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Abstract

Purpose—Golden retriever muscular dystrophy (GRMD) is a widely used canine model of 

Duchenne muscular dystrophy (DMD). Recent studies have shown that magnetic resonance 

imaging (MRI) can be used to non-invasively detect consistent changes in both DMD and GRMD. 

In this paper, we propose a semi-automated system to quantify MRI biomarkers of GRMD.

Methods—Our system was applied to a database of 45 MRI scans from 8 normal and 10 GRMD 

dogs in a longitudinal natural history study. We first segmented six proximal pelvic limb muscles 

using two competing schemes: 1) standard, limited muscle range segmentation and 2) semi-

automatic full muscle segmentation. We then performed pre-processing, including: intensity 

inhomogeneity correction, spatial registration of different image sequences, intensity calibration of 

T2-weighted (T2w) and T2-weighted fat suppressed (T2fs) images, and calculation of MRI 

biomarker maps. Finally, for each of the segmented muscles, we automatically measured MRI 

biomarkers of muscle volume and intensity statistics over MRI biomarker maps, and statistical 

image texture features.

Results—The muscle volume and the mean intensities in T2 value, fat, and water maps showed 

group differences between normal and GRMD dogs. For the statistical texture biomarkers, both 

the histogram and run-length matrix features showed obvious group differences between normal 

and GRMD dogs. The full muscle segmentation shows significantly less error and variability in 

the proposed biomarkers when compared to the standard, limited muscle range segmentation.
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Conclusion—The experimental results demonstrated that this quantification tool can reliably 

quantify MRI biomarkers in GRMD dogs, suggesting that it would also be useful for quantifying 

disease progression and measuring therapeutic effect in DMD patients.
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I.INTRODUCTION

Duchenne muscular dystrophy (DMD) is a fatal, X-linked, muscle disorder characterized by 

progressive degeneration of skeletal and cardiac muscle [1]. It is the most common form of 

muscular dystrophy, affecting approximately 1 in 3,500 live born males [2, 3]. DMD is 

caused by mutations in the DMD gene, which encodes the cytoskeletal protein dystrophin. 

Proximal leg muscle weakness is generally the first observed clinical manifestation of DMD. 

The ensuing progressive muscle weakness usually leaves affected boys severely disabled by 

their early teenage years, and results in death due to respiratory and cardiac failure [2]. 

Currently, no therapy halts or reverses progression of DMD. Although cellular and gene 

therapies are promising, key questions must first be addressed in relevant animal models. 

Spontaneous forms of X-linked muscular dystrophy due to dystrophin deficiency have been 

characterized in mice, [4] cats, [5] and dogs. [6, 7] Because golden retriever muscular 

dystrophy (GRMD) dogs develop progressive and fatal disease strikingly similar to the 

human condition, this model has increasingly been used in preclinical trials [8].

Although muscle biopsy has been widely used in the diagnosis of muscle diseases including 

DMD, the invasiveness limits its use and now most patients are diagnosed using molecular 

methods. As a result, non-invasive outcome measures, especially quantitative methods, are 

needed for studies in animal models and in DMD patients. Magnetic resonance imaging 

(MRI) has been used as to provide data on disease progression in both natural history and 

treatment trials for GRMD [9, 10, 11] and DMD [12, 13, 14]. Observed MRI changes in 

DMD include an increase in T2 and decrease in T1 relaxation times due to accumulation of 

fat in affected muscles. There is an associated increase in whole body fat and decrease in 

muscle mass [12, 15]. These MRI imaging features have been successfully correlated with 

functional measurements [16, 17]. In fact, one study suggested that MRI is more sensitive 

than functional tests in predicting disease progression [15]. The potential role of MRI as a 

biomarker in the GRMD model has also been reported [9, 10, 11]. In the Thibaud et al. study 

[10], 2-month-old GRMD and carrier dogs were assessed. GRMD dogs had an abnormally 

high T2-/T1-weighted signal ratio, greater T2-weighted image heterogeneity, and more 

enhanced muscle signal on T1-weighted images after Gd-DTPA injection compared to heath 

controls. A subsequent study of 3-month-old to 7-year-old muscular dystrophy dogs by 

Kobayashi et al. [9] demonstrated increased T2 values and fat suppressed T2-weighted 

intensity, as well as greater enhancement with gadolinium, consistent with inflammation and 

necrosis. Yokota et al.’s study [11] contrasted muscular dystrophic dogs treated with a 

morpholino cocktail with both untreated muscular dystrophic dogs and wild-type littermates 
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from 2 months to 5 years of age. Treated muscular dystrophic dogs had consistently 

decreased T2 values compared to those that were untreated.

