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Abstract

Epidemiologists often use the potential outcomes framework to cast causal inference as

a missing data problem. Here, we demonstrate how bias due to measurement error can

be described in terms of potential outcomes and considered in concert with bias from

other sources. In addition, we illustrate how acknowledging the uncertainty that arises

due to measurement error increases the amount of missing information in causal infer-

ence. We use a simple example to show that estimating the average treatment effect

requires the investigator to perform a series of hidden imputations based on strong

assumptions.
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Introduction

Epidemiologists often wish to compare occurrence of an

outcome under different exposure scenarios, specifically to

attribute a causal effect to the difference in exposure condi-

tions. The comparison of interest in many studies is the

contrast between the expected value of an outcome if all

participants had been exposed and the expected value of

an outcome if no participants had been exposed, a contrast

which is often called the average treatment effect.1

To estimate the average treatment effect in this tutorial,

we use the potential outcomes framework central to the

counterfactual theory of causality proposed by Neyman2

and extended by Rubin3 and Robins.4 Potential outcomes

are the outcomes that participants would have experienced

Key Messages

• Using potential outcomes casts causal inference as a missing data problem.

• Bias due to measurement error can be incorporated into the potential outcomes framework.

• Considering measurement error in the potential outcomes framework acknowledges a greater extent of missing data

and more assumptions needed for causal inference.
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under a given exposure; accordingly, if an exposure is bin-

ary, a participant will have two potential outcomes (one

potential outcome had he been exposed and one potential

outcome had he been unexposed). The potential outcomes

framework casts causal inference as a missing data prob-

lem in which at least some of the potential outcomes are

missing.5

Biases due to confounding and loss to follow-up are

often described using potential outcomes (e.g. Hernan

20041), but bias due to measurement error is rarely framed

in these terms. Here, we illustrate how bias due to meas-

urement error can be described in terms of potential out-

comes and considered in concert with bias from other

sources.

The title of this paper begins ‘all your data are always

missing’. In a way, this title is incomplete: if it were not so

cumbersome, it could read, ‘even with no explicit missing

data, all of the information needed to identify the average

treatment effect is always missing’.6 We begin with the

premise that all of the potential outcomes are hidden. To

estimate the average treatment effect, we implicitly impute

the potential outcomes, and these imputations are based

on strong assumptions that are often untestable using the

observed data. Bias occurs when we impute the potential

outcomes incorrectly.

We illustrate these hidden imputations using a hypo-

thetical study population of HIV-seropositive participants.

The purpose of the hypothetical study is to estimate the ef-

fect of injection drug use (X) on continuous CD4 count (in

units of cells/mm3) 1 year after initiation of antiretroviral

therapy (Y). Here we illustrate bias due to exposure meas-

urement error, confounding by the unmeasured variable U,

and selection bias using the potential outcomes frame-

work. Although important, we save discussion of out-

come and covariate measurement error for the Discussion.

Table 1 provides a guide to the notation used in the paper,

and Figure 1 provides a causal diagram illustrating the re-

lationships between the variables.

Example data

Tables 2, 3 and 4 present the example data, with each sub-

sequent table showing the influence of a new type of bias

on the estimate of the effect of injection drug use on CD4

cell count. Table 2 shows the complete (but hidden) data

for 600 participants. An unmeasured time-fixed con-

founder U is associated with injection drug use (individuals

with U¼ 1 have half the probability of being an injection

drug user as participants with U¼ 0) and has an effect on

CD4 cell count; in fact, one could describe the expected

CD4 cell count as E Y x;uð Þ½ � ¼ 370� 120x� 130u. U is

not affected by X and the effect of X on Y is homogeneous

with regard to U. Participants are grouped into four rows

(‘groups’) defined by their true exposure X and unmeas-

ured confounder U. Participants are grouped in such a

manner only to avoid creating a table with a separate row

for each participant, which would have been unwieldy at

600 rows. Because, in this simple example, average

CD4 cell count is determined by U and X, the average

observed outcome Y is distinct for each row in Table 2.

However, within each group, all participants share an ex-

pected value of Y.

