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Abstract
M-reps (formerly called DSLs) are a multiscale medial means for modeling and rendering 3D
solid geometry. They are particularly well suited to model anatomic objects and in particular to
capture prior geometric information effectively in deformable models segmentation approaches.
The representation is based on figural models, which define objects at coarse scale by a hierarchy
of figures – each figure generally a slab representing a solid region and its boundary
simultaneously. This paper focuses on the use of single figure models to segment objects of
relatively simple structure.

A single figure is a sheet of medial atoms, which is interpolated from the model formed by a net,
i.e., a mesh or chain, of medial atoms (hence the name m-reps), each atom modeling a solid region
via not only a position and a width but also a local figural frame giving figural directions and an
object angle between opposing, corresponding positions on the boundary implied by the m-rep.
The special capability of an m-rep is to provide spatial and orientational correspondence between
an object in two different states of deformation. This ability is central to effective measurement of
both geometric typicality and geometry to image match, the two terms of the objective function
optimized in segmentation by deformable models. The other ability of m-reps central to effective
segmentation is their ability to support segmentation at multiple levels of scale, with successively
finer precision. Objects modeled by single figures are segmented first by a similarity transform
augmented by object elongation, then by adjustment of each medial atom, and finally by
displacing a dense sampling of the m-rep implied boundary. While these models and approaches
also exist in 2D, we focus on 3D objects.

The segmentation of the kidney from CT and the hippocampus from MRI serve as the major
examples in this paper. The accuracy of segmentation as compared to manual, slice-by-slice
segmentation is reported.

1. Introduction
Segmentation via deformable models has shown the advantage of allowing the expected
geometric conformation of objects to be expressed [Cootes 1993, Staib 1996, Delingette
1999, among others; also see McInerny, 1996 for a survey of active surfaces methods]. The
basic formulation is to represent an object by a set of geometric primitives and to deform the
object by changing the values of the primitives to optimize an objective function including a
match of the deformed object to the image data. Either the objective function also includes a
term reflecting the geometric typicality of the deformed object, or the deformation is
constrained to objects with adequate geometric typicality. In our work the objective function
is the sum of a geometric typicality term and a geometry to image match term.
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The most common geometric representation in the literature of segmentation by deformable
models has been a mesh of boundary locations. The hypothesis described and tested in this
paper is that improved segmentations will result from using a representation that is at
multiple levels of scale and that at all but the finest levels of scale is made from meshes of
medial atoms. We will show that this geometric representation, which we call m-reps, has
advantages in measuring both the geometric typicality and the geometry to image match, in
providing the efficiency advantages of segmentation at multiple scales, and in characterizing
the object as an easily deformable solid.

Many authors, in image analysis, geometry, human vision, computer graphics, and
mechanical modeling, have come to the understanding, originally promulgated by Blum
[1967], that the medial relationship1 between points on opposite sides of a figure (Fig.1) is
an important factor in the object's geometric description. Biederman [1987], Marr [1978],
Burbeck [1996], Leyton [1992], Lee [1995], and others have produced psychophysical and
neurophysiological evidence for the importance of medial relationships (in 2D projection) in
human vision. The relation has also been explored in 3D by Nackman [1985], Vermeer
[1994], and Siddiqi [1999], and medial axis modeling techniques have been applied by many
researchers, including Bloomenthal [1991], Wyvill [1986], Singh [1998], Amenta [1998],
Bittar [1995], Igarashi [1999] and Markosian [1999]. Of these, Bloomenthal and Wyvill
provided skeletal-based soft-objects; Singh provided medial (wire-based) deformations;
Amenta and Bittar worked on medially based reconstruction; Igarashi used a medial spine in
2D to generate 3D surfaces from sketched outlines; and Markosian used implicit surfaces
generated by skeletal polyhedra.

One of the advantages of a medial representation is that it allows one to distinguish object
deformations into along-object deviations, namely elongations and bendings, and across-
object deviations, namely bulgings and attachment of protrusions or indentations. An
additional advantage is that distances, and thus spatial tolerances, can be expressed as a
fraction of medial width. These properties allow positions and orientations to be followed
through deformations of elongation, widening, or bending. Because geometric typicality
requires comparison of corresponding positions of an object before and after deformation
and because geometry to image match requires comparison of intensities at corresponding
positions, this ability to provide what we call a figural coordinate system is advantageous in
segmentation by deformable models.

Medial representations divide a multi-object complex into objects and objects into figures,
i.e., slabs with an unbranching medial locus (see Fig. 1). In the following we also show how
they naturally divide figures into figural sections, and how by implying a boundary they aid
in dividing the boundaries of these figural sections into smaller boundary tiles. This natural
subdivision into the very units of medical interest provides the opportunity for segmentation
at multiple levels of scale, from large scale to small, that provides at each scale a
segmentation that is of smaller tolerance than the previous, just larger scale. Such a
hierarchical approach was promulgated by Grenander [1981]. Such a multi-scale-level
approach is required for a segmentation that operates in time linear in the number of the
smallest scale geometric elements, here the boundary tiles. The fact that at each level the
units are geometrically related to the units of relatively uniform tissue properties yields
effective and efficient segmentations.

Our m-reps representation described in [Pizer 1999, Joshi 2001] (in the first reference called
DSLs) reverses the notion of medial relations descended from [Blum 1967] from a boundary

1The reader unfamiliar with the literature on the mathematics of medial loci can find the relevant definitions, overview, and references
in [Pizer 2003] in this issue.
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implying a medial description to a mesh of medial atoms implying boundaries, i.e., from an
unstable to a stable relation. The radius-proportional ruler and the need to have locality at
the scale of the figural section require it to use a width-proportional sampling of the medial
surface in place of a continuous medial sheet2. These latter properties follow from the desire
directly to represent shape, i.e., object geometry of some locality that is similarity transform
invariant. The specifics are given later in this section.

M-reps also extend the medial description to the inclusion of a width-proportional tolerance,
providing opportunities for stages of the representation with successively smaller tolerances.
Representations with large tolerance can ignore detail and focus on gross shape, and in these
large-tolerance stages discrete samplings can be coarse, resulting in considerable efficiency
of manipulation and presentation. Smaller-tolerance stages can focus on refinements of the
larger-tolerance stages and thus more local aspects.

As described in [Pizer 1999] and [Joshi 2001], as a result of the aforementioned
requirements an m-rep model of an object is a representation (data structure) consisting of a
hierarchy of linked m-rep models for single figures (Fig. 2). A model for a single figure is
made from a net (mesh or chain) of medial atoms (hence the name m-reps), each atom (Fig.
3) designating not only a medial position x and width r, but also a local figural frame F
implying figural directions, and the object's local narrowing rate, given by an object angle θ
between opposing, corresponding positions on the implied boundary. In addition, width
proportionality constants indicate net link length, boundary tolerance, boundary curvature
limits, and, for measuring the fit of the atom to a 3D image, an image interrogation aperture.
As detailed in later papers, a multifigure model of an object consists of a directed acyclic
graph of figure nets, with interfigural links capturing information about subfigural location
along the parent figure's medially implied boundary, figural width relative to the parent
figure, and subfigural orientation relative to the parent figure. The elements of the figural
graph also contain boundary displacement maps that can be used to give fine scale to the
model.

Sometimes one wishes to represent and then segment multiple disconnected objects at the
same time. An example is the cerebral ventricles, hippocampus, and caudate in which the
structures are related but one is not a protrusion or an indentation on another. Another
example are the pair of kidneys and the liver. In our system these can be connected by one
or more connections between the representations of the respective objects, allowing the
position of one figure to predict boundary positions of the other. This matter is left to a
paper covering the segmentation of multi-object complexes [Fletcher 2002].