In existing DMD and GRMD studies, muscle segmentation and MRI-based biomarker 

quantification are manually driven. Because full manual assessment is cumbersome, time 

consuming and subject to rater errors, computerized quantification methods are needed for 

advancing MRI biomarkers as objective surrogate outcome measures for pre-clinical and 

clinical trials. In this paper, we present a novel semi-automatic MRI quantification tool that 

provides potential imaging biomarkers for monitoring disease progression in pre-clinical and 

clinical trials of GRMD and DMD. In addition, we propose new run-length matrix based 

MRI statistical texture analysis technique to create statistical texture biomarkers, which 

discriminate between normal and GRMD dogs.

II.METHOD

II.1. Study Subjects

The database used in this study included 10 GRMD and 8 normal dogs. Data from MRI 

were included in a range of phenotypic tests performed over their first year of life. The 

proximal pelvic limbs of all dogs were scanned at approximately 3 and 6 months of age. 

Additional studies were completed at 9 months in five GRMD and four normal dogs. Totally 

45 MRI scans were acquired.

All the dogs were produced through a GRMD colony maintained at the University of North 

Carolina at Chapel Hill (UNC-CH) (PI, Kornegay). Dogs were scanned on a Siemens 3T 

Allegra Head-Only MRI scanner with a circular polarization (CP) head coil or Siemens 3T 

Tim Trio Whole-Body MRI scanner with a 32-channel body coil at the UNC Biomedical 

Research Imaging Center (BRIC). Dogs were anesthetized, placed on an MRI gantry in the 

sternal (prone) position with the pelvic limbs extended and positioned in the coil centered at 

the midpoint of the femur.

The image protocol of the MRI scans is listed in Table 1. T2-weighted (T2w) image 

sequence [Fig. 1 (a)] was acquired using a variable-flip-angle turbo spin echo (TSE) 

sequence. No fat saturation magnetization preparation was applied. T2-weighted fat 

suppressed (T2fs) images sequence were then acquired using the same variable-flip-angle 

TSE sequence [Fig. 1 (b)] with the same scanning parameters except that a fat saturation 

preparation was applied. During the fat saturation procedure, a frequency-selection pulse 

was applied to excite the fat; dephasing gradient pulses were applied immediately after the 

frequency-selection pulse to spoil the fat signal. Thus, the remaining signal contained close 

to zero contribution from fat

To obtain T2 value maps, a multi-slice, ten-echo Carr-Purcell-Meiboom-Gill (CPMG) 

sequence [T2FIT, Fig. 1 (c)] was applied with the parameters listed in Table 1. To make the 

acquisition time manageable, the T2FIT only covered the mid-femur section of the proximal 

pelvic limbs. The computation of T2 value maps is described in detail in section II.2.2.2.
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II.2. Image Analysis Method

Our biomarker quantification scheme is composed of three modules: muscle segmentation, 

pre-processing, and biomarker analysis. As a prerequisite, we first segmented six major 

proximal pelvic limb muscles of dogs in the MRI images. Then, the process continued with 

several preprocessing steps and the calculation of the MRI biomarker including texture-

based biomarkers. Finally, regional statistics of the MRI biomarkers were calculated for 

each segmented muscle and these biomarkers were assessed in the context of GRMD disease 

progression.

II.2.1. Muscle segmentation—In this study, we quantified MRI-based biomarkers of 

GRMD dogs and normal littermates in six proximal pelvic limb muscles: cranial sartorius 

(CS), rectus femoris (RF), semitendinosus (ST), biceps femoris (BF), gracilis (GR), and 

adductor magnus (AD). These muscles were selected to have a balanced representation of 

flexors and extensors, variable sizes and variable histopathological progression, based on 

our prior pathologic studies [6, 18]. For instance, histopathologic changes in the CS occur 

earlier than those in the vastus lateralis [19]. As the anatomical structures of the left and 

right limbs have a high degree of bilateral symmetry, i.e. differences between the left and a 

mirrored right leg of the same subject are expected to be small when compared to inter-

subject differences, we focused on the left limb in this research for the purpose of tool 

development and feasibility/validation analysis. We expect that muscle segmentation of the 

right limb and the subsequent biomarker quantification can be obtained by mirroring the MR 

images and by applying the processing framework for the left limb.

In existing DMD and GRMD MRI studies, muscles were usually segmented manually. To 

reduce the workload of muscle segmentation, the muscles are generally segmented in a 

limited range, typically mid-section in the transverse view. For instance, in our previous 

work [20], we manually segmented the muscles in five slices close to the femoral mid-point. 

The midpoint of the femur was determined by first identifying the femoral head and condyle 

as the proximal and distal anatomical limits, respectively, and then dividing the distance 

between these landmarks in half. As the large majority of a muscle is excluded using such a 

limited segmentation approach, measurements of muscle volume as well as other biomarkers 

are quite likely inaccurate (see section III for our evaluation on this topic). To address this 

issue, we performed an interpolation-based semi-automatic whole muscle segmentation. 

