic

classification of glia divides them into three categories: surface glia, which form the BBB

and will be examined in Section 5, cortex glia, which form a scaffold around neuronal cell

bodies in the cortex but also share a BBB role with surface glia (Fig. 3.2) and have some

ensheathing properties, and neuropile glia, which play a role in the ensheathment of axons

and axon fascicles. These three basic categories of glia can be divided into subcategories

based on criteria such as location, ultrastructure, function, or gene expression patterns

(Edwards and Meinertzhagen, 2010). The role of cortex glia and neuropile glia is discussed

below.

4.2.1. Neuropile glia partition axons of the brain—Axonal ensheathment in the

Drosophila brain has not been examined in detail compared to the VNC or the PNS.

However, evidence exists that glia in the Drosophila brain play roles in the ensheathment of

axons. Neuropile glia proliferate in the larval brain while secondary neurons trek across the

cortex and infiltrate the neuropile (Awasaki et al., 2008; Pereanu et al., 2005). This distinct

class of glia are partly defined by morphology and location: most neuropile glia are irregular

in shape, and their cell bodies are either located at the interface of the cortex and the

neuropile, or deep within the neuropile itself (Pereanu et al., 2005). Neuropile glia are
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divided into two categories: ensheathing glia and astrocyte-like glia (Awasaki et al., 2008).

Similar to oligodendrocytes, Drosophila ensheathing glia enclose axons. The ensheathing

glia extend processes around the neuropile and form SJs within the neuropile to partition the

neuropile compartments (Pereanu et al., 2005). The boundary created by the membranous

processes extended by the ensheathing glia may insulate neuropiles from lateral

miscommunication between the neighboring neuropiles, allowing for independent neural

activity within each neuropile (Awasaki et al., 2008). Furthermore, the glial process

extended within the neuropiles may further divide subcompartments to allow for

independent activity within each neuropile subcompartment, aided by glial–glial SJs

between the ensheathing glial membranes (Awasaki et al., 2008; Pereanu et al., 2005). These

SJs formed by neuropile glia do not form a comprehensive diffusion barrier which could be

likened to the barrier systems which partition the nervous system from hemolymph

throughout Drosophila. Instead these SJs are found in short stretches between adjacent

compartments which create nearly independent environments within the compartments, but

allow neurons to pass into the compartments through neuropile portals during development

and between the neighboring compartments in selective areas (Pereanu et al., 2005). A large

glial sheath is present between the deep cortex and the neuropile to separate the neurons of

these domains, and in the basal and medial regions of the brain this sheath is formed

primarily by the ensheathing neuropile glia (Pereanu et al., 2005). Due to the complex nature

of the neuronal terrain in the brain, detailed mechanistic insights are still lacking regarding

any junctional organization and intercellular adhesion that take place between glial and

neuronal cells.

4.2.2. Cortex glia and ensheathment—Cortex glia exhibit properties which are most

often compared to vertebrate astrocytes (Awasaki et al., 2008; Freeman and Doherty, 2006).

These glia are highly branched, lamellated cells which form close associations with primary

and secondary neurons during development. Cortex glia differentiate during stage 16 of

embryogenesis, and proliferate rapidly in the brain during the larval stages, where like

astrocytes they play roles in trophic support of neurons and synapse modification (Freeman

and Doherty, 2006). Cortex glial processes also play roles in stabilizing the position of

neurons during secondary neuronal migration in the larval brain, and extension of axons

from the neurons during development (Dumstrei et al., 2003). Like astrocytes, cortex glia

also play a role in the BBB, and this will be addressed in Section 5 (Pereanu et al., 2005).

While neuropile glia are responsible for the ensheathment of the neuropile in the basal and

medial regions of the brain, it is the cortex glia which are responsible for this ensheathment

in the dorsal and lateral regions (Pereanu et al., 2005). Cortex glia enclose each primary and

secondary neuron during development. However, the role that cortex glia play appears to be

trophic in nature as opposed to one of axonal ensheathment, and the cortex glial processes

associate thoroughly with neuronal cell bodies as opposed to neurites (Awasaki et al., 2008).