In the remainder of this paper we first (section 2.1) detail the m-reps data structure and
geometry, then (section 2.2) describe how a continuous boundary and medial sheets are
interpolated from the sampled sheet directly represented in an m-reps figure, and then
(section 2.3) detail the way in which the m-rep provides positional and orientational
correspondences between models and deformed models. After brief discussions in sections
2.4 of model building from segmented objects that serve for model training, in section 3 we
discuss the method of segmentation by deformable m-reps. In section 4 we give results of
segmentation of kidneys, hippocampi, and a horn of the cerebral ventricle by these methods,
and in section 5 we conclude with a comparative discussion of our method and indications
of future directions in which our segmentation method is being developed.

2This sheet has both a boundary and singular points in its interior, so in mathematical terminology it is a “stratified set”. We will use
the phrase “medial sheet” to refer to this stratified set.
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2. Representation of Objects by M-reps
2.1 M-reps geometry

Intuitively a figure is a main component of an object or a protrusion, an indentation, a hole,
or an associated nearby or internally contained object. In [Pizer 1999] we carefully define a
figure, making it clear that the notion is centered on the association of opposing points on
the figure called by Blum [1967] “medial involutes”. Whereas Blum conceived of starting
from a boundary representation and deriving the medial involutes, our idea is to start with a
representation giving medial information and thus widths, and imply sections of figure
bounded by involutional regions. As illustrated in Fig. 3, in order for a medial atom m by
itself to imply two opposing sections of boundary, as well as the solid region between them,
we define m = {x, r,F, θ} to consist of

1. a position, x, the skeletal, or “hub”, position (this requires 3 scalars for a 3D atom).
x gives the central location of the solid section of figure that is being represented by
the atom.

2. a width, r, the distance from the skeletal position to two or more implied boundary
positions (1 scalar) and thus the length of both p⃗ and s⃗. r gives the scale of the solid
section of figure that is being represented by the atom. That is, it provides a local
ruler for the object.

3. a frame F=(n⃗, b⃗,b⃗⊥), implying the tangent plane to the skeleton, via its normal n⃗
and b⃗ the particular unit vector in that tangent plane that is along the direction of
fastest narrowing between the implied boundary sections. The medial position x
and the two boundary-pointing arrows, as illustrated in Fig. 3, are in the (n⃗,b⃗) plane.
The continuous medial surface implied by the set of m must pass through each x
and have a normal of n⃗ there. F requires 3 scalars for a 3D atom. F gives the
orientation of the solid section of figure that is being represented by the atom. That
is, it provides a local figural compass for the object. The frame is given by first
derivatives of x and r with respect to distance along the tangent plane to x.

4. an “object angle” θ that determines the angulation of the implied sections of
boundary relative to b⃗. b⃗ is rotated by ±θ towards n⃗ to produce normals p⃗/r and s⃗/r
to the implied boundary. θ is normally between π/3 and π/2, the angle
corresponding to parallel implied boundaries.

In 3D, figures are generally slabs, though m-reps can also represent tubes. A slab figure is a
2-sheet of medial atoms satisfying the constraint that the implied boundary folds nowhere.
The constraint expresses the relation that the Jacobian of the mapping between the medial
surface and the boundary is everywhere positive. A more complete, mathematical
presentation of the constraints of representations of which legal m-reps are a subset can be
found in [Damon 2002].

In our representation a discrete m-rep for a slab is a mesh {mij, 1≤i≤m, 1≤j≤n} of medial
atoms that sample a 2-sheet of medial atoms (Fig. 2). We presently use rectangular meshes
of atoms (quad-meshes), even though creating and displaying m-reps based on meshes of
triangles (tri-meshes) have advantages because of their relation to simplices. In slab figures
the net is a two-dimensional mesh and internal nodes of the mesh have a pair of boundary-
pointing vectors pointing from x to x + p⃗ and x + s⃗.

Implied by the atoms in the mesh are

1. a tolerance τ=βλr of boundary position normal to the boundary,
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2. the length of links to other primitives, approximately of length γλr, with γλ a
significant fraction of 1.0,

3. a constraint δλr on the radius of curvature of the boundary.

4. a size ιλr of the image region whose intensity values directly affect the atom when
measuring the match of the geometric model to the image.

The constant λ specifies the scale of the figural representation, which will vary from stage
to stage in an algorithm working among coarse and fine levels of representation. The
proportionality constants β, γ, δ, and ι are presently set by experience [Burbeck 1996,
Fritsch 1997, McAuliffe 1996], and, to maintain magnification invariance, the constants βλ,
γλ, δλ and ιλ decrease in proportion as the scale decreases.

The successive refinement, coarse-to-fine, of a medial mesh can provide a successive
correction to the medially implied object by interpolating atoms at the finer spacing from
those at the coarser spacing and then optimizing the finer mesh [Yushkevich 2001], although
we have not implemented this feature yet in the m-rep models used in segmentation. This
refinement brings with it a decrease in tolerance of the implied boundary and radius of
curvature constraint, the addition of patches of medial deformations relative to a figural (u,v)
space (see section 2.2) to handle heavily bent sections of slab, as well as proportionately
smaller constant of radius proportionality, λ.

We call a figure represented via m-reps an m-figure. The net of medial atoms contains
internal nodes and end nodes, as well. The end nodes for a slab are linked together to form
the boundary of the mesh. For an object made from a single figure, the end nodes need to
capture how the boundary of the slab or tube is closed by what is called a crest in differential
geometry [Koenderink 1990]. For example, a pancake is closed at its sides by such a crest.
Whereas the internal nodes for a slab-like segment have two boundary-pointing vectors, end
nodes for slab-like segments have three boundary-pointing vectors, with the additional
vector pointing from x in the b⃗ direction to the crest. Thus b⃗ must cycle as one moves around
the figural crest. Internal nodes for tubes have a circle of boundary-pointing vectors,
obtained by adding to x the full circle of rotations in a full circle of p⃗ about b⃗.

For slabs a sequence of edge atoms forms a curve of a crest or a curve of a corner closing
the slab. As illustrated in Fig. 3, these segment closed ends may be rounded with any level
of elongation η: the vertex is taken at x+ηrb ⃗, and the end section in the principal direction
across the implied crest is described by an interpolation using the position and tangent there
and at the two points x + p⃗ and x + s⃗ and applying an interpolating function to produce a
boundary crest with the desired extent, tangency, and curvature properties. We use this
formulation for ends of end atoms represented as {x, r, F, θ, η}, instead of the Blum
formulation, in which η=1, in order to stabilize the image match at ends as well as to allow
corners, i.e., crests of infinite curvature, to have a finitely sampled representation. Although
corners do not normally appear in medical images, they are needed to model manufactured
objects. Corner atoms have their vertex at x + r(1/cos(θ)) b ⃗.

2.2. Interpolated Medial Sheets and Figural Rendering
As stated above, an m-rep mesh of medial atoms for a single figure should be thought of as a
representation for a continuous sheet of atoms and a corresponding continuous implied
boundary. The sheet extends to the space curve of points osculating the crest of the implied
figural boundary. We interpolate the m-rep mesh into this sheet parameterized by (u,v) ∊
[(j,j+1) × (k,k+1)] for the mesh element with the jkth atom at its lower left corner The
interpolation is obtained by a process that has local support on these mesh elements and on
the edge elements that are bounded by edge atoms only. If the medial atoms are separated by
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constant r-proportional distances, this parametrization satisfies the objective of representing
shape locally.