To illustrate the missing data implicit in all epidemiolo-

gical analyses, we adopt the notation of potential out-

comes.2,3 The third and fourth columns of Table 2 provide

the average of the unobserved potential outcomes for par-

ticipants in each row. Because exposure has two levels,

there are two potential outcomes for each participant. The

notation Yðx ¼ 0Þ represents the potential CD4 cell count

for a participant had he been unexposed, and Yðx ¼ 1Þ
represents the potential CD4 cell count for the same par-

ticipant had he been exposed. The causal effect of interest

Table 1. Notation

Type Symbol Meaning

Hidden Y(x¼1) Potential CD4 cell count 1 year after therapy initiation had the participant been exposed to injection drug use

Y(x¼0) Potential CD4 cell count 1 year after therapy initiation had the participant never been exposed to injection drug use

X True injection drug use status

U Unmeasured confounder of the injection drug use—CD4 cell count relationship

Observed Y CD4 cell count 1 year after therapy initiation

X’ Participant-reported injection drug use

C Indicator of loss to follow-up during the study period

Imputed X* Injection drug use status assumed to be true in the analysis

Y(x¼1)* Potential CD4 cell count 1 year after therapy initiation had the participant been exposed to injection

drug use imputed during the analysis

Y(x¼0)* Potential CD4 cell count 1 year after therapy initiation had the participant never been exposed to

injection drug use imputed during the analysis
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is the average contrast in potential outcomes had all par-

ticipants been exposed and had all participants been unex-

posed or, more succinctly, E Y x ¼ 1ð Þ � Y x ¼ 0ð Þ½ �.
Throughout the paper, we use the difference of the poten-

tial outcomes as the contrast of interest and we treat poten-

tial outcomes as deterministic, rather than stochastic.

Based on the hidden potential outcomes presented

in Table 2, we can calculate the true average causal effect

E Y x ¼ 1ð Þ � Y x ¼ 0ð Þ½ � ¼ �120 cells/mm3. Note that the

magnitude of the potential outcomes is determined by U,

and there is no effect heterogeneity by U or X; exposure

has the same average effect E½Y x ¼ 1ð Þ � Y x ¼ 0ð Þ�
¼�120 cells/mm3) in each group. We compute the true aver-

age causal effect as the average of the difference in potential

outcomes under exposure and no exposure in each group,

weighted by the number of participants in that group.

Because the average causal effect was the same in each group,

this calculation was quite simple: ½100ð�120Þ þ 100ð�120Þ
þ200ð�120Þ þ 200ð�120Þ�=ð100 þ 100þ 200 þ 200Þ ¼
�120.

The rightmost three columns of Table 2 present the

exposures and outcomes (X
0
and Y, respectively) that would

have been observed in this hypothetical study with no loss

to follow-up or measurement error. The average observed

outcome Y is provided in the rightmost column of Table 2.

If X¼0, we observe the potential outcome Y x ¼ 0ð Þ and, if

X¼1, we observe the potential outcome Y x ¼ 1ð Þ.
Accordingly, the average observed outcome for each group

is E Y x ¼ 0ð Þ½ � if X ¼ 0 and E Y x ¼ 1ð Þ½ � if X ¼ 1.

We often estimate the association between X and Y as

the difference in the expected value of Y between

Table 2. Unobserved potential outcomes and observed aver-

age CD4 cell counts in cells/mm3 (Y) for 600 participants in a

hypothetical study (300 injection drug users (X ¼ 1), 300 par-

ticipants who do not inject drugs (X ¼ 0)) with confounding

by unmeasured variable U, divided into four groups based

on X and U

Group n Hidden Observed

Average potential outcome U X n X
0a E(Y)

E[Y(x¼1)] E[Y(x¼0)]

1 100 120 240 1 1 100 1 120

2 100 250 370 0 0 100 0 370

3 200 120 240 1 0 200 0 240

4 200 250 370 0 1 200 1 250

aX0 is the observed injection drug use status. In this table, X0 ¼X because

X is measured without error here.

Table 4. As in Table 3, but with 80% sensitivity and 80% speci-

ficity for exposure classification that is nondifferential with

respect to the outcome

Group n Hidden Observed

Average potential outcome U X n X0 C E(Y)

E[Y(x¼1)] E[Y(x¼0)]

1 100 120 240 1 1 80 1 0 120

20 0 0 120

2 100 250 370 0 0 80 0 0 370

20 1 0 370

3 200 120 240 1 0 160 0 0 240

40 1 0 240

4 200 250 370 0 1 80 1 0 250

20 0 0 250

80 1 1 ?

20 0 1 ?

aX0 is the observed injection drug use status. In this table, X0 does not al-

ways equal X because X is sometimes measured with error.

Figure 1. Causal diagram representing the relationships between vari-

ables for 600 participants in a hypothetical study [300 injection drug

users (X ¼ 1), 300 participants who do not inject drugs (X ¼ 0)] with

confounding by unmeasured variable U, loss to follow-up (C), and non-

differential misclassification of X.