Much remains to be characterized regarding the mechanisms that underlie neuronal and

axonal ensheathment in the Drosophila brain. New emerging methodologies of in vivo

imaging combined with fluorescently tagged-glial and -neuronal markers could provide

more detailed insights into the complexities of neuron–glial interactions and brain function.
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5. BBB Formation in Drosophila

In Drosophila and other invertebrates, the neuron–glial BBB preserves the molecular

microenvironment necessary for the generation and propagation of action potentials. In the

Drosophila nervous system as in vertebrates, concentrations of sodium, potassium, and

calcium ions must be strictly regulated to allow for proper nervous system function. The

BBB takes the form of SJs between neighboring glia throughout the developing organism to

partition the nervous system from direct contact with the openly circulating hemolymph.

This is distinct from the vertebrate BBB, in which TJs between capillary endothelia of the

closed circulatory system serve as the primary barrier system of the brain. However, despite

these differences, the study of the Drosophila barrier systems has proven informative to our

understanding of the vertebrate BBB. Moreover, the vertebrate BBB has proven to be both

an obstacle for the successful therapeutic treatment of CNS disorders due to its selectively

permeable nature, as well as a pathological focus due to its breakdown in CNS disorders

such as multiple sclerosis (MS). Studies in the Drosophila BBB may help us find new

methods to circumvent the BBB to deliver therapeutic agents, as well as to explore therapies

to prevent or repair its damage in disease state.

In the Drosophila PNS, this barrier first forms in the CO during early embryogenesis

(Carlson et al., 1997). Here, proprioreceptors are protected by SJs which form an

impermeable seal between the cells, creating a barrier so that ion passage into and out of the

PNS is regulated by passage through glia. By late embryonic stages, the CNS is also

protected by a functional BBB, and in early pupal life the BEB is formed as well. These

barrier systems are critical for Drosophila nervous system function and ultimately for

survival into adulthood (Auld et al., 1995; Banerjee et al., 2006a, 2008; Baumgartner et al.,

1996). Interestingly, while much of what comprises the BBB is unique between the CNS

and PNS, the neural lamella is an extra cellular matrix which extends across the entire

exterior of the CNS and PNS forming a comprehensive layer around the Drosophila nervous

system from embryonic stage 16 onwards (Stork et al., 2008). In this section, we will

describe the unique functions of vertebrate and invertebrate barrier systems. We will also

address cellular and molecular profiles of these barrier systems, as well as their relationship

to vertebrate barriers and roles in health and disease.

5.1. BNB in the Drosophila PNS

5.1.1. BNB between inner and perineurial glia—In many species, where the nervous

system requires complex sensory and motor processing, there is a particular physiological

need for a BBB to provide ionic homeostasis around central integrating synapses to allow

for the proper communication of signals (Abbott et al., 1986). Because of the strikingly

high, often broadly fluctuating levels of potassium and other ions in hemolymph, many

insects depend upon additional components for an effective barrier (Hoyle, 1952). In insects,

higher arachnids, and decapod Crustacea, a BBB is a critical part of the ensheathment of the

CNS (Abbott et al., 1986). The types of junctions which form the BBB vary by species. For

instance, TJs are responsible for the cockroach, locust, and moth barrier, SJs are barrier

components in flies, linker junctions play a role in the centipede and millipede barrier, and

novel restricting junctions are an integral component of squid Sepia (Abbott et al., 1985;
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Lane, 1989; Lane and Swales, 1979). In Drosophila, the barrier resides between various

glial subtypes and relies on SJs for proper function (Banerjee et al., 2006a; Edwards and

Meinertzhagen, 2010; Swales and Lane, 1983).

As described in Section 3, in the Drosophila PNS SJs form between inner glia and

perineurial glia to allow for ensheathment of individual axons as well as axon fascicles

(Banerjee and Bhat, 2008; Banerjee et al., 2006a; Stork et al., 2008). Therefore, the BNB is

established in the Drosophila PNS between ensheathing glia (Banerjee et al., 2006a). For

proper BNB formation, inner and outer glial processes must form a seal to prevent

hemolymph entry into the nervous system (Banerjee et al., 2006b). SJs are critical to this

barrier function in the developing Drosophila PNS. The first mutants identified to display

severe BNB defects due to loss of SJs are gli and nrx IV mutants (Auld et al., 1995;

Baumgartner et al., 1996). In gli mutants, glial cell development, differentiation, and

morphology do not appear to be affected. However, ultrastructural analysis of gli mutants

reveals that the peripheral glia do not completely ensheath axons and exhibit defects in glial

SJs, leading to a failure to form a sealed BNB (Auld et al., 1995; Baumgartner et al., 1996).

