
SYMPOSIUM

Using Computational and Mechanical Models to Study Animal
Locomotion
Laura A. Miller,1,*,§ Daniel I. Goldman,‡ Tyson L. Hedrick,§ Eric D. Tytell,� Z. Jane Wang,œ

Jeannette Yen# and Silas Alben**

*Department of Mathematic, Phillips Hall, CB #3250, University of North Carolina, Chapel Hill, NC 27599-3280, USA;
‡School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, GA 30332-0439, USA; §Department of

Biology, Coker Hall, CB #3280, 120 South Road, Chapel Hill, NC 27599-3280, USA; �Department of Biology, Tufts

University, 163 Packard Ave., Medford, MA 02155, USA; œDepartments of Physics and Mechanical and Aerospace

Engineering, Cornell University, 212 Kimball Hall, Ithaca, NY 14853-2501, USA; #School of Biology, Georgia Institute of

Technology, 310 Ferst Drive, Atlanta, GA 30332, USA; **School of Mathematics, Georgia Institute of Technology, 686

Cherry St., Atlanta, GA 30332-0160, USA

From the symposium ‘‘Combining Experiments with Modeling and Computational Methods to Study Animal

Locomotion’’ presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2012

at Charleston, South Carolina.

1E-mail: lam9@unc.edu

Synopsis Recent advances in computational methods have made realistic large-scale simulations of animal locomotion

possible. This has resulted in numerous mathematical and computational studies of animal movement through fluids and

over substrates with the purpose of better understanding organisms’ performance and improving the design of vehicles

moving through air and water and on land. This work has also motivated the development of improved numerical

methods and modeling techniques for animal locomotion that is characterized by the interactions of fluids, substrates,

and structures. Despite the large body of recent work in this area, the application of mathematical and numerical

methods to improve our understanding of organisms in the context of their environment and physiology has remained

relatively unexplored. Nature has evolved a wide variety of fascinating mechanisms of locomotion that exploit the

properties of complex materials and fluids, but only recently are the mathematical, computational, and robotic tools

available to rigorously compare the relative advantages and disadvantages of different methods of locomotion in variable

environments. Similarly, advances in computational physiology have only recently allowed investigators to explore how

changes at the molecular, cellular, and tissue levels might lead to changes in performance at the organismal level. In this

article, we highlight recent examples of how computational, mathematical, and experimental tools can be combined to

ultimately answer the questions posed in one of the grand challenges in organismal biology: ‘‘Integrating living and

physical systems.’’

Introduction

The case for mathematics in organismal biology

Prior to the 20th century, the biological sciences

were primarily focused on the investigation of the

entire organism. At the turn of the century, the

application of concepts from physics and chemistry

to biology and improvements in experimental meth-

ods for observing and probing sub-organismal and

sub-cellular phenomena led to causal explanations

for many biological phenomena. This explosion of

knowledge and the high degree of training required

to make use of these new techniques led biological

investigation down a reductionist path where

researchers studied isolated components or subsys-

tems rather than intact organisms (Schaffner 1969;

Benson 1989). This reductionist approach led to

rapid advancement in many areas of biophysics and

neurobiology, as well as in cellular and molecular

biology. One of the primary challenges for biology
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today lies in bringing these disparate areas of

research back together to develop multiscale func-

tional models of whole organisms. Animal locomo-

tion offers a prime opportunity to connect several

disparate areas of biology as it is the result of inter-

actions between the peripheral and central nervous

systems, muscle physiology, and the properties of the

environment. Computational and mechanical models

are ideally suited to help reveal these interactions.

To bring such disparate areas together, one must

connect small-scale dynamics of physiology, includ-

ing molecular and cellular activity, with the large-

scale behaviors of an animal and of groups of

animals (Fig. 1). This means that behaviors such as

locomotion are inherently multiscale: Dynamics at

the level of cells or even single ion channels may

influence the behavior of the whole animal

(Grillner 2003), and equivalently, changes in the

whole animal’s behavior or in its environment may

influence cellular activity.

Figure 1 shows a schematic of the multiscale,

nested feedback loops that are present in any loco-

moting animal, using a fish as an example. In both

vertebrates and invertebrates, a brain or head gan-

glion activates a neural circuit called the central pat-

tern generator (CPG), which is usually distributed

through the spinal cord or nerve cord. Once the

CPG is activated, it needs no further stimuli to gen-

erate a locomotor pattern (Marder and Bucher 2001)

that activates the muscles. The muscles produce

forces that bend the body, which then interacts

with the external environment. The environment

may be a fluid, in the case of a fish or a flying

insect, or the substrate, in the case of running or

crawling animals. Regardless of the type of environ-

ment, it produces reaction forces back onto the body

(‘‘mechanics’’ in Fig. 1) that couple with the internal

forces to determine the body’s kinematics (Li et al.

2009; Lin and Trimmer 2010; Tytell et al. 2010).

Muscle also couples with the body’s kinematics be-

cause the force it produces depends upon both its

length and shortening velocity (Hill 1938; McMahon

1984). Finally, sensory receptors connect both

directly into the CPG and into the brain and influ-

ence the ongoing locomotor pattern (Rossignol et al.