First, prior to the segmentation, the MRI data were rigidly realigned to a standardized 

coordinate space, where transverse slices were perpendicular to the femur axis and the 

sagittal and dorsal slices were parallel to the lateral and cranial axes, respectively. An initial 

segmentation was then performed by three of the authors (ZF, YS, and JW), each manually 

delineating the outline of every muscle in every fifth slice only (per muscle, an average of 

24 manually-segmented slices) using the ITK-SNAP software (www.itksnap.org) [21]. The 

manual segmentation was performed independently, i.e., the raters were blinded to the 

diagnostic information of the dogs and blinded to segmentations from other raters. Thus, the 

manual segmentation of the muscles was unbiased. Figure 3 (a) shows the manual 

segmentation of the six muscles of a normal dog in a transverse slice. The segmentations of 

the remaining slices (4 slices between each 2 manually-segmented slices) were then 

interpolated via a straightforward linear interpolation scheme from the neighboring 

Wang et al. Page 4

Int J Comput Assist Radiol Surg. Author manuscript; available in PMC 2015 July 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.itksnap.org


manually-segmented slices. Figure 3 (b) shows the interpolated muscle volumes in three 

dimensional (3D) views. Given the non-folded appearance of proximal pelvic limb muscles, 

we did not expect a large error for such an interpolated segmentation approach.

Unlike the limited mid-femur range segmentations, this straightforward interpolation 

scheme allowed us to compute a set of MRI biomarkers, incorporating intensity information 

across most of the entire muscle’s length.

We created a reference dataset to assess the semi-automated segmentation method. ZF 

manually delineated the full muscles of CS, RF, and ST in the MRI scans of two normal 

dogs and two GRMD dogs. We used the biomarkers (Section II.2.3.) calculated in the 

manually segmented muscles as the reference standard. We employed the percent difference 

ratio D [Eq. (2)] of all biomarkers calculated in the evaluated muscle segmentation (Be) and 

reference muscle segmentation (Br, manual muscle segmentation) as the performance metric 

to measure agreement between our biomarker quantification tool and the reference standard.

2

II.2.2. Pre-processing—The pre-processing was divided into five steps: (1) intensity 

inhomogeneity correction, (2) calculation of T2 value map, (3) registration of T2w, T2fs, and 

T2 value maps, (4) intensity calibration of T2w and T2fs, and (5) calculation of MRI 

biomarker maps.

II.2.2.1. Intensity inhomogeneity correction: Intensity inhomogeneity refers to the slow, 

non-anatomic intensity variations of the same tissue in a MRI image, typically caused by B1 

inhomogeneity, receiver coil non-uniformity or static field inhomogeneity [22]. We used the 

N4 algorithm [23] [24] to correct for such intensity inhomogeneities. N4 aims at correcting 

intensity inhomogeneity by seeking the multiplicative bias field that maximizes the high 

frequency content in the intensity histogram.

II.2.2.2. Calculation of T2 value map: We calculated T2 value map on a voxel-by-voxel 

basis for the proximal pelvic limbs of dogs in the transverse plane of T2FIT by fitting an 

exponential decay curve to the signal intensity of the corresponding voxels using a linear-

least-squares curve-fitting algorithm [25]. In T2FIT, the intensity of a voxel as a function of 

echo time is fit to a monoexponential function [Eq. (1)].

1

where i is an index corresponding to the ith TE of the T2FIT and Ii(x,y,z) is the image 

intensity for the voxel (x,y,z) in the ith TE of the T2FIT. The monomial coefficient from the 

linear-least-square curve fit was weighted inversely and assigned to each voxel of T2 value 

map as the final T2 value map value. The dynamic range of the T2 value map was 16 bits.

The central slice of a T2 value map obtained from the T2FIT is shown in Fig. 1 (c). T2 value 

maps are sensitive to signal from both water and fat tissue. Thus, T2 value maps capture 
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changes in both fat and water content within muscles, such as those occurring due to disease 

progression. Furthermore, the T2 value maps are quantitative measurements (in ms) and not 

affected by the MR signal inhomogeneity. Thus, they can be directly employed for intra and 

inter-subject comparisons.

II.2.2.3. Image registration: Due to the possible presence of motion during the MRI 

acquisition, we co-registered the T2fs and T2 value maps to the T2w via standard rigid 

transformation using three translation parameters and three rotation parameters.

In the study presented in this paper, we used T2w as the fixed image as it provides better 

signal than the T2fs and higher resolution than the T2 value maps. We employed a mutual 

information metric [26] based implementation available within the Insight Segmentation and 

Registration Toolkit (ITK, www.itk.org) to register T2fs and T2 value maps to T2w for each 

MRI scan.