Because of neural exposure to the hemolymph, action potentials do not properly propagate

leading to paralysis (Auld et al., 1995). In nrx IV mutants, ensheathing glial membranes lack

SJs entirely; therefore, although the glial membranes are in close proximity to the peripheral

nerves, they cannot properly complete peripheral axonal ensheathment and BNB formation

(Banerjee and Bhat, 2007; Banerjee et al., 2006b). Other proteins which have been shown to

associate with Drosophila PNS SJs include Cont, Nrg, Lachesin, Moody, and Loco (Bainton

et al., 2005; Banerjee et al., 2006a; Schwabe et al., 2005; Strigini et al., 2006).

5.1.2. BNB of the COs—The Drosophila COs are proprioreceptors which contain

neurons and glia and serve as an informative model to study the mechanisms involved in

BNB formation (Banerjee et al., 2006a; Carlson et al., 2000). The glial cell types of the CO

are the cap cell, the scolopale cell, and the ligament cell. Of these, cap cells and scolopale

cells participate in BNB formation, as SJs at the interface between these two cell types

create the seal to protect the developing nervous system from the hemolymph (Carlson et al.,

1997). In addition to their role in peripheral nerves, Nrx IV, Cont, and Nrg have been found

to play critical, interdependent roles as molecular components of CO BNB (Banerjee et al.,

2006a). In the COs, Nrx IV, Cont, and Nrg localize to the scolopale and cap cells, and Nrg is

also localized to neurons (Banerjee et al., 2006a). nrx IV, cont, and nrg mutant embryos

show altered CO morphology and a breakdown of the functional BNB, highlighting the

importance of each of these SJ proteins for proper CO function (Banerjee and Bhat, 2007;

Banerjee et al., 2006a).

5.2. BBB in the Drosophila CNS

For proper CNS function, the BBB exists at the surface of the Drosophila brain (Swales and

Lane, 1985). Beginning in the larval stages, the BBB is formed by two distinct glial cell

layers which are speculated to play complementary roles in barrier function (Awasaki et al.,

2008). The outer layer of the BBB is formed by surface glia. Surface glia are flattened cells

with no processes which grow radially from the surface into the cortex (Fig. 3.2; Pereanu et

al., 2005). These glia come into direct contact with hemolymph, and are therefore
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responsible for the controlled flow of nutrients from the hemolymph into the brain. Surface

glia are generally classified into two subgroups based upon localization in the brain and cell

morphology: perineurial glia and subperineurial glia (Pereanu et al., 2005). These subgroups

form the external and internal sublayers of the outer BBB layer. Perineurial glia form the

external layer, and develop during the larval stages and are not dependent upon GCM for

proper differentiation. This GCM-independent development has led to postulation that

perineurial glia are in fact not a glial subclass but hemocytes; however, recently perineurial

glia were shown to express Repo, a direct target for GCM which is present in most glia, but

is never expressed in hemocytes, supporting the notion that these cells are in fact glia

(Awasaki et al., 2008; Lee and Jones, 2005). Specific perineurial BBB function has not been

addressed, but this layer appears to lack extensive SJs which would classify it as a part of

traditional BBB function. Subperineurial glia can be identified by their expression of Moody

(Bainton et al., 2005; Schwabe et al., 2005). These glia form the internal sublayer of the

outer glial layer, and are large, thin glia which are thought to be indispensible components of

the larval BBB (Awasaki et al., 2008; Bainton et al., 2005). This is due to extensive SJs

between the subperineurial glia, as well as data from functional assays which indicates that

dyes cannot penetrate past the subperineurial layer of the Drosophila BBB (Baumgartner et

al., 1996; Fehon et al., 1994; Stork et al., 2008). Subperineurial glia do not come into direct

contact with CNS neurons, as they are sandwiched between the perineurial glia and are

blocked from direct neuronal contact in the CNS by the neuropile glia and cortex glia

(Pereanu et al., 2005; Stork et al., 2008).