Table 3. As in Table 2, but with 50% loss to follow-up (C)

among those with U¼0 and X¼1

Group n Hidden Observed

Average potential outcome U X n X
0a C E(Y)

E[Y(x¼1)] E[Y(x¼0)]

1 100 120 240 1 1 100 1 0 120

2 100 250 370 0 0 100 0 0 370

3 200 120 240 1 0 200 0 0 240

4 200 250 370 0 1 100 1 0 250

100 1 1 ?

aX0 is the observed injection drug use status. In this table, X0 ¼X because

X is measured without error here.
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participants observed to be exposed and unexposed, or

E YjX0 ¼ 1
� �

� EðY jX0 ¼ 0Þ. Note that, if we compute the

difference in the observed outcomes between exposed and

unexposed participants without regard to U, the true

causal effect of X on Y is obscured: the average EðYjX0
¼ 1Þ ¼ ð100� 120þ 200� 250Þ=ð100þ 200Þ ¼ 207, and

EðYjX0 ¼ 0Þ ¼ ð100 � 370þ 200� 240Þ=ð100þ 200Þ ¼
283 such that the difference in average CD4 cell count be-

tween patients observed to be exposed and unexposed is

E YjX0 ¼ 1ð Þ � E YjX0 ¼ 0ð Þ ¼ �77. As noted above and

evident from the hidden-but-real data, the true causal ef-

fect of X on Y is �120. This is a demonstration of bias due

to confounding.7,8

Table 3 builds on Table 2 to demonstrate the effect of

introducing loss to follow-up, at a rate of 50%, among

participants with X ¼ 1, U ¼ 0 and 0% among others.

The outcome is not observed for participants who are

lost to follow-up. Using C as an indicator of loss to follow-

up, a complete case analysis of these data would

estimate the association between X and Y as

E YjX0 ¼ 1; C ¼ 0
� �

� EðYjX0 ¼ 0; C ¼ 0Þ. The expected

value of Y among the unexposed, EðYjX0 ¼ 0; C ¼ 0Þ, can

be estimated as E YjX0 ¼ 0
� �

above, and the expected value

of Y among the exposed is EðYjX0 ¼ 1; C ¼ 0Þ ¼ ð100�
250þ 100� 120Þ=ð100þ 100Þ ¼ 185. The effect esti-

mated by comparing the average CD4 cell count between

exposed and unexposed participants who remain in the

study is E YjX0 ¼ 1; C ¼ 0
� �

� EðYjX0 ¼ 0;C ¼ 0Þ¼�98.

The change in bias (which, by happenstance, makes our

observed point estimate less biased) is due to selection bias

(or, specifically, informative censoring).9

Table 4 introduces exposure measurement error on top

of the data presented in Table 3. Because exposure is a dis-

crete variable, we will refer to this measurement error as mis-

classification.10 In Table 4 the observed exposure X0 is a

misclassified version of X, with 80% sensitivity and 80%

specificity, and the misclassification of X is nondifferential

with respect to the outcome. Table 4 displays two rows for

each of four participant groups: the first row in each group-

pair are the 80% of participants who are correctly classified

with X
0 ¼ X; the second row in each group-pair are the 20%

of participants who are incorrectly classified with X
0 6¼ X.

Because the exposure misclassification was nondifferential

with respect to the outcome, Y is the same for the misclassi-

fied and correctly classified participants of each group.

Table 5 collapses Table 4 over the observed exposure

values X0 and shows only the data observed by investiga-

tors, subject to confounding, selection bias and exposure

misclassification. The mean CD4 count among participants

observed to be exposed (and not lost to follow-up) was

E YjX0 ¼ 1; C ¼ 0
� �

¼ ð80� 120þ 20� 370þ 40� 240

þ80� 250Þ=ð80þ 20þ 40þ 80Þ¼ 212 cells/mm3, and the

mean CD4 count among the participants observed to be

unexposed was E YjX0 ¼ 0; C ¼
�

0Þ ¼ ð20� 120þ 80

�370þ 160� 240þ 20� 250Þ=ð20þ 80þ 160 þ 20Þ¼
269 cells/mm3, for a difference E YjX0 ¼ 1;C ¼ 0

� �
� E

YjX0 ¼ 0;
�

C ¼ 0Þ ¼ �57 cells/mm3. As expected, simply

comparing outcomes between participants observed to be

exposed and observed to be unexposed does not provide

the correct estimate of the average treatment effect of

�120 cells/mm3 obtained from the hidden potential out-

comes shown in Table 2.