II.2.2.4. Intensity calibration: In contrast to the T2 value maps, T2w and T2fs are not 

inherently calibrated, so their intensity values cannot be directly compared across MRI scans 

from different subjects or even when acquired from the same subject at different times. To 

overcome this limitation, we calibrated the T2w and T2fs via an intensity-rescaling 

technique based on the mean intensity observed within subcutaneous fat regions. These fat 

regions were assumed to be composed of nearly pure fat in all dogs (independent of 

diagnosis). Because the fat signal is pre-saturated in T2fs, fat regions show very low 

intensity in T2fs but exhibit high intensity in T2w. For this calibration procedure, we first 

manually identified a subcutaneous fat region in three contiguous transverse slices at mid-

thigh of the proximal pelvic limb in the registered T2w and T2fs. The mean intensity of the 

subcutaneous fat region in calibrated T2w was then (arbitrarily) set to 1000 and the one in 

calibrated T2fs was set to 100. Thus, the intensities Ic of the calibrated T2w or T2fs were 

defined as:

Ic(x, y, z) = 900 / (m1 – m2) × I (x, y, z) + (100 × m1 – 1000 × m2) / (m1 – m2)

where I (x, y, z) is the intensity at voxel (x, y, z) in the non-calibrated T2w or T2fs and m1 

and m2 are the mean intensities of the subcutaneous fat regions in non-calibrated T2w and 

T2fs, respectively.

II.2.2.5. Calculation of MRI biomarker maps: To evaluate the importance of the fat and 

water signals in the MRI images, we first quantified the loss in intensity between intensity 

calibrated T2w and T2fs to compute an estimate of the fat signal in each voxel and thus 

create a fat map (FM):

FM (x, y, z) = IT2w (x, y, z) – IT2fs (x, y, z)

Because the fat signals were suppressed in the T2fs, the water signal in each voxel was 

simply estimated from the intensity of the voxel in the intensity calibrated T2fs image, 

allowing us to create a water map (WM) by

WM (x, y, z) = IT2FS (x, y, z)
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IT2w (x, y, z) and IT2fs(x, y, z) are the intensities of voxel (x, y, z) in the denoised and 

registered T2w and T2fs. Denoising was established via standard anisotropic diffusion 

smoothing [27]. Anisotropic diffusion is a technique to reduce image noise without 

removing significant edges, lines or other details that are important for the interpretation of 

the images. The performance of anisotropic diffusion smoothing is controlled by three 

parameters, the number of iterations, time step, and conductance, where the number of 

iterations and the time step are parameters used for controlling the smoothness of the image 

and conductance is used for controlling the edge contrast in the smoothed image. Without 

noise reduction, significant image noise may considerably impact the WM and FM map 

computation and could lead to incorrect water and fat signal related biomarkers as the FM is 

calculated via direct differences on the T2w and the T2fs images. However, the smoothing 

process may have side effects, such as the fusion of fat and muscle signals at the boundary 

of the subcutaneous fat and muscle regions. This problem can be reduced by using a 

relatively high conductance to enhance the contrast of different tissues in the smoothed 

image. In this study, we empirically selected the parameters for anisotropic diffusion 

smoothing by visually observing the smoothing effect in a subset of MRI scans (3 normal 

and 3 GRMD scans). The number of iterations was set to 5, time step was set to 0.625 s, and 

conductance was set to 1.

II.2.2.6. Statistical texture biomarker: Statistical texture analysis has been widely used in 

medical imaging applications to characterize texture patterns within the image [28, 29, 30, 

31]. In muscular dystrophy MRI studies, dystrophic muscles usually present a unique texture 

pattern [32]. Thus, the statistical texture analysis technique has great potential to 

discriminate normal from dystrophic muscle on MRI [32,33].

In this study, we automatically generated contiguous quadrilateral volumes of interest 

(VOIs) with a fixed size (empirically chosen at 31 × 31 × 31 mm, as the average diameter of 

the proximal limb of golden retriever dogs is approximately 30 mm. Furthermore, we 

intentionally chose an odd number so that we could unambiguously determine the center 

voxel of each VOI. The distance between adjacent VOIs is 50% of the VOI size, resulting in 

50% overlap between adjacent VOIs. Areas of the VOI outside the segmented muscle were 

ignored when calculating texture features.

II.2.2.6.1. Histogram texture features—We employed standard intensity histogram-

based first-order texture features and run-length matrix-based high-order texture features to 

analyze the muscle MR images [34]. We calculated the histogram texture features on the 

(intensity calibrated) T2w image as it provides better signal than the T2fs and higher 

resolution than the T2 value maps. Given the expected difference in MR appearance, we 

calculated standard deviation (SD) of the T2w intensities [Eq. (3)] for each muscle in each 

VOI. We then calculated the average of the SD in all VOIs for each muscle. We 

hypothesized that T2w standard deviation would be higher in GRMD versus normal dogs 

and that it would change significantly across time in GRMD dogs but not in normal dogs.
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3

where I(x) is the intensity of voxel x, Ī is the mean intensity of a muscle in a VOI, and n is 

the number of voxels of a muscle in a VOI.

II.2.2.6.2. Three-dimensional run-length matrix features—Compared to the 

histogram texture features, the run-length matrix features take into account both the intensity 

information and spatial distribution of voxels, and thus nicely complement the histogram 

texture features.