The interpolation is achieved by applying a variant of subdivision surface methods [Catmull
1978] to the mesh of implied boundary positions and normals given at the spoke ends
(including the crest spokes). The variant, described in detail in [Thall 2003], makes the
subdivision surface match the position and the normal of the spoke ends to within their
tolerance. This boundary surface (see Fig. 4) is C2 smooth everywhere but the isolated
points corresponding to the atoms at the corners of the mesh. From this surface Thall's
method allows the calculation of interpolated medial atoms.

As it stands, Thall's method is unlikely to produce folded boundaries but is not guaranteed
against folds. In our segmentation we penalize against the high curvatures that are
precursors to a deformation that yields folds. The full avoidance of medial atoms that imply
a folded boundary will be achievable using the mathematical results found in [Damon 2002].

The result of Thall's interpolation is that with each boundary position we can associate a
boundary figural coordinate [Pizer 2002] (Fig. 2), the figure number together with a side
parameter t (= −1 for port, = +1 for starboard, with t ∊ (−1,1) around the crest) and the
parameters (u, v), describing which interpolated atom's spoke touches the boundary there.
For each figure we interpolate the atoms sufficiently finely that a set of voxel-size triangular
tiles represent the boundary. The method computes the boundary position and associated
normal and r value for an arbitrary boundary figural coordinate (u,v,t).

Points (x,y,z) in space can also be given a figural coordinate by appending an r-proportional
distance τ (Fig. 1) to the figural coordinates of the closest medially implied boundary point.
To allow the distinction by the sign of the distance of the inside and the outside of the figure,
we take the distance to be relative to the medially implied boundary and to be negative on
the interior of the figure. A procedure mapping arbitrary spatial positions (x,y,z) into figural
coordinates (u,v,t,τ) has been written. Also, an arbitrary fine triangular tiling of the medially
implied boundary can be computed. Rendering can be based on these triangular tiles or on
implicit rendering using the τ function. As well, the correspondence under figural
deformation given by figural coordinates is critically useful in computing the objective
function used in segmentation.

2.3. Correspondence through Deformation
As previously described, figures are designed to provide a natural coordinate system, giving,
first a position on the medial sheet, second a figural side, and finally a figural distance in
figural width relative terms along the appropriate medial spoke from a specified position. As
detailed in section 3.3, this figural coordinate system is used in our segmentation method to
follow boundary locations and other spatial locations through the model deformation
process.

In particular, as illustrated in Fig. 5, a boundary point after deformation, identified by its
figural coordinate can be compared to the corresponding point before deformation, and the
magnitude of the r-proportional distance between these points can be used to measure the
local deformation. Also, the intensity in the target image, at a figural coordinate relative to a
putatively deformed model can be compared to the intensity in a training image (or training
images) at the corresponding figural coordinate relative to the undeformed model.

2.4. M-reps Model Building for Anatomic Objects from Training Images
Model-building must specify of which figures an object or multi-object complex is made up,
the size of the mesh of each figure, and the way the figures are related, and it must also
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specify each medial atom. In this paper, focused on single-figure objects, only the mesh size
and its medial atoms must be specified. Illustrated in the panels of Fig. 6 are single-figure
m-rep models of a variety of anatomic structures that we have built.

Because an m-rep is intended to allow the representation of a whole population of an
anatomic object across patients, it is best to build it based on a significant sample of
instances of the segmented object. Styner [2001] describes a tool for stably producing
models from such samples. The hippocampus model shown in Fig. 2 was built using this
tool. We also have a design tool for building m-rep models from a single training 3D-
intensity data set and a b-rep from a previous segmentation, e.g., a manual segmentation, of
the object in that image. The kidney model shown in Fig. 6 was built using this tool.

It is obvious that effective segmentation depends on building a model that can easily deform
into any instance of the object that can appear in a target image. However, the production of
models is not the subject of this paper, so we assume in the following that a satisfactory
model can be produced and test this fact via the success of segmentations.

3. Segmentation by Deformable M-reps
3.1 Visualizations

3.1.1. Viewing an m-rep—To allow appreciation of the object represented by an m-rep,
the m-rep and the implied boundary must be viewable. To judge if an m-rep adequately
matches the associated image, capabilities described in sections 3.2 and 3.3 are needed to
visualize the m-rep in 3D relative to the associated image. If the match is not good, the user
needs a tool to modify the m-rep, either as a whole or atom by chosen atom, while in real
time seeing the change in the implied boundary and the relation of the whole m-rep or
modified atom to the image. After this seldom required manual modification the m-rep or
atom may then be attracted by the image data.

As seen in Figs. 2, 4, and 6, we view an m-rep as a connected mesh of balls, with each ball
attached to a pair of spokes and, for end atoms, to the crest-pointing ηrb⃗ vector. The inter-
atom lines, the spokes, and the crest-pointing vectors can be optionally turned off. In
addition, the implied boundary can be viewed as a dot cloud, a mesh of choosable density, or
a rendered surface.

3.1.2 Visualization of the m-rep vs. a target image—Visualization of greyscale
image data must be in 2D; only in 2D image cuts can the human understand the interaction
of a geometric entity with the image data. The implied boundary of an m-rep can be
visualized in 3D versus one or more of the cardinal tri-orthogonal planes (x,y; y,z; or x,z),
with the choice of these planes dynamically changeable (Fig. 11). Other image planes in
which it is useful to visualize the fit of the m-rep to the image data are the atom-based
planes described in the next paragraph. Showing the curve of intersection of the m-rep
implied boundary with any of these image planes is useful.

The desired relationship of a single medial atom to the image data is that at each spoke end
there is in the image a boundary orthogonal to the spoke. This relation is normally not
viewable in a cardinal plane. Instead one needs to visualize and edit the atoms in cross
sections of the object that are normal to the boundary. The spokes of a medial atom, if they
have been correctly placed relative to the image, are normal to the perceived boundary, so
they should be contained in the cross section. We conclude that a natural view plane should
contain both of the boundary pointing arrows of the medial atom, that is the plane passing
through x of the atom and spanned by (n⃗, b⃗) of the atom (if the object angle is other than π/
2). We call this the atom plane. We can superimpose the medial atom, as well as the
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medially implied boundary slice on the image in this plane (Fig. 7a, b,c) and visualize in-
plane changes in the atom and the boundary there.

On the other hand, the atom may be misplaced orthogonal to the atom plane or misrotated
out of the atom plane, so it needs to be viewed in an image plane orthogonal to the atom
plane. There is no such plane that contains both spokes, but if we could live with having
only one spoke in the atom-orthogonal plane, we could view across the boundary to which
the spoke should be orthogonal. The desired plane is that spanned by the atom's b⃗⊥ and the
chosen spoke of the atom. But we would only need the half plane ending at x, the “port” or
“starboard half-plane.” Thus, we could draw simultaneously the two adjoining half planes
for the respective spokes (Fig. 7).

When an atom is selected, it implies visualization planes, which can been chosen from
among the atom plane, the port spoke half-plane, and the starboard spoke half-plane. The
image data in the chosen plane(s) can be viewed in the 3D viewing window, with the image
data texture rendered onto these planes (Fig. 7a, b), and in respective 2D windows for the
chosen plane(s) (Fig. 7c, d, e).

