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Abstract

Hepatocellular carcinoma (HCC) is one of the most prevalent cancers and is rising in incidence 

worldwide. The molecular mechanisms leading to the development of HCC are complex and 

include both genetic and epigenetic events. To determine the relative contribution of these 

alterations in liver tumorigenesis, we evaluated epigenetic modifications at both global and gene 

specific levels, as well as the mutational profile of genes commonly altered in liver tumors. A 

mouse model of fibrosis-associated liver cancer that was designed to emulate cirrhotic liver, a 

prevailing disease state observed in most humans with HCC, was used. Tumor and non-tumor 

liver samples from B6C3F1 mice treated with N-nitrosodiethylamine (DEN; a single ip injection 

of 1 mg/kg at 14 days of age) and carbon tetrachloride (CCl4; 0.2 ml/kg, 2 times/week ip starting 

at 8 weeks of age for 14 weeks), as well as corresponding vehicle control animals, were analyzed 

for genetic and epigenetic alterations. H-ras, Ctnnb1, and Hnf1α genes were not mutated in tumors 

in mice treated with DEN+CCl4. In contrast, the increased tumor incidence in mice treated with 

DEN+CCl4 was associated with marked epigenetic changes in liver tumors and non-tumor liver 

tissue, including demethylation of genomic DNA and repetitive elements, a decrease in histone 3 

lysine 9 trimethylation (H3K9me3), and promoter hypermethylation and functional down-

regulation of Riz1, a histone lysine methyltransferase tumor suppressor gene. Additionally, the 

reduction in H3K9me3 was accompanied by increased expression of long interspersed nucleotide 

elements (LINE) 1 and short interspersed nucleotide elements (SINE) B2, which is an indication 

of genomic instability. In summary, our results suggest that epigenetic events, rather than 

mutations in known cancer-related genes, play a prominent role in increased incidence of liver 

tumors in this mouse model of fibrosis-associated liver cancer.
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Introduction

Hepatocellular carcinoma (HCC) is one of the most prevalent, life-threatening human 

cancers1. While the overall cancer incidence and death rates are steadily declining, the 

incidence of HCC continues to increase1,2. The development and progression of HCC is a 

multistep process characterized by the progressive, sequential evolution of morphologically 

distinct pre-neoplastic lesions (formed as a result of chronic liver injury, inflammation, 

hepatocellular degeneration and necrosis, hepatocellular regeneration and small cell 

dysplasia, followed by the appearance of low- and high-grade dysplastic nodules), which 

eventually culminates in the formation of HCC3,4. In humans, 70–90% of HCC cases are 

associated with advanced liver fibrosis or cirrhosis3. HCC most often arises in the presence 

of chronic liver inflammation and fibrosis/cirrhosis that may result from disturbances in 

metabolism, toxic insults, or viral infection5.

While the histopathologic features of HCC is well established, the molecular mechanisms of 

the cancer-promoting effects of the main etiological factors, including cirrhosis, are not well 

understood4,6. Elucidating the molecular mechanisms underlying the pathogenesis and 

progression of HCC is critical for prevention of this disease and development of effective 

therapies7. Investigation of these mechanisms using human HCC samples is desirable; 

however, few epidemiological studies have established both the causality and molecular 

underpinnings of the disease. Animal models that resemble human HCC development may 

provide important additional clues regarding the molecular sequelae of etiological factors 

linked to HCC8. A commonly used mouse liver cancer model is a single low dose injection 

of the genotoxic carcinogen N-nitrosodiethylamine (DEN) into 14-day-old male mice9. In 

addition, repeat dosing of the pro-fibrogenic agent carbon tetrachloride (CCl4) also results in 

development of HCC10. To model key pathophysiological events of human cirrhosis-

associated hepatocarcinogenesis, we used a combination of genotoxic, e.g., DEN, and non-

genotoxic, e.g., CCl4, insults to study the mechanisms of the development of fibrosis-

promoted HCC In mice11. The incidence of liver adenomas and carcinomas was more than 

two-fold greater in mice treated with DEN+CCl4 as compared to that in mice treated with 

each agent alone11.