Using the observed data provided in Table 5, an investiga-

tor may wish to estimate the causal effect of injection drug

use on CD4 cell count. Whereas the reader knows that

the quantity E YjX0 ¼ 1; C ¼ 0
� �

� E YjX0 ¼ 0; C ¼
�

0Þ ¼
�57 is biased by confounding, informative loss to follow-up

and exposure measurement error, the investigator has no

knowledge of the data-generating mechanism and wishes to

interpret the quantity E YjX0 ¼ 1; C ¼ 0
� �

� E YjX0 ¼ 0;
�

C ¼ 0Þ ¼ �57 as the causal effect E½Y x ¼ 1ð Þ � Y x ¼ 0ð Þ�.
Because the potential outcomes Y x ¼ 1ð Þ and Yðx ¼ 0Þ are

unobserved, we must impute potential outcomes for all par-

ticipants based on several untestable assumptions to estimate

the causal effect. The following sections guide the reader

through the process of performing the implicit imputations

required for causal inference.

Hidden imputations

We wish to compare the potential CD4 cell count 1 year

after therapy initiation had all individuals been exposed to

injection drug use, with the potential CD4 cell count had

all individuals been unexposed. Because true exposure

status and both potential outcomes are hidden for all par-

ticipants, we must impute these quantities before estimat-

ing a measure of effect. In Table 6, we use the notation X�

to represent the exposure status we assume to be true in

the analysis. Similarly, Y x ¼ 1ð Þ� and Y x ¼ 0ð Þ� represent

the imputed potential CD4 cell count setting x ¼ 1 and

x ¼ 0, respectively. To impute X�, Y x ¼ 1ð Þ� and

Y x ¼ 0ð Þ� for all participants in the study, we must make a

series of assumptions. Note that Table 6 presents the aver-

age value of the imputed potential outcomes E Y x ¼ xð Þ�½ �
for each group but, as we discuss below, the imputations

are performed at the individual level. The first three

columns of imputed exposure and potential outcomes in

Table 6 illustrate that, prior to making these assumptions,

these quantities cannot be imputed.

No measurement error

As a first step, we must make an assumption about the ex-

posure status of each participant. We often assume that the
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observed exposure is measured without error and set

the exposure to be used in the analysis, X�, equal to the

observed exposure X
0
. Note that X� is not included in the

causal diagram in Figure 1 because the value of X� (and its

relationship to other variables on the diagram) depends on

decisions and assumptions made by the investigator. In

Table 6, the first imputed column illustrates the assump-

tion of no measurement error by setting X� ¼ X
0
.

To link the observed outcomes to the hidden potential

outcomes, we let Y x ¼ 1ð Þ� ¼ Y when X� ¼ 1 and

Y x ¼ 0ð Þ� ¼ Y when X� ¼ 0, invoking counterfactual con-

sistency.11,12,13 Under the heading ‘assuming no measurement

error and invoking consistency,’ Table 6 shows the average of

the potential outcomes that would be imputed assuming no

measurement error and invoking consistency to link the

observed outcomes to the potential outcomes. Note that Y is

mapped to the incorrect potential outcome when X� 6¼ X.

When information is available on the extent of the mis-

classification of exposure, such as an internal or external

validation subgroup, investigators may assign the value X�

based on some function of X
0

and the misclassification

probabilities. The Appendix Table 1 (available as

Supplementary data at IJE online) illustrates the extreme

(and unlikely) situation in which investigators were able to

map exactly the observed exposure to the true exposure, so

that the value of the exposure used in the analysis, X�, was

equal to the true exposure X.

Exchangeability

To impute both potential outcomes for the participants

who were lost to follow-up and the discordant potential

outcome for all participants (that is Y x ¼ 1ð Þ when X� ¼ 0

and Y x ¼ 0ð Þ when X� ¼ 1), we make an exchangeability

assumption.7,14 Viewing causal inference as a missing data

problem,5 we assume that the potential outcomes are miss-

ing at random, or that the value of the potential outcome

does not depend on its being observed. Based on the poten-

tial outcomes imputed so far in Table 6, we can see that

Y xð Þ� is missing when C ¼ 1 or X� 6¼ x.

To impute the potential outcomes for participants lost

to follow-up before the outcome was observed, we often

assume that the potential outcomes are independent of loss

to follow-up, given exposure. Assuming no informative

loss to follow-up (and, as above, no measurement error),

we impute Y x ¼ 1ð Þ� as E YjX� ¼ 1ð Þ and Y x ¼ 0ð Þ� as E

YjX� ¼ 0ð Þ for participants who became lost to the study.