Run-length Matrix: A gray-level ‘run’ is defined as a set of consecutive voxels of similar 

intensity level in a given direction within a predefined similarity range, commonly chosen at 

1.5% percent of the full intensity range (as determined by 64 run-length matrix bins). An 

element of a standard run-length matrix measures the number of occurrences of a run with a 

specific length and specific intensity level in a given direction. However, such direction-

specific run-lengths lack the power to characterize the 3D extension of the texture features 

in 3D MRI scans, because they only assess the intensity distribution in a single direction. In 

this study, we developed an extended method to directly measure 3D run-length matrix-

based texture features.

First, to reduce the influence of voxels with very bright intensities caused by image noise, 

the top 5 % of the intensities were set to the value of the 95th percentile. We then employed 

a grayscale 3D connected-component labeling technique to identify 3D run-length 

components with similar intensity for each muscle in each VOI. We chose a similarity range 

of 1.5 percent of the cropped intensity range. This allowed us to establish 3D run-length 

matrices for each VOI in each muscle, which assess run-lengths via 3D volumetric runs 

rather than the conventional, single-direction length measurements.

Finally, we calculated five commonly used run-length matrix features, including short run 

emphasis (SRE), long run emphasis (LRE), gray-level non-uniformity (GLN), run-length 

non-uniformity (RLN), and run percentage (RP) [34], for each muscle in each VOI. We then 

calculated the average of each feature in all VOIs for each muscle.

II.2.3. Biomarker analysis—Our quantification tool was designed to measure a set of 

MR parameters and their changes across time. Because muscle atrophy/hypertrophy, 

inflammation, and fat infiltration are characteristic histopathological features of DMD / 

GRMD, MRI derived biomarkers of interest within muscle regions included three categories 

of biomarkers: (1) muscle volume, (2) mean intensities in fat percentage (FP), water 

percentage (WP), and T2 maps, and (3) statistical texture features. These biomarkers were 

used to longitudinally and cross-sectionally assess and compare the structural tissue changes 

of GRMD dogs and normal littermates. We performed the two tailed t-test assuming unequal 

variances to evaluate the group significant differences (p-value < 0.05 was considered 

statistically significant) between normal and GRMD dogs.
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II.2.3.1. Muscle volume: Muscle volume was calculated straightforwardly from the muscle 

segmentation via voxel counting. Based on our previous studies [6, 18], we hypothesized 

that (1) most of the muscles of GRMD dogs would have smaller volumes than those of 

normal littermates; a notable exception is the CS, which is spared and may even undergo 

hypertrophy [18] followed by atrophy, with increased endomysial space due to fat and 

connective tissue; (2) muscle volumes of normal dogs would increase with age, whereas 

muscle volumes of most GRMD muscles would not increase with age or would do so at a 

lesser rate than normal dogs, again with the exception of the CS.

II.2.3.2. Intensity map based biomarkers: For the biomarkers derived from FM, WM, and 

T2 value map, we computed the arithmetic mean after the application of an erosion 

operation with a circular kernel (radius = 3 voxels) on the muscle segmentation to reduce the 

influence of partial-volume voxels. We hypothesized that (1) muscles of GRMD dogs would 

contain more fat than normal dogs and thus have higher mean intensities in FM and T2 

value map than normal dogs; (2) the mean intensities in all the biomarker maps of normal 

dogs would not change significantly with age, whereas the mean intensities of GRMD dogs 

would vary among muscles, with those for some muscles increasing and others potentially 

decreasing with age.

II.2.3.3. Statistics of texture analysis based biomarkers: For the statistical texture based 

biomarkers, we also computed the arithmetic mean on the eroded muscle segmentations. For 

these biomarkers, we hypothesized that muscles of GRMD dogs would contain more fat and 

inflammation than normal dogs and thus (1) GRMD dogs would have higher SRE, GLN, 

RLN, and RP of run-length matrix than normal dogs; (2) GRMD dogs would have lower 

LRE of run-length matrix than normal dogs; and (3) the run-length matrix features of normal 

dogs would not change significantly with age, whereas those of GRMD dogs would 

significantly change with age.

III. RESULTS

Figure 3 shows the mean value with standard error of the biomarkers of each muscle in 

normal and GRMD dogs at 3-, 6-, and 9-months of age, respectively. Normal muscles had 

consistently larger volumes (two tailed t-test assuming unequal variance for all the data of 

normal and GRMD dogs, p = 0.002) and had lower T2 value map (p < 0.001), FM (p = 

0.002), and WM (p < 0.001) values when compared to GRMD dogs at most of the age 

points, except for FM at 3-months of age. Notably, consistent with our original hypothesis, 

the GRMD CS had a larger volume than that of normal dogs. For normal dogs, the mean 

intensities in T2 value map showed a consistent decline with age, whereas the mean 

intensities in FM and WM did not change. For GRMD dogs, the mean intensities in WM 

showed a decline with age, whereas the mean intensities in FM did not change; the mean 

intensities in T2 value map also showed a significant decline between 6- and 9-months of 

age, whereas the mean intensities in T2 value map did not change over this period.