Manual editing of m-reps, should it be necessary, can be done using these visualizations.
The viewer can point to positions in the three 2D viewing windows where the spoke ends
should be moved, and the atom can be modified to as closely as possible meet these
requirements, based on the object being locally a linear slab. Also, tools for manually
rotating, translating, scaling, and changing the object angle and elongation (for end atoms)
are easily provided.

3.2. Multi-scale-level model deformation strategy for segmentation from target images
Our method for deforming m-reps into image data allows model-directed segmentation of
objects in volume data. The deformation begins with a manually chosen initial similarity
transform of the model. To meet the efficiency requirements of accurate segmentation, the
segmentation process then follows a number of stages of segmentation at successively
smaller levels of scale (see Table 1). At each scale level the model is the result of the next
larger scale level and we optimize an objective function of the same form: the sum of a
geometric typicality metric (detailed later in this section) and a geometry to image match
metric (detailed in section 3.3). At each scale level there is a type of geometric
transformation chosen appropriate to that scale and having only at most 9 parameters.

The deformation strategy, from a model to a candidate obtained by geometrically
transforming the model, follows two basic geometric principles, according to the conceptual
structure presented in sections 1 and 2.

1. In both the geometric typicality and the model to image match metrics all geometry
is in figurally related terms. Thus

• model-relative and candidate-relative positions correspond when they
have common figural coordinates, and

• all distances are r-proportional.

2. Calculating geometric typicality at any scale level is done in terms of the relations
relevant to that scale, i.e., relative to its values predicted by the previous, next
larger, scale and by its neighbors at its scale. The neighborhood of a medial atom is
made up of its immediately adjacent atoms, and the neighborhood of a boundary
tile vertex is made up of the adjacent boundary tile vertices.

To describe the algorithm in detail, we make a number of definitions.
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The process begins with a model z that is manually translated, rotated, and uniformly scaled
into the image data by the user to produce an initialized model z0. z0 is successively
transformed through a number of scale levels into deformed models zk until z5 is the final
seg∼mentation. The details and descriptions of the primitives, their neighbor relations, and
the associated transformations at each scale level are given in Table 1.

Let zk be the geometric representation at scale level k. Let zk
i be the representation of the ith

primitive at scale level k. At all scale levels k≤4, each zk
i is represented as a“collection of

medial atoms, and a geometric transformation on zk
j is computed by”applying that

transformation to each medial atom in its representation. Each primitive zk
i for k>1 has a

small set of neighbors N(zk
i) at scale level k and a geometric entity at the next larger scale

(k-1) that contains zk
i. We call this containing entity the parent primitive P(zk

i). While P(zk
i)

is at scale level k-1, it is of the same type as zk
i. That is, for k≤P(zk

i) is represented as a
superset of the set representing zk

i, and for k=5 the parent of a boundary vertex is the
corresponding vertex on the medially implied surface with zero displacement. Also
associated with scale level k is a type of transformation Sk such that zk

i=Sk P(zk
i). Let the

parameters ωk
i be the parameters of the particular transformation Sk applied to P(zk

i) at
scale level k-1 to produce zk

i at scale level k.

The similarity transform S consisting of translation by t, rotation O and uniform scaling α
applied to a medial atom m ={x, r, F, θ} produces S ○ m = {αOx + t,ar,O ○ F,θ}. Figural
elongation by v leaves fixed the medial atoms at a specified atom row i (the hinge end for
subfigures) and successively produces translations and rotations of the remaining atoms in
terms of the atoms in the previously treated, adjacent row i−, as follows: S3(v) ○ mij ={xi-j+
v(xij – xi-j)rij,(FijFi-j

−1)v ○ Fi-j,θij} The subfigure transformation applies a similarity
transform to each of the atoms in the hinge. This transformation, however, is not in
Euclidean coordinates but in the figural coordinates of the boundary of the parent. That
transformation is not used in this paper, so its details are left to [Liu 2002]. The medial atom
transformation S4 translation by t, rotation O, r scaling α, and object angle change Δθ
applied to a medial atom m ={x, r, F, θ} produces S4(t,O,α,Δθ)o m = {x+ t,ar,O ○ F, θ +
Δθ}. The boundary displacement transformation τ applied to a boundary vertex with
position y, medial radial width r, and medially implied normal n⃗ yields the position y + τrn⃗.

The algorithm for segmentation successively modifies zk−1 to produce zk. In doing so it
passes through the various primitives zk in zk and for each i optimizes an objective function
H(zk, zk−1, I) = wk[-Geomdiff(zk, zk−1)] +Match(zk, I). Geomdiff(zk, zk−1) measures the
geometric difference between zk and zk−1, and thereby -Geomdiff(zk, zk−1) measures the
geometric typicality of zk at scale level k. Match(zk, I) measures the match between the
geometric description zk and the target image I. Both Geomdiff(zk, zk−1), and Match(zk, I)
are measured in reference to the object boundaries Bk and Bk−1, respectively implied by zk

and zk−1 The weight wk of the geometric typicality is chosen by the user.

For any medial representation z, the boundary B is computed as a mesh of quadrilateral tiles
as follows, with each boundary tile vertex being known both with regards to its figural
coordinates u and its Euclidean coordinates y. For a particular figure, u = (u,v,t), as
described in section 2.2. When one figure is an attached subfigure of a host figure, with the
attachment along the v coordinate of the subfigure, there is a blend region whose boundary
has coordinates u = (u,w,t), where u and t are the figural coordinates of the subfigure and w
∊ [−1,1] moves along the blend from the curve on the subfigure terminating the blend (w=
−1) to the curve on the host figure terminating the blend (w=+1). This blending procedure is
detailed in [Liu 2002].
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As mentioned in section 2.2, the computation of B is accomplished by a variation of
Catmull-Clark subdivision [Catmull 1978] of the mesh of quadrilateral tiles (or, in general,
tiles formed by any polygon) formed from the two (or three, spoke ends of the medial atoms
in z. Thall's variation [2003] produces a limit surface that iteratively approaches a surface
interpolating in position to spoke ends and with a normal interpolating the respective spoke
vectors. That surface is a B-spline at all but finitely many points on the surface. The
program gives control of the number of iterations and of a tolerance on the normal and thus
of the closeness of the interpolations. A method for extending this approach to the blend
region between two subfigures is presently under evaluation.

Geomdiff(zk, zk−1) is computed as the sum of two terms, one term measuring the difference
between the boundary implied by zk and the boundary implied by zk−1, and, in situations
when N(zk) is not empty, another term measuring the difference between boundary implied
by zk and that implied by zk with zk

i replaced by its prediction from its neighbors, with the
prediction based on neighbor relations in P(zk

i). The second term enforces a local shape
consistency with the model and depends on the fact that figural geometry allows a geometric
primitive to be known in the coordinate system of a neighboring primitive. The weight
between the neighbor term and the parent term in the geometrical typicality measure is set
by the user. In the tests described in section 4, the neighbor term weight was 0.0 in the
medial atom stage and 1.0 in the boundary displacement stage.

The prediction of the value of one geometric primitive zk
j in an m-rep from another zk

i at the
same scale level using the transformation Sk is defined as follows. Choose the parameters of
Sk such that Sk applied to the zk subset of zk−1 is close as possible to zk in the vicinity of zk

j.
Apply that Sktozk to give predictions (Sk zk)j. Those predictions depend on the prediction of
one medial atom by another. Medial atom z4

j ={xj, rjFj, θj} predicts medial atom z4
i ={xi, ri,

Fi, θi} by recording T={(xj-xi)/rj, (rj- rj)/rj,FjFi
−1θj-θi}, where FjFi

−1 is the rotation that
takes frame Fi into Fj. T takes z4

i into z4
j and when applied to a modified z4

i produces a
predicted z4

j.