The inner layer of the BBB is composed of cortex glia. Cortex glia are found throughout the

cortex, and unlike surface glia, cortex glia extend lamelliform processes throughout the

cortex. Cortex glia form a dense meshwork throughout the cortex in which one cortex glial

cell can enwrap several neurons, similar to vertebrate oligodendrocytes (Awasaki et al.,

2008). Notably, a layer of these processes are found in apposition to the inner side of the

surface glia forming the inner layer of the BBB. The glial processes of cortex glia also

ensheath the neuronal cell bodies, but this is thought to perform trophic as opposed to barrier

functions (Edwards and Meinertzhagen, 2010). However, extensive SJs exist between cortex

glia as well as cortex glia and neurons which perform BBB and neuron stabilization

functions throughout the Drosophila brain (Carlson et al., 2000; Pereanu et al., 2005).

5.2.1. SJs in BBB formation—The presence of SJs has long been known to confer

selective permeability upon tissues which require a partitioning of microenvironments and

controlled entry and exit of substrates between the apposing domains. A common test of this

barrier function is the dye injection assay, in which extracellular tracers such as dextran are

injected into body cavity, and then permeability across the barrier is assessed. Drosophila

CNS which lack glial cells or have severely impaired glial function exhibit reduced or

disabled barrier function (Auld et al., 1995; Bainton et al., 2005; Baumgartner et al., 1996).

Nrx IV, Cont, Nrg, and Gli are some of the well known molecular players expressed in SJs

which compose the Drosophila CNS BBB, and mutations in each of these and many other

SJ proteins result in breakdown of the BBB and subsequent entry of dye into the normally

protected space (Auld et al., 1995; Banerjee et al., 2006a; Baumgartner et al., 1996; Faivre-

Sarrailh et al., 2004). Interestingly, while the loss of Nrx IV causes a severe breakdown of
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the BBB observed by the immediate entry of 10 kDa dextran dye into the CNS due to

complete absence of SJs, the loss of Moody in the surface glia causes a more subtle

breakdown of the BBB, and less complete entry of 10 kDa dextran into the CNS, which

correlates with the diminished, but not entirely ablated SJs between the subperineurial glia

in moody mutants (Bainton et al., 2005; Baumgartner et al., 1996; Stork et al., 2008). These

results highlight the importance of SJs in BBB function and axonal ensheathment.

5.2.2. Non-SJ-related BBB—While SJs are critical for the proper function of Drosophila

barrier systems, recently the Drosophila BBB has been shown to be a dynamic series of

barriers in which multiple components inhibit the passage of small and large substances.

Mdr65, an ATP-binding cassette (ABC) transporter gene expressed in subperineurial glia,

plays a role in BBB blockage of toxic pharmaceuticals from the brain (Mayer et al., 2009).

mdr65 mutations caused the passage of ABC transporter substrates into the brain, but did not

affect the successful blockage of small dextrans (3 kDa and 10 kDa) into the brain, a process

known to be mediated by SJs (Mayer et al., 2009). This result indicates that Mdr65 plays a

non-SJ-related role in BBB function in the Drosophila CNS. In a related study, dextran dyes

of various sizes were injected into gcm mutant embryos in which virtually no glia were

present, nrx IV mutant embryos in which glia are present but SJs do not form, and moody

mutant embryos in which proper SJ formation is impaired. The injection of a large 70 kDa

dye into the hemolymph resulted in immediate influx of the dye across the BBB of gcm

mutants, while in nrx IV mutants comparable levels of dye did not infiltrate the CNS until 20

min after injection (Stork et al., 2008). This contrasts the finding that 10 kDa dextran dyes

enter the CNS of gcm and nrx IV mutants at comparable rates and suggests that another

barrier mechanism exists independent of the SJs (Stork et al., 2008). An injection of a 500-

kDa dye into the hemolymph of these mutants confirmed the findings from the 70 kDa dye

injections, as gcm mutants showed immediate CNS uptake of the dye, nrx IV mutants

showed significantly less dye uptake, and moody mutant embryos exhibited very little CNS

uptake of the dextran dye (Stork et al., 2008). So while the SJs are critical for BBB integrity,

other structures may also play important roles in the exclusion of large molecules from the

Drosophila CNS. Future studies aimed at defining the molecular nature of these barriers

should help us understand how barriers are established which is relevant to vertebrate BBB

formation and function.