Figure 5 (a) shows the average value of SD of histogram with standard error of muscles in 

T2w of normal and GRMD dogs at 3-, 6-, and 9-months of age. Overall, the SD differed 
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significantly between normal and GRMD (p < 0.001, two tailed t-test assuming unequal 

variance).

Figures 5 (b)-(f) show the run-length matrix texture features with standard error for each 

muscle in normal and GRMD dogs at 3-, 6-, and 9-months of age, respectively. Overall, the 

SRE (p < 0.001, two tailed t-test assuming unequal variance), GLN (p < 0.001), RLN (p < 

0.001), and RP (p < 0.001) of GRMD muscles were higher while the LRE (p < 0.001) was 

lower, when compared to normal muscles at each age. With respect to longitudinal changes 

across time, the change trend for GLN and RP did not differ significantly between normal 

and GRMD muscles with age (Fig. 5 b-f), whereas, the SRE, LRE, and RLN differed 

between normal and GRMD muscles with age. In particular, the LRE of GRMD muscles 

showed a significant increment with age, whereas the LRE of normal muscles did not 

change.

Muscle segmentation is an essential step for the quantification tool. Table 2 shows the 

imaging-map-based biomarkers and volume performance calculated from the interpolation-

based muscle segmentation and reference muscle volume of two normal dogs and two 

GRMD dogs in CS, RF, and ST. The average percent error ratios over the mean intensities 

of FM, WM, and T2 value map were quite low at 1.28%, 0.73%, and 0.40%, respectively. 

We also calculated the biomarker performance from the limited-range muscle segmentation 

(only five consecutive mid-femur slices) (Table 2). The average error ratios over the mean 

intensities of FM, WM, and T2 value map were considerably higher at 28.12%, 2.70%, and 

2.95%, respectively. Overall, the errors were an order of magnitude larger in the limited-

range muscle segmentations than in the interpolated full muscle segmentations. By use of 

the paired two tailed t-test, we found that the errors were significantly higher in the limited-

range muscle segmentation than in the interpolated full muscle segmentation (p = 0.001, p = 

0.04, p = 0.04 for fat map, water map, and T2 value map, respectively).

In order to test whether the above results may be true in GRMD only, we investigated the 

relative error-rates of biomarkers in GRMD (RGRMD) versus normal (Rnormal) dogs by 

calculating the ratio between RGRMD and Rnormal, i.e., RGRMD / Rnormal. The ratios for FM, 

WM and T2 value of the segmentation in mid-femur slices were 0.72, 5.85, and 1.10, 

respectively; the ratios for fat map, water map and T2 value of the interpolation-based whole 

muscle segmentation were 1.06, 4.10, and 0.98, respectively. These results do not show 

obvious evidence to support that the elevated error rates are present only in GRMD. 

Furthermore, we also calculated the difference of biomarkers derived from interpolation-

based full muscle segmentation and the limited range muscle segmentation over all normal 

dog scans in our study for cranial sartorius (CS), femoris (RF), and semitendinosus (ST). 

The result shows a comparable error levels (21.27%, 4.80%, and 2.94% for fat map, water 

map, and T2 value, respectively) to the ones shown in Table 2 (28.12%, 2.70%, and 2.95% 

for fat map, water map, and T2 value, respectively). While there is no ground truth full 

muscle segmentation available for all these scans, it can safely be said that the interpolation-

based full muscle and mid-femur limited muscle biomarkers show large differences. Given 

that the interpolation-based full muscle segmentation showed clearly better performance 

when compared to cases with ground truth, this indicates that limiting the segmentation to a 

small range introduces significant variation/errors in MR biomarker measurements. Thus, 
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the interpolation-based whole muscle segmentation scheme allowed us to compute fairly 

stable and accurate values for the biomarkers, whereas the limited range segmentation based 

measures show higher variance and errors. .

We also investigated the segmentation inter-rater variability between ZF and JW on the 

semi-automatic segmentation scheme (Table 3). The comparison results showed that the 

average performance across raters over mean intensities in FM, WM, and T2 value map 

were appropriately low at 6.36%, 5.28%, and 1.21%, respectively. The inter-rater variability 

for normal and GRMD dogs showed similar performance (p > 0.99, paired two tailed t-test). 

This relatively small inter-rater difference indicates that our biomarker quantification tool is 

reliable and stable.