The development of HCC is driven by the accumulation of genetic and epigenetic 

alterations12–14, however, a comparative analysis of the relative contribution of these 

aberrations is typically not performed in individual studies. The goal of the present study 

was to investigate the mechanistic roles and contribution of genetic and epigenetic events in 

fibrosis-associated liver carcinogenesis in mice. We hypothesized that distinct differences in 

such alterations exist in the liver tissue of animals with fibrosis-associated cancer in 

comparison to liver tissue of vehicle-control animals. Such alterations may explain, in part, 

the increased incidence of hepatic tumors in fibrotic liver in this mouse model, and provide 

insight into the molecular characteristics of human HCC.
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Materials and Methods

Animals, treatment, and tissue preparation

The in-life portion of this study, mouse treatments, tissue collection protocols, and the 

incidence of neoplastic liver lesions are detailed in Uehara et al.11. Briefly, male B6C3F1/J 

mice were allocated randomly to one control and three experimental groups. At two weeks 

of age, mice from two of the experimental groups were injected i.p. with DEN (1 mg/kg) in 

sterile phosphate buffered saline (PBS; 15 ml/kg). Mice from the control group and the 

remaining experimental group were injected with sterile PBS only. At eight weeks of age, 

mice from the control and the DEN-treated groups were injected i.p. two times per week 

with sterile olive oil (15 ml/kg). Mice from the remaining two experimental groups were 

injected i.p. two times per week with CCl4 (0.2 ml/kg) diluted in sterile olive oil for an 

additional 14 weeks. In summary, the groups were treated with either PBS+olive oil, DEN

+olive oil, PBS+CCl4, or DEN+CCl4. All mice were sacrificed at 22 weeks of age.

Screening for mutations in H-ras and Ctnnb1 genes

Total DNA was isolated from frozen liver tissue samples using DNeasy Mini Kits (Qiagen, 

Valencia, CA) according to the manufacturer’s instructions. Nested PCR analysis was used 

to examine codon 61 in exon 2 of the v-Ha-ras Harvey rat sarcoma viral oncogene homolog 

(H-ras) gene and codons 5–57 in exon 2 of the catenin (cadherin associated protein) beta 1 

(Ctnnb1) gene. Reactions were performed on tumor and matched adjacent non-tumor liver 

tissue samples from mice treated with DEN+CCl4, as well as normal livers from control 

mice. PCR products were purified, cycled with Terminal Ready Reaction Mix-Big Dye 

(Perkin Elmer, Foster City, CA), and sequenced.

Immunohistochemical staining for β-catenin activation and Hnf1α inactivation

The activity and cellular location of β-catenin (CTNNB1) was evaluated by immunostaining 

using goat polyclonal CTNNB1 (sc-1496, 1:50; Santa Cruz Biotechnology, Santa Cruz, CA) 

as described in Hoenerhoff et al14. The levels of glutamine synthetase (GLUL) and liver 

fatty acid binding protein 1 (FABP1) was assessed by immunostaining as described in 

Jeannot et al.15.

Global DNA methylation

The methylation status of genomic DNA was evaluated by a methylation sensitive cytosine 

extension as described in Pogribny et al.16.

McrBC-methylation sensitive quantitative PCR

The methylation status of long interspersed nucleotide elements (LINE) 1 and short 

interspersed nucleotide elements (SINE) B2 repetitive sequences was determined by a 

McrBC-methylation sensitive quantitative PCR assay as described in Martens et al.17.

Methylation-specific PCR

The methylation status of CpG sites located within the promoter/first exon region of cyclin-

dependent kinase inhibitor 2A (Cdkn2a), O6-methylguanine-DNA methyltransferase 
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(Mgmt), suppressor of cytokine signaling 1 (Socs1), cadherin 1 (Cdh1), and PR domain 

containing 2, with ZNF domain (Riz1) was determined by methylation-specific PCR (MSP) 

as previously described18.

RNA extraction and quantitative real-time reverse transcription-PCR

Total RNA was extracted from liver tissue using TRI Reagent (Ambion, Austin, TX) 

according to the manufacturer’s instructions. Total RNA (5 µg) was reverse transcribed and 

gene expression was then determined by quantitative reverse-transcription PCR (qRT-PCR) 

using gene expression assays (Applied Biosystems, Foster City, CA). Each sample was 

analyzed in duplicate. Reactions were performed in a 96-well plate format. Each plate 

contained one experimental gene and the housekeeping gene (Gusb1 or Gapdh). The relative 

amount of each mRNA transcript was determined using the 2−ΔΔCt method19.