The boundary difference Bdiff(z1, z2) between two m-reps z1 and z2 is given by the
following average r-proportional distance between boundary points that correspond
according to their figural coordinates, although it could involve points with common figural
coordinates other than at the boundary and it will in the future involve probabilistic rather

than geometric distance measures. . The r-value
is that given by the model at the present scale level, i.e., the parent of the primitive being
transformed. The normalization of distance by medial radius r makes the comparison
invariant to uniform scaling of both the model and the deformed model for the local
geometric component being adjusted at that scale level.

Finally, the geometry to image match measure Match(zk, I) between the geometric

description zk and the target image I is given by 
where y and Y′ are boundary points in B(zk) and B(ztemplate

k) that agree in figural
coordinates, G(τ) is a Gaussian in τ, Î is the target image I rms-normalized with Gaussian
weighting in the boundary-centered collar τ ∊ [−τmax, τmax]for the deformed model
candidate (see Fig. 8), and the template image Itemplate and the associated model ztemplate are
discussed in section 3.3.1.

In summary, for a full segmentation of a multi-object complex, there is first a similarity
transformation of the whole complex, then a similarity transform of each object, then for
each of the figures in turn (with parent figures optimized before subfigures) first a
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similarity-like transform that for protrusion and indentation figures respects their being on
the surface of their parent, then modification of all parameters of each medial atom. After all
of these transformations are complete, there is finally the optimization of the dense
boundary vertices implied by the medial stages. Since in this paper we describe only the
segmentation of single figure objects, there are three stages beyond the initialization: the
figural stage, the medial atom (figural section) stage, and the boundary displacement stage.

For all of the stages with multiple primitives (in the case tested in this paper, the medial
atom stage and the boundary stage), we follow the strategy of iterative conditional modes, so
the algorithm cycles among the atoms in the figure or boundary in random order until the
group converges. The geometric transformation of a boundary vertex modifies only its
position along its normal [1 parameter]; the normal direction changes as a result of the shift,
thus affecting the next iteration of the boundary transformation.

3.3. The Optimization Method and Objective Function
Multiscale segmentation by deformable models requires many applications of optimization
of the objective function. The optimization must be done at many scale levels and for
increasingly many geometric primitives as the scale becomes smaller. Efficient optimization
is thus necessary. We have tried both evolutionary approaches and a conjugate gradient
approach to optimization. The significant speed advantages of the conjugate gradient
method are utilizable if one can make the objective function void of nonglobal optima for
the range of the parameters being adjusted that is guaranteed by the previous scale level. We
have thus designed our objective functions to have as broad optima as possible and chosen
the fineness of our scale levels and intra-level stages to guarantee that each stage or level
produces a result within the bump-free breadth of the main optimum of the next stage or
level.

When the target image is noisy and the object contrast is low, the interstep fineness
requirement just laid out requires multiple substages of image blurring within a scale level.
That is, at the first substage the target image must be first blurred before being used in the
geometry to image match term. At later substages the blurring that is used decreases.

At present the largest scale level involved in a segmentation requires a single user-selected
weight, between the geometric typicality term and the geometry to image match term. All
smaller scale stages require two user-selected weights, the one just mentioned plus a weight
between the parent-to-candidate distance and the neighbor-predictions-to-candidate distance.
However, we intend in the future that our objective function be a log posterior probability.
When this comes to pass, both terms in the objective function will be probabilistic, as
determined by a set of training images. These terms then would be a log prior for the
geometric typicality term and a log likelihood for the geometry to image match term. In this
situation there is no issue weighting the geometric typicality and geometry to image match
terms. However, at present our geometric typicality term is measured in r-proportional
squared distances from model-predicted positions and the geometry to image match term is
measured in rms-proportional intensity squared units resulting from the correlation of a
template image and the target image, normalized by local variability in these image
intensities. While this strategy allows the objective function to change little with image
intensity scaling or with geometric scaling, it leaves the necessity of setting the relative
weight between the geometric typicality term and the geometry to image match term.

The remainder of this section consists of a subsection detailing the geometry-to-image
match term of the objective function, followed by a section detailing the boundary
displacement stage of the optimization.
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3.3.1. The geometry-to-image match measure—It is useful to compute the match
between geometry and the image based on a model template. Such a match is enabled by
comparing the template image Itemplate and the target image data I at corresponding positions
in figural coordinates, at figural coordinates determined in the model. The template is
presently determined from a single training image Itemplate, in which the model z has been
deformed to produce ztemplate by applying the m-reps deformation method through the
medial atom scale level (level 4) on the characteristic image corresponding to a user-
approved segmentation. In our implementation the template is defined only in a mask region
defined by a set of figural coordinates, each with a weight of a Gaussian in its figural
distance-to-boundary, τ, about the model-implied boundary. The standard deviation of the
Gaussian used for the results in this paper is ½ of the half-width of the collar. The mask is
choosable as a collar symmetrically placed about the boundary up to a user-chosen multiple
of r from the boundary (Fig. 8) or as the union of the object interior with the collar, a
possibility especially easily allowed by a medial representation. In the results reported here
we use a boundary collar mask. The mask is chosen by subdividing the boundary positions
affected by the transformation with a fixed mesh of figural coordinates (u,v) and then
choosing spatial positions to be spaced along each medial spoke (implied boundary normal)
at that (u,v). These along-spoke positions are equally spaced in the figural distance
coordinate τ up to a plus or minus a fixed cutoff value τmax chosen at modeling time. For
the kidney results reported in section 4, this cutoff value was 0.3, so the standard deviation
of the weighting Gaussian in the intensity correlation is 0.15.

The template to image match measure is choosable in our tool from among a normalized
correlation measure, with weights, and a mutual information measure, with weights, but for
all the examples here the correlation measure has been used and the weight in all mask
voxels is unity. The correlation measure that we use is an average, over the boundary sample
points, of the along spoke intensity profile correlations at these sample points. For the
geometry to correspond to the volume integral of these point-to-corresponding-point
correlations, each profile must be weighted by the boundary surface area between it and its
neighboring sample points, and the profile must be weighted by its r-proportional length. In
addition, as indicated above, we weight each product in the correlation by a Gaussian in τ
from the boundary. Also, to make the intensity profiles insensitive to offsets and linear
compression in the intensity scale, the template is offset to a mean of zero and both the
template and the target image are rms-normalized. The template's rms value is computed
within the mask in the training image, and the target image's rms value is computed for a
region corresponding to a blurred version of the mask after the manual placement of the
model.

In our segmentation program the template is choosable from among a derivative of
Gaussian, described more precisely below, and the intensity values in the training image in
the region, described in more detail in section 4.2. In each case the template is normalized
by being offset by the mean intensity in the mask and normalized in rms value.