IV.DISCUSSION

Muscle segmentation plays an important role in DMD MRI biomarker quantification. The 

results from our study demonstrated that MRI biomarkers computed from the muscle 

regions determined by semi-automatic full muscle segmentation have a lower error rate than 

biomakers from regions determined by the standard limited range manual muscle 

segmentations (5 mid-femur slices) [9, 10, 35]. For the muscle volume, one could expect 

that full muscle segmentation would provide more accurate measurement results than in 

limited range segmentation. The magnitude of the error observed in the other biomarkers 

was more surprising. This result is likely due to the inhomogeneous nature of muscle lesions 

in DMD / GRMD subjects. Furthermore, it strongly highlights that the whole or at least a 

large segment of the muscle should ideally be segmented to miminize sampling error, while 

excluding irrelevant surrounding tissues. Our experimental results showed that a 

straightforward interpolation scheme allowed computation of a fairly stable and accurate set 

of MRI biomarkers. Although the muscles of normal dogs may contain less heterogeneity, 

the quantification at mid-femur of normal dogs still may not be optimal, because not all the 

muscles are growing along the entire femur bone. For instance, the mid-femoral point is 

generally the distal of gracilis. Because the sectional area of the distal is small, the 

quantification would be easily affected by the human errors (muscle segmentation) and 

image noises. Therefore, whole muscle volume based biomarker quantification is highly 

recommended for the muscular dystrophic studies.

The overall computational scheme of this tool is composed of “automatic” and “interactive” 

processing steps. The automatic processing part consists of the pre-processing and 

biomarker calculation. The average automatic processing time is about 15 minutes / scan 

(CentOS 5.6 Linux, Intel 64 bit 1.66GHz quad-core, 128GB RAM). The interactive 

processing part consists of the muscle segmentation and identification of subcutaneous fat 

regions, in which muscle segmentation is the most labor-intensive task. Manual full muscle 

segmentation for each muscle would require an average of 60 minutes, whereas the semi-

automatic muscle segmentation for each muscle, including the manual delineation of muscle 

regions in every 5th slice and the automatic segmentation interpolation, averaged less than 

15 minutes. Our experimental results indicate that the target segmentation accuracy 

requirements of the automatic muscle segmentation are relatively relaxed, as the GRMD 

biomarkers could be estimated fairly stably in the presence of smaller segmentation errors 
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(as were likely present in these semi-automatic segmentations). In our ongoing research, we 

are investigating the use of fully automatic multi-atlas-based muscle segmentation schemes.

While fat ultimately increases histologically in both DMD and GRMD, the relatively young 

age of these dogs and short 6–9 month time course of the study may not have been sufficient 

to capture more chronic fatty infiltration. Another potential reason is the inherently large 

variability of the fat measures in images acquired with the selected fat suppression-based 

MR protocols. Ultimately spectroscopic methods such as proton MR spectroscopy may be 

more sensitive to these early, small changes in lipid levels at low fat fractions.

The T2 value maps covered the mid-femur section of the proximal pelvic limbs (Section II. 

1). As described above, MRI biomarkers calculated from full muscle segmentation show 

considerably less error than from limited range muscle segmentations. Thus, a T2 value map 

should ideally cover the entire length of a muscle or at least a large segment of the muscle to 

maximize the number of pixels included in the calculation. As a result of experiments 

presented here, we modified our imaging protocol in ongoing studies such that the T2FIT 

sequence (used for calculating T2 value map) covers the full proximal pelvic limb, while 

adjusting the slice thickness and number of echoes to keep a comparable scan time (TR 3000 

ms / TE 10, 20, 30, 40, 50 ms; slice thickness 7 mm; 30 slices per echo). We have tested the 

modified imaging protocol on two GRMD dogs (see Table 4 for T2 value based biomarker 

results). The average biomarker difference between limited and full muscle segmentations 

for T2 value map was 15.14% (p < 0.0001, paired two tailed t-test). The smallest muscles 

had the greatest difference between the two methods. This suggests that the T2-value-based 

biomarker should also be assessed within the full muscle or include enough pixels within a 

given muscle to minimize the effects of sampling error.

We observed that T2w and T2fs images generally contain higher intensity inhomogeneities 

than the T2 value maps. Although we applied the N4 algorithm to correct intensities, the 

strong intensity inhomogeneity in T2w and T2fs could not be completely eliminated. 

Furthermore, the T2w and T2fs images were calibrated using manually- identified 

subcutaneous fat. Because the manual identification of subcutaneous fat is subject to human 

rater error, the intensity calibration may not be fully accurate. It was, therefore, not 

surprising to find that the inherently intensity calibrated T2 value map based biomarkers 

were more reliable than those of our fat and water map based biomarkers.

Although the statistical texture analysis technique has been used in many imaging 

applications of muscle diseases, to our knowledge, it has not been widely used for studies of 

muscular dystrophy. One characteristic histopathologic feature of DMD and GRMD is the 

patchy, inhomogeneous and differential involvement of lesions within even the same 

muscle. The commonly used mean intensity marker will not be sufficiently sensitive to 

capture this characteristic inhomogeneity. In this study, we employed histogram features and 

adapted 3D run-length matrix features to investigate the difference in MR appearance of 

normal and GRMD muscles cross-sectionally and longitudinally across time. Because of 

fatty change , one would expect GRMD muscles to have coarser texture than normal 

muscles. Therefore, the affected muslces would have more short runs, less long runs, and a 

higher total number of runs than normal muscles. Furthermore, because muscle lesions are 
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irregular, the uniformity in the distribution of runs over grey levels and over the lengths of 

runs would generally be higher in affected versus normal muscles. For these reasons, the 

run-length matrix features distinguished GRMD from normal muscles. Overall, the 

statistical texture biomarkers had advantages in quantifying group differences for the 

GRMD and normal dogs and longitudinal disease progression in GRMD dogs, suggesting 

that these biomarkers will be useful in DMD clinical trials.