2006). Understanding such complex feedback pat-

terns is challenging. Mathematical and physical

models provide a way to understand the impact of

different components.

Mathematical and physical models allow dissection

of the problem

Locomotion can be described as an exchange of

momentum between a body and its environment

(Dickinson et al. 2000). For example, undulations

of a fish’s body can propel the fish forward and

the fluid surrounding it backward, on average. The

details of the interaction are quite complicated. In

particular, the fluid motion around a swimming

fish can be very complex, although typical vortical

structures have been described for canonical swim-

ming motions (Drucker and Lauder 1999;

Fig. 1 A schematic of the nested, multiscale feedback loops present in animal behaviors, such as locomotion. A fish is used as an

example, but the schematic holds for most animals. Top: A brain or central ganglion activates and modulates a CPG circuit, which

activates muscles that produce force to move the body, which then applies forces to the environment. The environment, however, is

mechanically coupled to the body, and applies forces back onto the body. Additionally, the muscles are coupled with the body’s state

due to the dependence of force on length and velocity. Finally, both the brain and CPG receive sensory information from the body’s

movement (proprioception) and from the environment around it (exteroception). Bottom: Such feedback loops contain another layer of

feedback when animals interact with each other.
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Triantafyllou et al. 2000; Tytell and Lauder 2004;

Dabiri et al. 2005). Mathematical models can provide

simplified representations of the flow–body interac-

tion that can be studied more extensively (Lighthill

1970; Wu 1971). The validity of such simplifications

can be assessed using asymptotic analyses of the un-

derlying differential equations (Sparenberg 1995).

A synergy exists between modeling, experiments,

and simulation for many problems in animal

locomotion. Measurements of morphology and

motion taken from live animals can be used to set

appropriate values of parameters for mathematical

models and simulations (e.g., Borazjani et al. 2012).

Techniques such as particle image velocimetry can be

used to obtain the spatial and temporal information

on flow fields generated by organisms (e.g., Drucker

and Lauder 1999; Catton et al. 2011; Flammang et al.

2011). This information can then be used to validate

simulations of fluid–structure interaction. Once the

results of numerical simulations are checked against

the real system, the mathematical models can be im-

proved as needed. Based on such a predictive model,

numerical simulations can be used to obtain detailed

descriptions of phenomena that are difficult to

explore experimentally (e.g., Mittal et al. 2006;

Borazjani and Sotiropoulos 2010). Numerical simu-

lations may also be used to characterize parameter

spaces that extend beyond what is observed in nature

(Alben 2008). Mathematical models that combine

multiple levels of biological organization may be

used to understand how small changes in the physics

of tissues can result in large changes in performance

at the organismal level (Holmes et al. 2006; Tytell

et al. 2010). Study of legged physical models in con-

cert with mathematical models have facilitated prog-

ress in understanding the neuromechancial control of

terrestrial locomotion (Holmes et al. 2006). The ad-

vantage of robotic models is that environmental in-

teraction does not have to be modeled, thereby

saving computational cost; in many materials (e.g.,

granular materials), detailed models at the level of

Navier–Stokes equations are unavailable.

Common themes

The unifying theme of the research problems out-

lined below is that each provides a concrete example

of the process of translating biological questions into

mathematical models, solving the model’s equations,

interpreting the solution, and comparing it with re-

ality through experimentation. All of the examples

require the integration of several fields in biology,

physics, engineering, or mathematics. For example,

mathematical models must be developed that can

couple action potentials triggered by noisy pace-

makers in jellyfish bells to the generation of tension

through appropriate models of muscle and Ca2þ.

Algorithms that connect how organisms use their

sensors to detect gradients in the environment can

test the rules by which cues guide animals to their

desired targets. The nonlinear material properties

and geometry of highly deformable insect wings

and fish fins must be quantified and accurately mod-

eled to understand how shape and material proper-

ties correspond to performance in swimming and

flying.

The overview begins with connections between the

environment and animal through sensory systems.

Specific examples from insects and jellyfish are

used to illustrate open questions regarding how

environmental stimuli could trigger organisms’

responses. Mathematical models of the nervous

system, central pattern generators, and pacemakers

are then introduced as tools that can be used to

better understand sensory systems. Specific examples

from vertebrate and invertebrate locomotion and co-

pepod navigation are discussed.

The next section focuses on neural activation and

the resulting movement of an organism through a

fluid or over a substrate. The discussion begins

with an overview of mathematical models that can

be used to describe how neural activation results in

muscular contraction and the generation of force. A

brief overview of the mathematical models used to

describe muscle is given. Specific examples from

insect flight are then used to illustrate some of the

recent advances and open questions in this area. The

forces that result from the contraction of muscle

drive the movement of the organism, and mathemat-

ical models of fluid–structure and granular–structure

interactions are introduced. Examples from fish

swimming, insect flight, and sandfish-lizard swim-

ming are used to illustrate several modeling

approaches.