5.3. BEB in Drosophila ommatidia

5.3.1. BEB in Drosophila and BRB in vertebrates—In the vertebrate eye, the retina

houses the photoreceptors rods, cones, and photosensitive ganglion cells. Rod cells are

sensitized to detect low levels of white light, cones detect colors and are less sensitive,

thereby functioning well in bright light, and photosensitive ganglion cells play a role in

circadian rhythm maintenance and hormonal regulation. In the neural retina, photoreceptors

(PRs) are excluded from contact with blood by the blood–retinal barrier (BRB) between

retinal pigment epithelia. This barrier is similar to the vertebrate BBB, in that it utilizes TJs

to seal the extracellular space between neighboring epithelia (Williams and Rizzolo, 1997).

Furthermore, breakdown of the vertebrate BRB epithelial TJs has been shown to be a cause

of BRB dysfunction in vertebrates (Peng et al., 2003). The BRB has been shown to play an
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important role in human ocular disorders such as macular edema and diabetic retinopathy

(Vinores et al., 1999).

Adult Drosophila have compound eyes, which develop from the eye imaginal disc, a single

layer of proliferative epithelia. These cells begin to differentiate during larval development.

Differentiation is controlled by eyeless, dacshund, sine oculis, and eyes absent (Chen et al.,

1997; Halder et al., 1998; Mardon et al., 1994; Wolff, 2003). During third instar larval

development, an epithelial indentation called the morphogenetic furrow develops, forming

the eye imaginal disc. While cell division occurs asynchronously in the region anterior to the

morphogenetic furrow, cells posterior to the morphogenetic furrow develop into ommatidial

precursor clusters and begin to differentiate into PR (Cagan and Ready, 1989; Tomlinson

and Ready, 1987; Wolff and Ready, 1991). The Drosophila compound eye features about

800 units, called ommatidia. Each ommatidium features eight PRs, four cone cells (CCs),

and three types of pigment cells (PCs; Tomlinson and Ready, 1987; Wolff and Ready,

1993). In each ommatidium, PRs are specified during late larval development, followed by

the CCs. The ommatidia are completed during the pupal stages when PCs surround the CCs

and sensory units form (Cagan and Ready, 1989; Wolff and Ready, 1993). Each

ommatidium contains a BEB, which is essential for proper phototransduction.

5.3.2. SJs in BEB formation—Drosophila BEB formation requires SJs for its proper

assembly and function. Studies of the insect BEB in other organism such as adult locust and

houseflies show the presence of a barrier protecting the optic lobes impenetrable to dyes

injected into the circulating hemolymph; the discovery of SJs and tight junctions in insects

provide an anatomical structure to perform this function of hemolymph exclusion from the

insect eye (Chi and Carlson, 1981; Lane, 1981; Saint Marie and Carlson, 1983a,b; Shaw,

1984). In the housefly, fenestrated glial cells form a barrier between the retina and brain

(Carlson et al., 2000; Saint Marie and Carlson, 1983b). Invaginations in the distal

membranes of these glia allow for increased surface to volume ratio in these cells, providing

the necessarily large amount of surface area for vesicular trafficking to allow for the

adequate influx of nutrients into the ommatidia (Kretzschmar et al., 2000). Expression of

adaptin, a vesicle-specific protein, also supports the large amount of vesicular trafficking

required at the distal surface of the glial cells between the retina and brain (Kretzschmar et

al., 2000). Lamina glia also partition the lamina from the retina and other visual ganglia.

Glia of the laminar cortex are extensively coupled with neurons as well as other glia

(Kretzschmar et al., 2000).

In the developing third instar larval ommatidia, SJs are present in the basolateral regions of

the differentiating retinal disc epithelial cells (Banerjee et al., 2008). In pupal ommatidial

development, SJs are found in the differentiating retinal epithelial cells. During pupation,

BEB formation occurs in time to protect the developing photoreceptor neurons, which are

bathed in distinct extraneuronal fluid distinct from the hemolymph, to be shielded from the

environment outside of the visual system. Conduction in the visual system begins during the

pupal stage, and the series of partitions which comprise the BEB develop temporally to

accommodate this activity through the entire adult life of the organism. In the adult

Drosophila ommatidia, long ladder-like stretches of SJs are present basal to adherens

junctions (AJs) in the apical region between neighboring CCs, between CCs, and PCs (Fig.
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3.4) below the level of the lens and pseudocone. This localization of SJs basal to AJs but in

the apical region between neighboring cells is similar to SJ location in embryonic epithelia

(Banerjee et al., 2008; Faivre-Sarrailh et al., 2004). Furthermore, SJs are found in the CC

basal region as well, near the CC endfeet at the bottom of the adult ommatidia.