Western blotting

The level of trimethylation of histone 3 lysine 9 (H3K9), histone 3 lysine 27 (H3K27), and 

histone 4 lysine 20 (H4K20) in the livers of the mice was analyzed by Western blot analysis 

as described in Tryndyak et al.20.

Chromatin immunoprecipitation (ChIP) assay

Formaldehyde cross-linking and ChIP assay with primary antibodies against H3K9me3 

(Millipore Corporation) was performed by using a Chromatin Immunoprecipitation Assay 

Kit (ChIP) (Millipore Corporation). Purified DNA from immunoprecipitates and input DNA 

were analyzed by quantitative PCR with primers for the mouse LINE1 and SINE B2 

repetitive sequences. The results were normalized to the amount of input DNA and 

presented as fold change for each DNA in liver of mice from experimental groups relative to 

control mice.

Statistical analyses

Results are presented as mean ± S.D. Data were analyzed by one-way analysis of variance 

with pair-wise comparisons being made by the Student-Newman-Keuls method. When 

necessary, the data were natural log transformed before conducting analysis to maintain a 

more equal variance or normal data distribution. P-values < 0.05 were considered 

significant.

Results

Incidence of hepatic preneoplastic and neoplastic lesions

The mouse model of liver tumorigenesis in fibrotic liver was detailed in Uehara et al11. Both 

neoplastic (adenomas and carcinomas) and pre-neoplastic (foci) lesions were found in mice 

treated with DEN+olive oil, PBS+CCl4, or DEN+CCl4. Specifically, in the DEN+olive oil-

treated group, foci were observed in 95% (19/20) of the mice and adenomas in 10% (2/20). 

In the PBS+CCl4-treated group, the percentage of mice with foci, adenomas and carcinomas 

was 12.5% (1/8), 12.5% (1/8) and 25% (2/8), respectively. In the DEN+CCl4-treated group, 

the percentage of mice with foci, adenomas and carcinomas was 31% (8/26), 100% (26/26) 
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and 50% (13/26), respectively. Hepatocellular adenomas displayed proliferation of relatively 

uniform hepatocytes accompanied with a loss of normal lobular architecture and 

compression of the surrounding parenchyma, while the histopathological features of 

hepatocellular carcinomas consisted of a broad trabecular growth pattern of atypical 

hepatocytes with hemorrhaging and ischemic necrosis in the center of the tumors 

(Supplementary Figure 1). Avascular and stromal invasions were also occasionally present 

in the hepatocellular carcinomas.

Mutational profiling of H-ras, Ctnnb1, and Hnf1α in liver tumors in mice treated with DEN 
and CCl4

H-ras, Hnf1α, and Ctnnb1 genes were examined for the presence of mutations. Codon 61 of 

the H-ras gene has been identified as a hot spot for point mutations in both spontaneous and 

chemically-induced mouse hepatic tumors21. Although mutations in HRAS in human HCC 

are not common, overexpression of members of the RAS oncogene family, including HRAS, 
has been reported22. Mutations in Ctnnb1 are a commonly observed event in 

hepatocarcinogenesis, most often found in the mouse exon 2 and in the corresponding 

human exon 323. Human hepatocellular adenomas often contain inactivating mutations of 

the HNF1A gene24; these mutations have been suggested to be a result of exposure to 

genotoxic agents25.

Mutations in codon 61 of H-ras were rare (1/24, 8.3%) in mice treated with DEN+CCl4. One 

animal (with 13 adenomas and no carcinomas in its liver) harbored H-ras mutations, and the 

mutations were observed in both tumors and matched adjacent non-tumor liver tissue. 

Interestingly, the mutation was different in the tumor tissue (A→T transversion at the 

second base) and the adjacent non-tumor tissue (C→A transversion at the first base). No 

significant differences in gene expression of H-ras were observed between vehicle control, 

tumor, and adjacent non-tumor liver tissues of DEN+CCl4-treated mice (Supplementary 

Figure 2).

Mutations in exon 2 of Ctnnb1 were not observed in either tumor or adjacent non-tumor 

liver tissue of mice treated with DEN+CCl4. Consistent with this finding, there were no 

differences in protein expression or cellular localization of CTNNB1 by 

immunohistochemistry (Figure 1, left panels). Tumors and adjacent normal tissues from 

mice treated with DEN+olive oil, PBS+CCl4, or DEN+CCl4 were negative for GLUL 

(Figure 1, middle panels), confirming the absence of an activating mutation in Ctnnb1. 