The derivative of Gaussian template for model to image match is built in figural coordinates
in the space of the model, i.e., the space of the training image. That is, each along-spoke
template profile, after the Gaussian mask weighting, is a derivative of a Gaussian with a
fixed standard deviation in the figural coordinate τ, or equivalently an r-proportional
standard deviation in Euclidean distance. We choose 0.1 as the value of the standard
deviation in τ. Since this template is associated with the target image via common figural
coordinates, in effect the template in the target image space is not a derivative of 3D
Gaussian but a warped derivative of 3D Gaussian, with the template's standard deviation in
spatial terms increases with the figural width.
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3.3.2. Boundary displacement optimization—The boundary deformation stage is
much like active surfaces, except that the geometric typicality term consists not only of a
term measuring the closeness of each boundary displacement to that at each of the
neighboring boundary positions but also a term measuring the log probability of these
displacements in the medially based prior. Since the tolerance of the medially implied
boundary is r-proportional, the log Gaussian medially based prior, conditional on the medial
estimate, is proportional to the negative square of the r-normalized distance to the medially
implied boundary [Chen 1999]. The method of [Joshi 2001], with which we complete the
segmentation, uses this combined geometric typicality measure, and its boundary to image
match measure is a log probability based on the object and its background each having
normal intensity distributions.

4. Segmentation Results: Deformed Models
4.1. Segmenting the Kidney from CT; Segmentation Accuracy

We have tested this method for the extraction of three anatomic objects well modeled by a
single figure: the lateral cerebral ventricle, the kidney parenchyma + pelvis, and the
hippocampus. Extracting the lateral ventricle from MR images is not very challenging
because the ventricle appears with high contrast, but a single result using a Gaussian
derivative template is shown in Fig. 9.

Extracting the kidney from CT images is challenging under the conditions of the work
reported here for radiation therapy treatment planning (RTP). The kidney sits in a crowded
soft tissue environment where parts of its boundary have good contrast resolution against
surrounding structures but other parts have poor contrast resolution. Also, not too far away
are ribs and vertebrae, appearing very light with very high contrast (Fig. 10). The typical CT
protocol for RTP involves non-gated slice-based imaging, without breath holding and
without injecting the patient with a “dye” to enhance the contrast of the kidney. During the
time interval between slice acquisition the kidneys are displaced by respiratory motion,
resulting in significantly jagged contours in planes tilted relative to the slice plane (Fig. 10).
A combination of partial volume and motion artifacts causes the poles to be poorly
visualized or spuriously extended to adjacent slices. Motion and partial volume artifacts
degrade the already poor contrast between the kidney and adrenal gland, which sits on top of
the kidney.

The single figure m-rep used here includes part of the pelvis along with the kidney
parenchyma, mimicking segmentation as performed for RTP. The complex architecture of
the renal pelvis acts as structure noise for this m-rep. When using a Gaussian template that is
designed to give increased response at boundaries next to which are non-narrow strips of
object with intensity lighter than its background, the following behaviors are noted. 1) If the
geometric penalty weight is low, the kidney m-rep can move inside a sequence of vertebral
bodies because the high contrast on only a portion of the model results in a high model to
image match value. This is easily prevented by an adequately high weight for geometric
typicality. 2) A portion of the implied boundary of the kidney m-rep can move to include a
rib, as a result of the high contrast of the rib. 3) A portion of the implied boundary of the
kidney m-rep can move to include part of the muscle. 4) The boundary at the liver,
appearing with at most texture contrast, does not attract the implied m-rep boundary, with
the result that the geometric typicality term makes the kidney not quite follow the kidney/
liver boundary. In other organs, parts of the edge with high contrast of opposite polarity to
other parts would repel the m-rep boundary. Avoiding some of these difficulties necessitated
replacing the first post-initialization similarity transform by a similarity transform
augmented by an elongation for the main figure. Despite these challenges, segmentation
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using a Gaussian derivative template, built on a single right kidney, is successful when
compared against human performance.

An example deformation sequence is shown in Fig. 11, showing the improved segmentation
at each stage. Results of a typical kidney segmentation are visualized in Fig. 12.
Comparisons between m-rep segmentation (rater C) and human segmentation (raters A and
B) using our evaluation system Valmet [Gerig 2001] are given in Table 2 and Figs. 13-15.
Comparisons are given for 12 kidney pairs (12 right kidneys and corresponding left kidneys.
Manual segmentation by A and B was performed slice-by-slice using the program, Mask
[Tracton 1994]. Within-slice pixel size was approximately 1 mm, and slice thickness varied
image to image between 3 mm and 8 mm. Images were resampled for m-rep segmentation to
yield isotropic 2 mm voxels. At the comparison stage using Valmet the segmented volumes,
originally represented by sets of contours for humans and as 3D surfaces for m-reps, were
scan converted to produce voxelized (2 mm voxels) representations.

The median volume overlap for human segmentations, as measured by the overlap volume
divided by the union of the two volumes being compared, is 94% (σ = 1.7%, min = 90%,
max = 96%). The mean surface separation, averaged over all kidneys, is 1.1 mm (σ = 0.3
mm); the mean surface separation for a given kidney is defined in terms of closest points,

i.e., as , where N1 and N2 are

the respective numbers of boundary voxels in the two kidneys being compared and  and 
are the coordinates of the boundary voxel centers of the respective kidneys. The median
volume overlap between human and m-rep segmentations is 89% (σ = 3.4%, min = 81%,
max = 94%), and the mean surface separation, averaged over all kidneys, is 1.9 mm (σ = 0.5
mm). The distinction between m-rep to human comparison and human to human comparison
is statistically significant for average distance and maximum distance metrics, though from a
clinical point of view the distance differences are small. The average surface separations
(over each boundary vertex point on the reference segmentation and, for each, the closest
point on the segmentation being evaluated) for human-human and human-m-rep
comparisons correlate well with the pixel dimensions at segmentation with MASK and m-
reps respectively. Because Valmet measures offsets and overlaps only to the closest voxel
(Table 2), the image resampling and scan conversion steps introduced a bias against m-reps
which is thought to account for most of the difference between human-human and human-
m-rep metrics. Also, consistencies in manual segmentation also favorably bias human-
human comparison. For example 2D contouring tends to preserve jagged edges (Fig. 10)
caused by motion artifacts while 3D m-rep surfaces tend to smooth the edges (Figs. 14-15).

Therefore the real median boundary accuracy is subvoxel and the human-m-rep overlap
percentages are understated. We judge the best m-rep segmentations to be at least as good as
the most careful manual slice by slice segmentation done for RTP in routine clinical
practice. Suboptimal performance is associated primarily with insufficient training and
shortcomings of the Gaussian derivative template (Fig. 16).

4.2. Templates made from a training image, and segmenting the hippocampus
Objects that appear without high contrast over most of their boundary cannot be extracted
using a Gaussian derivative template. For these the pattern of image intensity profiles in the
boundary-centered mask region as a function of (figurally defined) boundary position are
frequently characteristic. As a result an intensity template as function of figural position
drawn from one or more training images can be used as the correlate for the target image in
producing a geometry to image match measurement. Our m-reps based segmenter can use
such training intensity templates. In what we report below, we use a template drawn from a
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single training image with the m-rep fitted by the approach of this paper into a slightly
blurred version of the human's binary hand segmentation for that training image. This m-rep
fitted into the training segmentation also formed the model used in these studies on four
other cases.

We first report on using the image intensity profile method to fit a hippocampus m-rep from
the training case into the slightly blurred versions (Gaussian blurring with std. dev. = 1 voxel
width) of binary segmentations for the four other hippocampi. This process succeeded in all
four cases (Fig. 17), suggesting two conclusions. First, one can use such fitting of m-reps to
already segmented cases to provide statistical description of the geometry via the statistics of
the fitted m-reps [Styner 2002]. Second, the method of 3D deformable m-rep optimization
via intensity templates is geometrically sound.