Similar to observations in epithelial and PNS SJs, Nrx IV expression occurs synchronously

with the development of SJs in ommatidia. Nrx IV is expressed in CCs in the eye imaginal

disc during late third instar larval development. Nrx IV is also found at the basal regions of

PCs, and is not expressed in the neuronal cells of the larval ommatidia. During pupal

development Nrx IV is expressed in the CCs and PCs, specifically in the SJ-expressing

regions between these two cell types. In the adult eye, Nrx IV is expressed in the apical-

most region of the ommatidia in the membranes of CCs and PCs (Fig. 3.4A), in the basal

regions of the CCs near the endfeet (Banerjee et al., 2008). In adult ommatidia lacking Nrx

IV, ommatidial collapse occurs and SJs between the CC are completely absent (Banerjee et

al., 2008). The loss of Nrx IV leads to altered ommatidial cell morphological and functional

defects, including degeneration of PRs (Banerjee et al., 2008). This PR degeneration in the

absence of CC SJs suggests that the accessory cells of the ommatidia serve an important role

in PR development and maintenance, and the SJs may have a particularly important role in

ensuring proper PR function (Banerjee et al., 2008). In several nrx IV hypomorphic alleles,

as well as in nrx IV null mutants, proper BEB function is compromised when subjected to in

vivo diffusion barrier assays (Banerjee et al., 2006a, 2008). This is due to a defective SJ

structure between CCs, suggesting that the ommatidial CC SJs are required for proper BEB

function (Banerjee et al., 2008). In conclusion, adult ommatidial SJs function to both

provide cell adhesion between CCs and PCs, as well as to act as the BEB, protecting the PRs

from hemolymph to allow for proper phototransduction (Banerjee et al., 2008).

6. Concluding Remarks

Drosophila ensheathment research continues to be a field which yields interesting and

relevant findings that provide insights into nervous system function, and are often highly

translational to studies in vertebrates. One area of Drosophila research which remains to be

explored in depth is axonal ensheathment by glia in the brain. While CNS glial subtypes

have been classified based on morphology, location, and molecular profile, much work

regarding the diverse functions of brain glia remains to be accomplished. One interesting

finding was the discovery that swiss cheese (sws) mutants exhibit an excess of axonal

wrapping by glia in the pupal and adult Drosophila brain, suggesting a yet-to-be defined role

for sws in axonal ensheathment (Kretzschmar et al., 1997). Ultimately sws mutants

experience neurodegeneration and shortened lifespan. This may be relevant to human

disorders such as Charcot-Marie-Tooth neuropathy, a heterogeneous group of demyelinating

diseases (Kretzschmar et al., 1997). In contrast to sws mutants, drop-dead mutants exhibit

incomplete wrapping of axons in the adult brain, and like sws mutants also ultimately leads

to neurodegeneration (Buchanan and Benzer, 1993). These results point to an interesting

potential field of inquiry in Drosophila: does improper ensheathment lead to

neurodegeneration? Answering this question could have ramifications for vertebrate

neurobiology, as the most common human demyelinating disorder, MS, becomes a largely

neurodegenerative disorder in its later stages (Bjartmar and Trapp, 2003).
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Several aspects of Drosophila axonal ensheathment resemble vertebrate myelination, and

ensheathment research has already provided critical insights into vertebrate neuron–glial

interactions. One aspect of Drosophila PNS ensheathment in particular that is highly

relevant to vertebrate myelination is the formation of neuron–glial SJs between peripheral

glia, which exhibits a high degree of molecular homology to vertebrate paranodal SJs. As

mechanisms of ensheathment are in many ways highly homologous to mammalian

myelination, the study of ensheathment is particularly pertinent to our understanding of

human demyelinating disorders, and in the years ahead this research should yield results

which will help us better understand and treat human nervous system disorders.
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Figure 3.1.
Axonal ensheathment in the Drosophila embryonic PNS. (A, B) Whole mount stage 16

repo-Gal4; UAS-tauGFP (A) and higher magnification (Ba–d) of a portion of the embryo

shown in (A) is stained with anti-GFP (green; A, Ba, Bd), anti-Repo (red; A, Bb, Bd), and

anti-Fas II (blue; A, Bc, Bd). The GFP staining reveals the glial processes that surround the