Because adenomas were found in all treatment groups, fatty acid binding protein (L-

FABP1), a downstream target of Hnf1α, was used as a marker for inactivating mutations in 

Hnf1α. Liver tissues from animals in all groups were uniformly stained for FABP1, 

indicating a normal functioning Hnf1α (Figure 1, right panels).

DNA methylation changes in liver tumors in mice treated with DEN and CCl4

It is well-established that both mouse and human liver tumors exhibit substantial alterations 

in DNA methylation26. Hence, the status of genomic and gene-specific DNA methylation in 

liver tumors induced by DEN+CCl4 treatment was examined. Figure 2A shows that DNA 

was markedly hypomethylated both globally and within LINE1 and SINE B2 repetitive 
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elements in tumors as compared to liver tissue from vehicle control mice. It is well-

established that the extent of methylation of these repetitive elements strongly corresponds 

to the level of global DNA methylation27.

Figure 2B shows that five tumor suppressor genes, Cdkn2a, Mgmt, Socs1, Cdh1, and Riz1, 
all known to be commonly epigenetically altered in HCC26,28, were heavily methylated in 

liver tumors in DEN+CCl4-treated mice, while these genes were largely unmethylated in the 

livers of control mice. One of the main cancer-associated epigenetic features is the silencing 

of aberrantly methylated genes29. Hence, the expression of these five genes was also 

evaluated. Figure 2C shows that among the analyzed genes, only the expression of Riz1 and 

Mgmt was significantly decreased in association with promoter hypermethylation in liver 

tumors from mice treated with DEN+CCl4. Changes in the expression of Cdkn2a, Socs1, 

and Cdh1 did not exhibit such an association with the incidence of promoter methylation.

DNA methylation changes in fibrosis-associated mouse hepatocarcinogenesis

To determine the role of epigenetic alterations in the progression of mouse fibrosis-

associated liver carcinogenesis, the status of genomic DNA methylation in non-tumor liver 

tissues was assessed. Figure 3A shows that DNA isolated from non-tumor liver tissue of 

mice treated either with PBS+CCl4 or with DEN+CCl4 was also markedly hypomethylated. 

Interestingly, the extent of methylation of global DNA as well as of LINE1 and SINE B2 

repetitive DNA sequences in non-tumorous liver tissue from mice treated with PBS+CCl4 or 

with DEN+CCl4 was similar to that of liver tumors in mice treated with DEN+CCl4 (Figure 

3A). In contrast to the results obtained in mice treated with PBS+CCl4 or DEN+CCl4, the 

level of DNA methylation in the livers of mice treated with DEN+olive oil was not different 

from that of control mice.

To further evaluate the role of DNA methylation changes in fibrosis-associated mouse liver 

carcinogenesis, promoter methylation and expression of Cdkn2a, Mgmt, Socs1, Cdh1, and 

Riz1 in non-tumor liver tissue were examined. Figure 3B shows that these tumor suppressor 

genes were methylated in the non-tumorous liver samples in DEN+CCl4-treated mice, while 

they were largely unmethylated in the livers of control mice. However, the extent of Mgmt, 
Socs1, and Riz1 methylation in non-tumor tissue was noticeably lower than in liver tumors. 

Interestingly, in PBS+CCl4-treated mice, Cdkn2a, Socs1, Cdh1, and Riz1 were methylated 

in ≥ 40% of the non-tumorous liver samples. In DEN+olive oil-treated mice, only Socs1 was 

methylated in ≥ 40% of adjacent non-tumor liver samples.

Figure 3C shows that among all of the analyzed genes, only the expression of Mgmt and 

Riz1 was significantly decreased in association with promoter hypermethylation in the non-

tumor liver tissues of mice treated with DEN+CCl4. Changes in the expression of Cdkn2a, 

Socs1, and Cdh1 did not exhibit such an association with the incidence of promoter 

methylation. The expression of these genes was similar in non-tumor and tumor tissue from 

the livers of mice treated with DEN+CCl4 (Figures 2C and 3C).