Table 6 imputes the potential outcomes without regard to

unmeasured covariate U. If we were to measure U, we

could relax this assumption by assuming no informative

loss to follow-up conditional on U: To do this, we would

impute Y x ¼ 1ð Þ� as E YjX� ¼ 1; U ¼ uð Þ and Y x ¼ 0ð Þ�

as E YjX� ¼ 0; U ¼ uð Þ for participants who were lost to

follow-up with U ¼ u.

To impute the discordant potential outcome for each par-

ticipant (that is Y x ¼ 1ð Þ when X� ¼ 0 and Y x ¼ 0ð Þ when

X� ¼ 1), we sometimes assume that the potential outcomes

do not depend on the actual exposure received, or that there

is no confounding. Assuming no confounding (in addition to

no measurement error), we impute Y x ¼ 1ð Þ� as E

YjX� ¼ 1ð Þ when X� ¼ 0 and Y x ¼ 0ð Þ� as E YjX� ¼ 0ð Þ
when X� ¼ 1. Because covariate U is unmeasured in our

hypothetical study, Table 6 imputes the discordant potential

outcomes without regard to U. As above, if we were to

measure U, we could relax this assumption by assuming no

confounding conditional on U. To do this, we would impute

Y x ¼ 1ð Þ� as E YjX� ¼ 1; U ¼ uð Þ when X� ¼ 0 and U ¼ u

and Y x ¼ 0ð Þ� as E YjX� ¼ 0; U ¼ uð Þ when X� ¼ 1 and

U ¼ u,15 assuming positivity with respect to U:16 Further

discussion of the positivity assumption is reserved for the

Discussion.

With all potential outcomes imputed in the last column

of Table 6, the average of the difference in (imputed)

potential outcomes E½Y x ¼ 1ð Þ� � Y x ¼ 0ð Þ�� can be com-

puted. Subtracting E½Y x ¼ 0ð Þ�� from E½Y x ¼ 1ð Þ�� and

taking a weighted average across all rows in Table 6, we

can see that, exactly as in Table 5, the results obtained in

Table 6 are incorrect. Because we incorrectly assumed no

measurement error, no confounding and no selection bias

in both Table 5 and Table 6, the estimated causal effect

from Table 6, E½Y x ¼ 1ð Þ� � Y x ¼ 0ð Þ�� ¼ �57 cells/mm3,

matches the difference estimated by E YjX0 ¼ 1; C ¼ 0
� �

�E YjX0 ¼ 0; C ¼ 0
� �

in Table 5. Thus, where Table 5

hides the imputations, Table 6 makes those imputations

explicit, but the (biased) result is identical.

Appendix Table 1 (available as Supplementary data at

IJE online) shows the results after performing these same

implicit imputations under a correct mapping of the

observed exposure to the true exposure, consistency, the

assumption of no selection bias conditional on U

(which we now assume to be measured) and the assump-

tion of no unmeasured confounding conditional on U.

Table 5. Average CD4 cell counts (EðY Þ) 1 year after therapy

initiation for 600 participants in a hypothetical study based

on observed injection drug use (X 0)

n X’ C E(Y)

220 1 0 212

280 0 0 269

80 1 1 ? a

20 0 1 ? a

a100 participants were lost to follow-up before CD4 cell count could be

measured.
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Because the assumptions used to perform the imputations

in Appendix Table 1 are correct, the average causal effect

estimated using the Appendix Table is E½Y x ¼ 1ð Þ�� � E½Y
x ¼ 0ð Þ�� ¼ �120 cells/mm3, which matches the true

causal effect E Y x ¼ 1ð Þ � Y x ¼ 0ð Þ½ �, provided in Table 2.

Discussion

Here we have illustrated the implicit imputations that are

performed when estimating a causal effect from epidemiolo-

gical data. The example presented a situation common in

epidemiology: the exposure was misclassified, yet exposure

misclassification was assumed to be absent, an unmeasured

confounder was present and there was informative censor-

ing. In this example we can see that, though the crude

analysis performed using Table 5 seemed straightforward, it

was based on a series of hidden imputations based

on strong, untestable and in this case incorrect, assumptions

that were detailed in Table 6. The correct assumptions

and resultant imputations and analysis are provided in

the Appendix (available as Supplementary data at IJE

online).