We move on to the extraction of the left hippocampus from MRI, an extraction that is very
challenging for humans and has great variability across human segmenters. The pattern of
intensities across the boundary of the left hippocampus is characteristic, to the extent that the
structures abutting or near the hippocampus follow a predictable pattern, with each structure
having its typical intensity in MRI. However, because of the variability of this structural
pattern and thus the variability of the intensity pattern, and because of the indistinct contrast
at both the tip and the tail of the hippocampus, hippocampal segmentation from MRI
provides a major challenge for automatic segmentation of the hippocampus as a single
object. The poor contrast makes it necessary to omit the boundary displacement stage from
the segmentation and so to stop after the medial atom stage. Our method beginning from a
manually placed hippocampus model produced a reasonable, hippocampus-shaped
segmentation overlapping with the human segmentation in 3 of the 4 cases (Fig. 17), and in
the remaining case, the structural pattern around the hippocampus was so different as to
make the method fail. Moreover, in only 1 of the 3 semi-successful cases was the
segmentation credible to a human rater. However, in each of those 3 cases when the same
segmentation was begun from the m-rep fitted to the human segmentation, it produced a
successful segmentation with a geometry to image match measure higher than that achieved
when starting from the manually placed model. This result suggests that when the contrast in
the images is weak the optimization technique needs to be changed to avoid local optima or
that a better measure for geometry-to-image match must be found or that multiple object
geometry must be used in the process. We are investigating all three of these paths. In regard
to geometry-to-image match, we judge that the intensity template must really be statistical,
reflecting the range of patterns in a family of training images, and that is indeed a direction
that, long since, we have intended our method development to go. Our figural coordinate
system and correlation method is exactly what is needed for such segmentation to be based
on principal components analysis, in a way analagous to the boundary point based
segmentation methods of Cootes & Taylor [1993].

We have found that the figural stage of segmentation using a training image template is
better when the training image intensity template as well as the target image is rather blurred
with a standard deviation of a significant fraction of the average r of the object. This causes
small differences between the template image and the target image in the relative positioning
of the object sought to surrounding structures to have only a small effect. Thus when we
apply the technique to kidney segmentation, the fact that, for example, in the training image
the kidney nearly abuts the spinal column but is somewhat separated from it in the target
image causes that portion of the kidney segmented from the target image to move toward
spine, but only to a small degree if blurred images are used. With the hippocampus, this
same blurring approach was used, but since the hippocampus is much narrower than the
kidney, the level of blurring used was correspondingly smaller.
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4.3. Speed of computation
The speed of a 3D segmentation is 2-4 minutes for a 15-atom kidney model on a Pentium 4,
1.8GHz Dell Inspiron 8200 laptop computer, with

• preprocessing computations taking less than 1 second,

• the object similarity transform plus elongation stage taking under 1 second per
iteration and on the average requiring 8 iterations for a total time of 2 seconds to
determine the object similarity transform,

• the atom transformations taking on the average approximately 45 seconds per
iteration through all of the atoms for the kidney, with the time per iteration roughly
proportional to the surface area of the object, and the number of iterations required
for the kidney being 2 to 3, and

• the boundary deformation stage taking approximately 3 seconds.

While the method's speed has already benefited strongly from moving much of the
computation from the deformation stage to the model building stage, there is still much
room for speedup by more medial levels of coarse to fine and just by more careful coding.

5. Discussion and Conclusions
The main contribution of this paper is the detailing of a method for 3D image segmentation
that uses the medial model representation called m-reps both to capture prior knowledge of
object geometry and as the basis of measurement of model to image match. There are
number of other contributions. We have laid out how to base the geometry in 3D of a figure
on a new form of medial atom that allows a spatially sampled representation while carrying
a local ruler and compass. We have described a way of deriving the continuous implied
boundary of a single-figure object from that representation. We have described a means of
calculating a parametrization of space in terms of medially relative positions and signed r-
proportional distance from this implied boundary and the usefulness of this parameterization
in computing geometric typicality via correspondence at the object boundary and computing
geometry to image match via this correspondence and the correspondence of distances from
the boundary in r-proportional terms. This space parametrization also allows the interior of
the object to be distinguished as associated with a particular region or in the blend region.
An additional contribution is having a set of object and figure based scale levels and the
means of optimal deformation at multiple scale levels by considering the model information
at each relevant scale. The initial successes of the segmentation method provide evidence of
the usefulness of these ideas. M-rep based visualizations of an object in both 3D and versus
the 3D image relative to a medial atom were also described.

Our quantitative validation on kidney segmentation is encouraging: robust and accurate
enough for clinical use. A recent study on segmenting the kidney from CT suggests that the
result is very stable to variations in the manual initialization. However, achieving full human
accuracy remains a goal. Controlled, quantitated validations on other objects are needed.
The results of such a study will be reported in a future paper. We find the results so far,
together with the theoretical strengths of the deformable m-reps method, encouraging
evidence that this approach will increase the maximum robustness achievable in 3D
segmentation of anatomic objects or that it can do such segmentation at a given level of
robustness faster than alternative methods.

At the same time, the method sometimes fails to segment variants of an object that has
significant variability in shape over the population. An example, is the prostate, which varies
across individuals in the degree to which it bends to “saddlebag” around the rectum. In
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situations of large saddlebagging, the ends of the prostate are so distant from the model that
the distance-based geometric penalty prevents convergence to the fully bent prostate at its
ends. The solution, we guess, lies in extending the transformation at each scale level to
include not only the transformation listed in Table 1 but also a first principal component
transformation of the collection of medial atoms associated with that scale level, with the
first principal component eigenmode being computed from a training set.

We have completed the programming for an early version of computing optimal subfigural
geometric transformations, but have not put the program in the form we are ready to test.
Each subfigural transformation iteration will require roughly the fraction of the time for the
whole object iteration that the subfigure's boundary is of the whole object's boundary.
Moreover, the number of iterations can be expected to be distinctly lower than for the whole
object, since the intialization, based on the object's transformation, will typically be better
than that for the object as a whole. Thus, each subfigure transformation will typically take a
few tens of seconds.

We have also implemented a means of deforming multiple objects in a way that the position
of one object's implied boundary in another object's figural coordinates allows rewarding its
relationship (e.g., abutment) to that controlling object [Fletcher 2002]. We need to continue
to test this method for the segmentation of multiple abutting objects and thus to make the
segmentation method applicable to whole sections of the body. With that development our
segmentations will form a means of elastic registration between an atlas and a patient's
target image for the whole imaged body section. Both the multifigure object segmentation
and multiobject segmentation methods and their validation will be reported in later papers.

A very pervasive improvement will lie in replacing both the geometric typicality measures
and the geometry to image match measures by statistical (log probability) objective
functions based on multiple training images. We expect improved performance by the use of
a geometric typicality term that is based not simply on distances from a model but instead
reflecting normal variability in a training set, and a geometry to image match term reflecting
image intensity variations relative to the geometric model; moreover, that would make it
unnecessary to interactively choose a weight for the geometric typicality term relative to the
model to image match term. The fact that the geometry to image match module already
computes the template correlations that are used in computing the dot product between an
eigenmode and the target image within the masked region will make this step
straightforward, once the training process is developed. Another direction for future
development is the use of mechanical geometric typicality measures in place of statistical
ones when the transformation is intrapatient rather than between an atlas model and a
patient. Here the medial sampling provides promise for strides in efficiency of mechanical
modeling.