Histone methylation during fibrosis-associated mouse hepatocarcinogenesis

It has been previously reported that a reduction in trimethylation of H3K9, H3K27, and 

H4K20 affects genomic stability30,31, and is an event observed in various human cancers. 
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Figure 4 shows a large decrease in H3K9 trimethylation in the livers of mice treated with 

DEN+CCl4. The levels of H3K9 trimethylation in this experimental group were decreased 

by 58% compared with control mice. In contrast to the H3K9 methylation changes, the 

levels of H3K27 and H4K20 were decreased only slightly in the livers of DEN+olive oil-, 

PBS+CCl4-, and DEN+CCl4-treated mice.

Expression of chromatin-modifying genes during fibrosis-associated 
hepatocarcinogenesis

To determine the underlying mechanisms of these epigenetic aberrations, the expression of 

chromatin modifying genes involved in the proper maintenance of DNA and histone 

methylation was assessed by qRT-PCR. The most noticeable changes that occurred during 

fibrosis-associated carcinogenesis were a distinct up-regulation of the maintenance DNA 

methyltransferase 1 (Dnmt1) and de novo DNA methyltransferase 3a (Dnmt3a) genes in the 

livers of mice treated with PBS+CCl4 and DEN+CCl4. Down-regulation of histone lysine 

(K)-specific demethylase (Kdm4a and Kdm4b) genes was observed in liver tissue of mice 

treated with DEN+CCl4 (Figure 5).

Histone H3K9 trimethylation and expression of LINE1 and SINE B2

To investigate whether or not epigenetic changes observed in this study may be 

mechanistically related to the progression of fibrosis-associated carcinogenesis, the status of 

H3K9 methylation at LINE1 and SINE B2 repetitive sequences and their expression were 

analyzed. Figure 6A shows a substantial decrease of H3K9 trimethylation (H3K9me3) at 

LINE1 and SINE B2 repetitive sequences in liver tissue of mice treated with DEN+CCl4. 

The reduction of LINE1 and SINE B2 H3K9me3 was accompanied by a marked increase in 

the expression of LINE1 and, especially, SINE B2 elements (Figure 6B).

Expression of progenitor markers in liver tumors

In this mouse model of hepatocarcinogenesis, markers of oncofetal liver transformation and 

cancer stem cells were found to be significantly associated with tumor incidence; whereas 

inflammation, fibrogenesis, oxidative stress, proliferation and apoptosis were not indicative 

of increased tumorigenesis11. Supplementary Figure 3 shows that the expression of alpha-

fetoprotein (Afp) was significantly up-regulated in tumor tissues of mice treated with DEN

+CCl4 when compared to control animals, a pattern similar to that reported for the non-

tumor tissues from the same treatment group11. In contrast, epithelial cell adhesion molecule 

(Epcam) was down-regulated in tumor tissues when compared to control mice, although the 

change was not statistically significant. Interestingly, Epcam was significantly up-regulated 

in non-tumor tissues of the DEN+CCltretaed mice when compared to all other treatment 

groups in the original study11. These findings corresponded to the hypothesis that this 

mitogenic signaling molecule is involved in tumor promotion and progression, but is less 

active in late stage tumors.

Discussion

Hepatocellular carcinogenesis is a complex process that is the consequence of multiple 

molecular events that lead to the initiation, promotion, and progression of tumor cells3,4,6,7. 
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Recent reviews have emphasized the importance of a distinct set of events that are required 

for carcinogenesis32,33. Specifically, distinct cellular capabilities that enable tumorigenesis, 

or “hallmarks of cancer,” are increasingly recognized as essential processes in 

carcinogenesis32. Mutations in cancer-related genes result in aberrant cellular functions, 

which can be characterized as specific hallmark capabilities. While genetic alterations have 

long been known to cause the development and progression of tumors, epigenetic events 

have emerged more recently as potentially equally important events in the process of 

hepatocarcinogenesis13,26.

To better understand the role of genetic and epigenetic alterations in liver tumor 

development, the mutational profile, expression, and epigenetic alterations of several cancer-

related genes commonly involved in hepatocarcinogenesis were evaluated using a mouse 

model of fibrosis-associated hepatocellular carcinoma. Additionally, epigenetic events 

associated with genomic instability, such as global DNA hypomethylation and histone 

demethylation, were investigated.