Fas II labeled motor axons. The glial nuclei expressing Repo show the arrangement of glial

cells along the length of the axon trajectories.
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Figure 3.2.
Septate junctions and axonal ensheathment in the larval peripheral nerve fibers. (A–C) A

portion of the nrx IV::GFP third instar larval ventral nerve cord (VNC) with peripheral

nerves stained with anti-GFP (green) and anti-Repo (red). nrx IV::GFP expresses GFP in

endogenous Nrx IV pattern. The peripheral nerves (A, B) reveal glial membrane expression

and SJ localization of Nrx IV (arrowheads, A, B) along the length of the axon, while VNC

shows localization of Nrx IV in surface glia (arrows, A, C), which are known to have SJs.

Under the surface glial layer, there are Repo-positive glial cells (C, red). A wild-type third

instar larval peripheral nerve (D) in cross section shows the presence of SJs (arrowheads)

between outer and inner glial membranes. A large number of axons (a) are tightly

fasciculated and ensheathed by glial processes (m).
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Figure 3.3.
Ensheathment of commissural axons in the Drosophila embryonic CNS. (A, B) sim-Gal4,

UAS-tau-GFP embryo at a lower (Aa–d) and higher (Ba–d) magnifications show staining

with anti-GFP (Aa, Ba, green), anti-Wrapper (Ab, Bb, red), and BP102 (Ac, Bc. blue). The

GFP staining highlights the Sim-positive midline glia and neurons (Aa, Ba) while Wrapper

expression is in the midline glia (Ab, Bb) and BP102 (Ac, Bc) labels the anterior

commissure(AC) and posterior (PC) commissure. Note the midline glial processes (arrow,

Aa, Ba) that ensheath the AC and PC (see merged panels, Ad, Bd). The midline glia express

Wrapper (arrowheads, Bb).
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Figure 3.4.
Photoreceptor ensheathment and septate junctions in adult Drosophila eye. (A, B) A light

microscopy image (A) and ultrastructural view in longitudinal section (B) of a single

Drosophila ommatidium of the adult compound eye. Accessory cells (A), namely the cone

cells (CC) and pigment cells (PC) express Nrx IV (green) while photoreceptors (PR) express

the apical protein Crumbs (Crb). The ultrastructure at a lower magnification (B) reveals the

anatomy of the ommatidium. On top of the pseudocone (PSC) is the lens (L) and at the

bottom are the CC, PC, and PR. A higher magnification (C) reveals presence of extensive

SJs (arrows) basal to the adherens junctions (arrowhead) that are formed between CC and

PC. These SJs serve as protective barriers and seals the PR for proper phototransduction.
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Table 3.1

Proteins required for ensheathment and axoglial junction formation in Drosophila and vertebrates

Protein Expression References

Drosophila
Neurexin IV

Neurons,
 glia

Baumgartner et al. (1996), Banerjee et al. (2006a,b, 2008, 2010), Wheeler et al. (2009), Stork et al.
(2009)

Contactin Glia Faivre-Sarrailh et al. (2004), Banerjee et al. (2006a,b), Banerjee and Bhat (2007)

Neuroglian Neurons,
 glia

Genova and Fehon (2003), Banerjee et al. (2006a,b), Schwabe et al. (2005)

Gliotactin Glia Auld et al. (1995)

Moody Glia Bainton et al. (2005), Schwabe et al. (2005)

Lachesin Subset of
 neurons
 and glia in
 CNS

Strigini et al. (2006)

Locomotion defective Glia Schwabe et al. (2005)

Claudins Glia Behr et al. (2003); Wu et al. (2004),
 Nelson et al. (2010)

Crooked neck Glia Edenfeld et al. (2006)

Held out wings Glia Edenfeld et al. (2006)

Frayed Glia Leiserson et al. (2000)

Wrapper Glia Noordermeer et al. (1998), Wheeler et al. (2009), Stork et al. (2009),
 Banerjee et al. (2010)

Vertebrates
Contactin-associated
 protein

Neuron Bhat et al. (2001), Garcia-Fresco et al. (2006)

Contactin Neuron Boyle et al. (2001)

Neurofascin (NF155) Glia Pillai et al. (2009), Thaxton et al. (2010)

Band 4.1B Neurons Ohara et al. (2000), Garcia-Fresco et al. (2006), Horresh et al. (2010)
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