Throughout the paper, we have referred to ‘hidden

imputations’ used by the investigator to make inferences

about causality. These imputations are rarely explicit. An

investigator faced with a two-by-two table or a regression

model, estimates an association between X and Y (perhaps

conditional on a set of factors) and interprets the associ-

ation as a causal relationship, has made these imputations,

though they are rarely acknowledged. Bias in epidemiolo-

gical analyses arises from differences between the unob-

served potential outcomes we wish to compare and the

potential outcomes we impute during the course of

data analysis. We expand on existing work by demonstrat-

ing how bias due to measurement error can be incorpo-

rated into the potential outcomes framework regularly

used to demonstrate bias due to confounding and

selection bias.

The imputation of potential outcomes may be per-

formed mentally to interpret an association estimated with

standard methods. Alternatively, one may use an explicit

imputation method, such as the g-formula. The latter is

typically preferable because it allows extension to perform

sensitivity analyses or to place bounds on the amount of

bias that could be expected from a given source (i.e. con-

founding, selection or measurement error).

In the example presented, exposure misclassification

was nondifferential with respect to the outcome. If mis-

classification were differential with respect to the outcome,

P X
0 jX

� �
would differ according to Y, and any function to

map X0 to X should take Y into account. However, the

missing data paradigm for measurement error outlinedT
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here remains unchanged if misclassification is differential.

Note that we assumed that the outcome Y and confounder

U (when measured) were always recorded without error.

Error in the measurement of Y or U would further hinder

the ability of the investigator to link the observed outcome

to one of the potential outcomes.17 Similarly, we did not

examine the possibility of multiple versions of treatment.

Like the assumption of no measurement error, we gener-

ally assume treatment version irrelevance prior to linking

the observed outcomes to the potential outcomes by con-

sistency.11,12,13 In addition, we assumed that each partici-

pant’s potential outcomes did not depend on the exposures

of other participants, meaning that we did not explore vio-

lations of the assumption of no interference.18,19 Finally, in

the example presented here, we had positivity with respect

to U. Positivity requires that the causal effect of exposure

is estimable within each stratum of participants defined

by the confounders.16 In the analysis in which U was

measured (shown in Appendix Table 1, available as

Supplementary data at IJE online), if participants with U

¼ 1 were unable to be exposed (or if all participants with

U ¼ 1 were unexposed by chance), we would have been

unable to impute the potential outcomes Y x ¼ 1ð Þ� condi-

tional on U for participants with U ¼ 1.

Here we have approached causal inference from the

paradigm of potential outcomes, though biases due to con-

founding, loss to follow-up, measurement error and miss-

ing data can also be conceptualized using causal directed

acyclic graphs.9,20–24 Single world intervention graphs25

offer a way forward to unify these approaches.

Traditional causal analyses begin with the premise that

investigators observe one potential outcome per partici-

pant. For example, with a binary exposure, many investi-

gators invoke consistency to claim that they observe the

potential outcome under exposure for a participant

observed to be exposed and the potential outcome under

no exposure for a participant observed to be unexposed. In

this scenario, half of the potential outcomes are missing.

However, by relaxing the assumption of no exposure

measurement error, we acknowledge our uncertainty about

which potential outcome we observe, so that we cannot

confidently ascribe values to any of the potential outcomes.

This additional uncertainty that arises when we acknow-

ledge the nonzero probability of measurement error in-

creases the amount of missing data in the potential

outcomes framework.

The example data used to illustrate how bias due to measure-

ment error fits into the potential outcomes framework was very

simple for pedagogic purposes. Although the average effect of in-

jection drug use on CD4 cell count was homogeneous with re-

spect to U, injection drug use may have had greater effect in

some participants and less effect in others. In fact, it is possible

that each ‘group’ included participants with a variety of causal

response types; in each group, some participants could have

been harmed by exposure, some could have been protected

and some could have experienced no change in CD4 cell count

due to exposure. The average treatment effect estimated here

can be seen as merely the average of all of the individual differ-

ences in potential outcomes Y x ¼ 1ð Þ � Yðx ¼ 0Þ.
We have examined three assumptions (no measurement

error, no selection bias and no confounding) through

which potential outcomes are casually, and often unknow-

ingly, imputed in epidemiology. Whereas studies attempt-

ing to establish causality rigorously assess and account for

confounding and selection bias, bias due to measurement

error is often ignored. Incorporating bias due to measure-

ment error into the potential outcomes framework will

help investigators identify and develop methods to address

measurement error in causal inference.

Supplementary Data

Supplementary data are available at IJE online.
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