Common mutations do not play a primary role in fibrosis-associated HCC in murine liver 
tumors

We evaluated the mutational profile of genes commonly implicated in hepatocarcinogenesis 

of both mice and humans. Alterations in the Wnt/β-catenin pathway are frequently involved 

in both human and mouse HCC, with CTNNB1 reported to be the most commonly activated 

oncogene in human HCC23. Activating mutations in CTNNB1 lead to constitutive activation 

of the CTNNB1 protein and subsequent up-regulation of Wnt signaling,34 the consequence 

of which is stimulation of cell proliferation and inhibition of apoptosis35. Recent studies 

have reported contrasting results regarding the association of CTNNB1 mutations and 

genomic instability in hepatic tumors33,36. However, a general consensus has been 

established that genomic instability is an enabling characteristic in hepatic and other 

cancers32. In our study, while epigenetic alterations that are associated with genomic 

instability were observed, mutations in the hot-spot region (mouse exon 2) of Ctnnb1 were 

absent. These findings suggest that causative mechanisms of genomic instability may 

precede Ctnnb1 mutation, and support the theory that genomic instability and Ctnnb1 
mutation are distinct mechanisms of hepatocarcingenesis6,35.

Characterizing the frequency and type of mutations in tumor-related genes is informative in 

the determination of tumor induction and progression, especially in laboratory animals, 

because the basis of carcinogenic effects may be due to either chemical induction or 

spontaneous occurrence37. For example, single base substitution mutations at codon 61 of 

H-ras are one of the most commonly seen mutations in spontaneously occurring liver tumors 

in B6C3F1 mice21. Mutations at this hotspot are also seen in chemically-induced neoplasms 

in mice, although there is evidence that the type and frequency of mutations can be 

chemical- and dose-dependent, with a lower incidence of codon 61 mutations associated 

with increasing doses of multiple chemicals14, 38, including DEN21. Indeed, the low 

frequency of H-ras mutations in our study suggests that CCl4 and DEN together 

preferentially promote cells through mechanisms independent of H-ras mutation.
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Epigenetic alterations are an early and important event in fibrosis-associated mouse 
hepatocarcinogenesis

Epigenetic changes such as DNA hypomethylation at the global level and within repetitive 

sequences, promoter hypermethylation of tumor suppressor genes, and altered histone lysine 

methylation are common characteristics in many, if not all, types of cancer29,39,40. In our 

study, the extent of global DNA hypomethylation was significantly greater in the livers of 

PBS+CCl4- and DEN+CCl4-treated mice than in DEN+olive oil-treated or control mice. 

Similarly, demethylation of LINE1 and SINE 2B sequences was found in PBS+CCl4- and 

DEN+CCl4-treated mice, although the extent of LINE1 demethylation in the livers of PBS

+CCl4-treated mice was not statistically significant. Furthermore, we observed a significant 

decrease in global H3K9me3 in the non-tumor liver tissue in mice treated with DEN+CCl4. 

Additionally, the degree of DNA methylation and H3K9me3 was significantly decreased in 

LINE1 and SINE B2 sequences in the livers of DEN+CCl4-treated mice, and the expression 

of LINE1 and SINE B2 was significantly increased. These interspersed repetitive sequences, 

which represent nearly half of the human genome and approximately one-third of the mouse 

genome,41 play an important role in the development of several human cancers42.

Notably, the PBS+CCl4- and DEN+CCl4-treated mice had a higher incidence of liver tumors 

(37.5% and 100%, respectively) than mice treated with DEN+olive oil (10%), as reported by 

Uehara, et al. in 2013. While the incidence of liver preneoplastic foci was nearly 100% in 

DEN+olive oil-treated mice, few of these lesions (2/20) progressed to adenomas. This 

suggests that the significant increase in tumor incidence in livers of mice treated with DEN

+CCl4, as compared to the other treatment groups, may be attributed to a significant 

hypomethylation of genomic DNA, LINE1 and SINE B2 repetitive sequences, and the 

decrease in global, LINE1 and SINE B2 H3K9me3. Importantly, these epigenetic alterations 

appeared to precede genetic aberrations commonly seen in mouse and human HCC.