In this study, we proposed several MRI derived biomarkers and statistical texture analysis 

based biomarkers. Histopathologic / functional correlation would be required to validate 

these markers and is ongoing, using functional indices of isometric distal limb force [37] and 

repeated eccentric contractions; muscle weight; and histopathological measures of myofiber 

and endomysial space (non-contractile tissue) per unit area [38, 39].. In this paper, we 

focused on developing a biomarker quantification tool. Thus, validation of the proposed 

biomarkers using histopathologic / functional findings is outside the paper’s scope and will 

be described separately..

As a final note, we plan to disseminate this biomarker quantification tool publicly as open 

source on NIH’s Neuro-Imaging Toolkit and Resource Clearinghouse (NITRC, http://

www.nitrc.org/). We hope this quantification tool will constitute a valuable resource for the 

DMD research community.

V.CONCLUSIONS

In this study, we developed a semi-automatic MRI biomarker quantification tool 

incorporating enhanced histogram based statistical features and novel 3D run-length matrix 

based statistical texture biomarkers in the GRMD model of DMD. Our quantification tool 

showed clear group differences for the affected and normal dogs and longitudinal disease 

progression in affected dogs, albeit with operator input for the segmentation of muscles and 

subcutaneous fat regions. Our quantification tool provided useful MRI biomarkers for 

GRMD. However, it also had some limitations: (i) the muscle segmentation method was not 

fully automated and required human rater input; (ii) the subcutaneous fat regions were 

identified manually for the intensity calibration; and (iii) the intensity inhomogeneous 

correction was imperfect. In our ongoing research, we are focusing on development of fully 

automatic muscle segmentation techniques to promote efficiency and reliability of our 

scheme.
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Fig. 1. 
MRI scan of the proximal pelvic limb at mid-thigh of a normal control dog in transverse 

view. (a) T2-weighted (T2W) image and. (b) T2-weighted fat suppressed (T2fs) image, and 

(c) the transverse view of a T2 value map derived from T2FIT.
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Fig. 2. 
(a) Manual muscle segmentation of ST = semitendinosus (yellow), RF = rectus femoris 

(red), CS = cranial sartorius (light blue), AD = adductor magnus (blue), GR = gracilis 

(pink), and BF = biceps femoris (brown) in a transverse view and (b) linearly interpolated 

muscle volumes in 3D view.
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Fig. 3. 
The relationship between age and the average value of aveage value of (a) muscle volume 

(two tailed t-test assuming unequal variance for all the data of normal and GRMD dogs, p = 

0.002), (b) fat map (p = 0.002), (c) water map (p < 0.001), and (d) T2 value (p < 0.001) for 

normal and GRMD dogs with standard errors.
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Fig. 4. 
The relationship between age and the average value of each histogram and run-length matrix 

texture feature for normal and GRMD dogs with standard errors. (a) standard deviation of 

histogram (two tailed t-test assuming unequal variance for all the data of normal and GRMD 

dogs, p < 0.001), (b) SRE (p < 0.001), (c) LRE (p < 0.001), (d) GLN (p < 0.001), (e) RLN (p 

< 0.001), and (f) RP (p < 0.001).
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Table 3

Inter-rater variability: biomarker differences of cranial sartorius (CS), rectus femoris (RF), semitendinosus 

(ST), biceps femoris (BF), gracilis (GR), and adductor magnus (AD) between ZF and JW’s segmentation.

Fat Map Water Map T2 Value

CS 7.63% 5.05% 4.22%

RF 8.47% 4.11% 0.78%

ST 5.56% 0.69% 0.66%

BF 2.48% 0.42% 0.41%

GR 9.74% 1.03% 1.04%

AD 4.26% 0.28% 0.14%

Average 6.36% 1.93% 1.21%
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Table 4

The average T2 value map-based biomarkers of cranial sartorius (CS), rectus femoris (RF), semitendinosus 

(ST), biceps femoris (BF), gracilis (GR), and adductor magnus (AD) calculated in the entire proximal pelvic 

limb T2 value map and mid-femur T2 value map.

T2 Value

Entire proximal
limb T2 value map

Mid-femur T2
value map

CS 60.62 45.66

RF 55.94 46.73

ST 53.90 46.48

BP 55.00 48.14

GR 53.38 46.72

AD 53.08 47.26

Average 55.32 46.83

Difference 15.14%
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