Another matter for the future is the evaluation of the usefulness of multiple levels of
sampling at the medial stages (3 and 4) of the segmentation. Coarse spacing will produce
efficient operation but will not accommodate small radii of curvature relative to the object
width. The accommodation of patches requiring these larger curvatures can be done
efficiently at the finer scale medial substages, once the larger scale optimization has been
accomplished. We will need to study when smaller scale wrinkles should be accommodated
at a medial substage and when they can be better represented by boundary displacements.
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Fig. 1.
A 2D illustration of (left) the traditional view of the medial locus of an object as a sheet of
disks (spheres in 3D) bitangent to the object boundary and our equivalent view (right) as an
m-rep: a curve (sheet in 3D) of hubs at the sphere center and equal length spokes normal to
object boundary. The locus of the spoke ends forms the medially implied boundary.
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Fig. 2.
M-reps: In the 2D example (left) there are 4 figures: a main figure, a protrusion, an
indentation, and a separate object. Each figure is represented by a chain of medial atoms.
Certain medial atoms in a subfigure are interfigurally linked (dashed lines on the left) to
their parent figures. In the 3D example of a hippocampus (middle) there is one figure,
represented by a mesh of medial atoms. Each hub with two line segment spokes forms a
medial atom (Fig. 3). The mesh is viewed from two directions, and the renderings below
show the boundary implied by the mesh. The example on the right shows a 4-figure m-rep
for a cerebral ventricle.
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Fig. 3.
Medial atoms, made from a position x and two equal length boundary-pointing arrows p⃗ and
s⃗ (for “port” and “starboard”), which we call “spokes”. The atom on the left is for an internal
mesh position, implying two boundary sections. The atom on the right is for a mesh edge
position, implying a section of boundary crest. The atoms are shown in the “atom-plane”
containing x, p⃗ and s⃗. An atom is represented by the medial hub position x; the length r of
the boundary-pointing arrows; a frame made from the unit-length bisector b⃗ of p⃗ and s⃗, the b⃗
- orthogonal unit vector n⃗ in the atom plane, and the complementary unit vector b⃗⊥; and the
“object angle” θ between b⃗ and each spoke. For a slab-like section of figure, p⃗ and s⃗ provide
links between the medial point and the implied boundary (shown as a narrow curve), giving
approximations, with tolerance, to both its position and its normal. The implied figure
section is slab-like and centered on the head of the atom's spokes, i.e., it is extended in the
b⃗⊥ direction just as it is illustrated to do in the atom-plane directions perpendicular to its
spoke.
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Fig. 4.
Left: A single-figure m-rep. Left middle: Coarse mesh of atom boundary positions for a
figure. Right middle: Atom ends vs. interpolated boundary. Right: interpolated boundary
mesh at voxel spacing
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Fig. 5. Correspondence over deformation via figural correspondence
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Fig. 6.
M-reps models. Heavy dots show hubs of medial atoms. Lines are atoms' spokes. The mesh
connecting the medial atoms is shown as dotted curves. Implied boundaries are rendered
with shading. Hippocampus: see Fig. 2. Left: kidney parenchyma + renal pelvis. Middle:
lateral horn of cerebral ventricle. Right: multiple single-figure objects in male pelvis:
rectum, prostate, bladder, and pubic bones (one bone is occluded in this view).
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Fig. 7.
The viewing planes of interest for a medial atom: Top: 3D views. Bottom: 2D views.
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Fig. 8.
The collar forming the mask for measuring geometry to image match. Left: in 2D, both
before and after deformation. Right: in 3D, showing the boundary as a mesh and showing
three cross-sections of the collar.
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Fig. 9.
Segmentation results of the lateral horn of a cerebral ventricle at the m-rep level of scale
(i.e., before boundary displacement) from MRI using a single figure model.

Pizer et al. Page 28

Int J Comput Vis. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Sagittal plane through a CT of the kidney, used in this study, demonstrating significant
partial volume and breathing artifacts. A human segmentation is shown as a green tint. Note
the scalloped boundary and spurious sections of the kidney, which were segmented by one
of two human raters but excluded by m-rep segmentation. Note also the nearby high-contrast
rib that can create a repulsive force when a Gaussian derivative template is used.
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Fig. 11.
Stage by stage progress: all rows, from left to right, show results on Coronal, Sagittal and
Axial CT slices. Each row compares progress through consecutive stages via overlaid grey
curves to show the kidney segmentation after stage N vs. white curves after stage N+1. Top
row: stages are the initial position of the kidney model vs. the figural similarity transform
plus elongation. Middle: the similarity transform plus elongation vs. medial atom
transformations. Bottom: medial atom transformations vs. 3D boundary displacements.
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Fig. 12.
Kidney model and segmentation results. Segmentation results at the m-rep level of scale
(i.e., before boundary displacement) on kidneys in CT using a single figure model. The three
light curves on the rendered m-rep implied boundary in the 3D view above right show the
location of the slices shown in the center row. On these slices the curve shows the
intersection of the m-rep implied boundary with the slices. The slices in the lower row are
the sagittal and coronal slices shown in the 3D view.
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Fig. 13. Scattergram of median surface separations for all kidneys
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Figure 14.
Valmet pairwise comparisons for a left kidney. The comparison result is color-coded on a
reference surface selected from human (A or B) and m-rep segmentations (see Fig. 15).
Green represents a subvoxel surface correspondence between the two compared
segmentations. Red represents a section where the surface of the reference segmentation is
outside the compared surface. Blue represents a section where the surface of the reference
segmentation is inside compared surface. Left: Reference shape from human B, color coding
from human A. Middle: Reference shape from human B, color coding from m-reps. Right:
Reference shape from m-reps, color coding from human B. In this case the volume overlap
for A and B was 93.5% and the m-rep overlap was 94.0% with both A and B.
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Figure 15.
Valmet comparisons for a kidney with significant motion artifacts (see Fig. 10), reflecting
human segmentations' preservation of artifactual scalloping vs. the m-rep segmentations'
yielding a smooth surface. Left: Reference shape from human A, color coding from human
B. In this case both A and B contoured spurious sections at the top of the kidney, but rater A
contoured one additional slice. Center: Reference shape from m-reps, color coding from
human A. Right: Color coding scheme.
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Fig. 16.
Correctable m-rep failure mistakenly included in our analysis (worst case in Table 1). Left:
Valmet comparison with reference shape from human B, color coding from m-reps. Center:
Sagittal plane showing m-rep (blue) and human (red) surfaces. Two problems mentioned in
the text are illustrated. In the region labeled “A” the m-rep model deformed into structures
related to the kidney pelvis that were poorly differentiated from the kidney parenchyma. In
the region labeled “B” the m-rep model did not elongate fully during the first transformation
stage. Right: Transverse plane illustrating the deformation of the m-rep model into peri-
pelvic structures in region A. Even in this case there is close correspondence between human
and m-rep contours excluding regions A and B. After more careful user-guided initialization
a successful m-rep segmentation was obtained for this kidney, but those results were omitted
in the analysis.
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Fig. 17.
Hippocampus results using training intensity matches, for one of the three target images
with typical results. The top image shows the m-rep-segmented hippocampus from the
blurred binary segmentation image. Each row in the table shows in three intersecting
triorthogonal planes the target image overlaid with the implied boundary of the m-rep
hippocampus segmentation using the image template match. The top row shows the
segmentation from the blurred binary image produced from a human segmentation. The
middle row shows the corresponding segmentation using the mri image as the target and an
intialization from a manual placement of the model determined from training image. The
bottom row shows the segmentation of the same target mri with both the initialization and
the model being the segmentation result on the blurred binary image for that case.
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