RIZ1, a member of a histone/protein methyltransferase superfamily, is associated with tumor 

suppression function43 and is frequently inactivated in HCC44,45. It has been demonstrated 

that the histone methyltransferase function of RIZ1 is an important constituent of its tumor 

suppressor activity46. Our results indicate that inhibition of Riz1 by promoter 

hypermethylation is associated with a substantial decrease in H3K9me3, which may be the 

result of lost RIZ1 histone methyltransferase function. A significant decrease in Riz1 
expression was found in both tumor and non-tumor liver tissues of mice treated with DEN

+CCl4, as well as in the livers of mice treated with PBS+CCl4 alone. Because mice in these 

treatment groups had a higher tumor incidence than DEN+olive oil-treated mice, we can 

infer that Riz1 plays a major role in tumorigenesis in our study. The level of H3K9me3 was 

significantly decreased only in mice treated with DEN+CCl4, suggesting a closely link 

between H3K9me3 and tumor cell promotion and/or progression. This also suggests that 

mechanisms additional to the loss of Riz1 histone methyltransferase function play a role in 

H3K9 methylation.

RIZ1 promoter hypermethylation has been observed in both early and advanced stages of 

human HCC, with a higher incidence in early stage tumors47. This supports the potential 

tumor-promoting role of Riz1 promoter hypermethylation found in the present study, and 

also confers the mechanistic human relevance of this mouse HCC model. Additionally, 
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RIZ1 methylation has been associated with a shorter disease-free survival time in human 

HCC patients45. RIZ1 hypermethylation has been found to be prevalent in various human 

cancer types, particularly breast and liver, two types in which mutations in the gene have not 

been found43. These findings indicate that this gene is likely preferably silenced by 

methylation as opposed to by mutation43. Furthermore, there are no known cis-acting 

regulators of RIZ1 expression48, which supports the conclusion that methylation is the cause 

for the down-regulation of the gene in many cancers.

Not all epigenetic events may be involved in carcinogenesis

We found that certain early epigenetic events appear to occur without effect on gene 

expression or be associated with tumor promotion. For example, although promoter 

hypermethylation was observed in four (Cdkn2a, Mgmt, Socs1, and Cdh1) of the cancer-

related genes examined in this study, the expression of these genes was not down-regulated. 

This is contrary to the well accepted mechanistic link between promoter hypermethylation 

and gene silencing27. In fact, Cdkn2a and Cdh1 were up-regulated in the livers of PBS

+CCl4- and DEN+CCl4-treated mice a finding consistent with the hypothesis that not all 

DNA methylation changes, similar to genetic mutations, are equally important in the process 

of carcinogenesis, and that some DNA methylation changes may be purely passenger 

events49.

Conclusions

Our results indicate that epigenetic alterations are an essential and early event in 

hepatocellular carcinogenesis, especially under conditions of liver fibrosis. Based on 

previous reports, genomic instability is likely a consequence of loss of DNA methylation 

globally and within repetitive elements and decreased H3K9 methylation, all of which were 

associated with increased tumor incidence in the present study. Furthermore, loss of Riz1 
expression by promoter hypermethylation was associated with increased tumor incidence, 

and therefore the tumor suppressor function of this gene is likely linked to its inherent 

histone methyltransferase activity. The epigenetic alterations observed in fibrosis-associated 

liver tumors in this mouse model indicate important features involved in the development of 

human liver tumors that arise from fibrosis and cirrhosis, a common progression according 

to human clinico-pathological evidence. Additionally, these epigenetic alterations may 

confer a heightened risk for genomic instability, although additional studies are required to 

confirm such an association. Our results indicate that H-ras, Hnf1α, and Ctnnb1 mutations 

are not involved in the initiation or promotion of the hepatic tumors in this study, and that 

epigenetic changes preceded or occurred independently of traditionally observed genetic 

alterations in mouse HCC. While common HCC-related mutations were not detected in our 

study, the epigenetic alterations observed may contribute to genomic instability and thus 

represent one of the proposed hallmarks of cancer32.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Novelty and impact statement

This report demonstrates that epigenetic modifications, rather than mutations in known 

cancer-related genes, are essential and early events in mouse hepatocellular 

carcinogenesis that play a prominent role in the increased incidence of liver tumors in 

fibrosis-associated liver cancer. The epigenetic alterations observed in a mouse model of 

fibrosis-associated liver tumors may indicate important features of tumor development in 

human liver tumors that arise from fibrosis and cirrhosis.
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Figure 1. 
Immunostaining of CTNNB1, GLUL, and FABP1 in formalin-fixed paraffin-embedded 

sections of liver tumor (T) and adjacent non-tumor (N) liver tissue. Left panel: Liver tumors 

(pictured in all groups except vehicle control) lack immunoreactivity or nuclear 

accumulation of CTNNB1. Minimal cytoplasmic accumulation is present in centrilobular 

hepatocytes in PBS+CCl4-treated mice, primarily in non-tumor fibrotic areas and likely 

artifact from degeneration. Middle panel: Liver tumors (pictured in all groups except vehicle 

control) lack immunoreactivity to GLUL. Positive immunoreactivity is restricted to 
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pericentral hepatocytes in non-tumor tissue. Pericentral immunoreactivity is weak in PBS

+CCl4-treated mice, likely due to degeneration and loss of these hepatocytes. The positive 

staining in the PBS+CCl4 representative image is artifact due to necrosis. Right panel: 
Uniform positive immunoreactivity is present in both tumor (pictured in all groups except 

vehicle control) and adjacent non-tumor tissue. Original magnification: 40×.
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Figure 2. 
DNA methylation and gene expression changes in liver tumors. (A) Genomic, LINE1, and 

SINE B2 methylation. The results are presented as an average percent change in the degree 

of DNA hypomethylation in liver tumors of mice treated DEN+CCl4 relative to that in the 

PBS (vehicle control) group, which were assigned a value of 100%. (B) Extent of Cdkn2a, 
Mgmt, Socs1, Cdh1 and Riz1 promoter methylation. The Y-axis represents the percentage of 

samples that had methylation in the promoter region of the described gene. (C) The 

expression of Cdkn2a, Mgmt, Socs1, Cdh,1 and Riz1 was determined by qRT-PCR as 
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detailed in “Materials and Methods.” The results are presented as an average fold change in 

the expression of each gene in liver tumors of mice treated DEN+CCl4 relative to expression 

in liver tissues of the control group, which were assigned a value of 1.

Values shown are mean±S.D., asterisks (*) denote a significant (p<0.05) difference from 

control mice.
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Figure 3. 
DNA methylation and gene expression changes in non-tumor liver tissues during fibrosis-

associated hepatocarcinogenesis in mice. (A) Genomic, LINE1, and SINE B2 methylation. 

The results are presented as an average percent change in the degree of DNA 

hypomethylation in non-tumorous liver tissues of mice from experimental groups relative to 

that in control mice, which was assigned a value of 100%. (B) Extent of Cdkn2a, Mgmt, 
Socs1, Cdh1 and Riz1 promoter methylation. The Y-axis represents the percentage of 

samples that had methylation in the promoter region of the described gene. (C) The 
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expression of Cdkn2a, Mgmt, Socs1, Cdh1, and Riz1 genes. The results are presented as an 

average fold change in the expression of each gene in the livers of mice from experimental 

groups relative to that in control mice. Values shown are mean±S.D., asterisks (*) denote a 

significant (p<0.05) difference from control mice.
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Figure 4. 
H3K9, H3K279, and H4K20 trimethylation in liver tissues during fibrosis-associated liver 

carcinogenesis in mice. Densitometry analysis of the immunostaining results is shown as 

percent change in histone modification level in the each experimental group relative to the 

corresponding values in control mice. Values shown are mean±S.D., asterisks (*) denote a 

significant (p<0.05) difference from control mice.
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Figure 5. 
Expression of chromatin-modifying genes in the liver during fibrosis-associated 

hepatocarcinogenesis in mice. The expression of Dnmt1, Dnmt3a, Dnmt3b, Suv39h1, Ezh2, 
Suv4-30h2, Kdm4a, and Kdm4b genes was determined by qRT-PCR. The results are 

presented as an average fold change in the expression of each gene in the livers of mice from 

each experimental group relative to that in control mice, which were assigned a value 1. 

Values shown are mean±S.D., asterisks (*) denote a significant (p<0.05) difference from 

control mice.
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Figure 6. 
Level of H3K9me3 at LINE1 and SINE B2 repetitive sequences and expression of LINE1 

and SINE B2 in the liver during fibrosis-associated liver carcinogenesis in mice. (A) The 

level of H3K9me3 at LINE1 and SINE B2 determined by a ChIP assay as described in 

“Materials and Methods.” The data are presented as fold change in liver of mice from 

experimental groups relative to control mice after normalization to input DNA. (B) 
Expression of LINE1 and SINE B2 elements. The results are presented as an average fold 

change in the expression of LINE1 and SINE B2 in the livers of mice from experimental 

groups relative to that in control mice, which were assigned a value of 1. Values shown are 

mean±S.D., asterisks (*) denote a significant (p<0.05) difference from control mice.
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