Connections are made back to the nervous system

by considering the effects of neuromechanical lags of

phase in swimming and flying. Specific examples

from lamprey and sandfish-lizards are provided.

Coupling each of these components requires an

understanding of stability and control by the organ-

isms as they navigate through their environments.

This motivates a discussion of the identification of

closed-loop systems. A specific example of a control

algorithm for a yaw turn in flapping insect flight is

provided.

Finally, the future directions and challenges for

scientific computing, mathematical modeling, exper-

imental biology, and engineering are outlined. This
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section begins with a discussion on numerical meth-

ods for simulating deforming structures in viscous

flows. Recent advances made in insect flight through

the use of computational fluid dynamics are

outlined. When the Reynolds number (Re) is suffi-

ciently high, the flow may be assumed to be inviscid.

Techniques for simulating fluid–structure interac-

tions in inviscid flows are discussed with examples

taken from fish swimming. When animals move

through sand or other substrates, model equations

for the environment itself must be developed.

Recent methods for simulating sand–structure inter-

action with applications to the sandfish-lizard are

outlined. Challenges in the development of mathe-

matical models for closed-loop sensory-motor inter-

actions are then discussed with examples taken from

fish swimming. Finally, the experimental challenges

involved with validating mathematical models and

providing reasonable parameters are outlined.

Sensory and nervous systems

Sensory feedback

Animals use sensory feedback from proprioceptive

sensors, which monitor the current internal state of

the animal, and exteroceptive sensors, which gather

information from the environment outside the

animal (Fig. 1). Both of these broad categories en-

compass a number of sensory modalities, ranging

from the familiar—smell, vision, and taste—to the

pressure-sensitive lateral-line systems of fish; electro-

magnetic field sensing in species including fish, tur-

tles, and birds; and echolocation in bats. From the

standpoint of animal locomotion it is more conve-

nient to classify these sensory systems by the infor-

mation they receive and the processing latency at

which they provide it rather than the details of the

mechanism used to gather such information. For in-

stance, vision is commonly used in detecting obsta-

cles, predators, or prey at a distance, but requires

substantial processing of the information gained

from individual photoreceptors before their inputs

can be formed into images. Thus, sensing based on

vision operates at high latency, potentially leading to

locomotor instability in cases in which latencies in

sensory feedback exceed the duration of a locomotor

cycle.

Potentially in response to these problems, many

flying insects, for example, employ two visual sys-

tems—a pair of large image-forming compound

eyes and a set of ocelli which function as visual ho-

rizon detectors, responding to the difference in light

intensity between the sky and ground with lower

latency than that of the complex compound eyes

(e.g., Schuppe and Hengstenberg 1993). Other sen-

sory modes typical of flying animals include use of

vision for long-range avoidance of obstacles, inertial

sensors such as the halteres of dipteran insects

(Pringle 1948), or the vestibular system of birds

and bats, and widespread proprioceptive systems

such as the wing campaniform sensilla of insects,

which likely measure wing deformation during the

flapping cycle. See Taylor and Krapp (2007) for an

extensive overview of the sensory systems involved in

insect flight.

A fundamental question in sensory feedback sys-

tems that could be addressed with mathematical

modeling would be to test how sensory inputs might

be translated into organism’s responses. For example,

mathematical modeling could be used to determine

how environmental cues regulate the action of the

pacemakers and activate central pattern generators.

In relatively simple organisms such as jellyfish,

models could address how chemical or mechanical

cues alter the coordination of the pacemakers, the

resulting pulsing kinematics, and the motion of the

medusa. Another fundamental question would be to

determine how asymmetrical sensory inputs result in

asymmetric locomotory responses that move animals

towards a stimulus or away from it.

Central pattern generators

In nearly every animal studied to date, rhythmic be-

haviors are generated by a simple neural circuit, the

CPG (Marder and Bucher 2001). Such behaviors in-

clude locomotion, which requires rhythmic oscilla-

tions of appendages such as the tails of fishes, the

limbs of terrestrial animals, and the wings of birds

and insects, and also other rhythmic activities such

as heartbeat, chewing, scratching, breathing, and pos-

sibly even cortical oscillations. In particular, CPGs

have been found to be involved in locomotion in

every animal studied, including vertebrates and

invertebrates that swim (Grillner 1974; Cohen and

Wallén 1980; Weeks 1981; Roberts et al. 1998;

McLean et al. 2007), walk (Pearson and Rossignol

1991; Kiehn 2006; Borgmann et al. 2009), and fly

(Wilson 1961).

The defining characteristic of a CPG is that it can

produce a rhythm when artificially isolated (Cohen

and Wallén 1980; Marder and Bucher 2001).

However, in reality, CPGs receive continual feedback

both directly from sensory receptors and from higher

processing centers such as a brain or head ganglion

(Tytell et al. 2011) (Fig. 1). When isolated prepara-

tions are stimulated by sensory stimuli, they can

speed up, slow down, or reset the rhythm
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(Andersson and Grillner 1983; McClellan and

Sigvardt 1988; Yu and Friesen 2004).

In a closed-loop situation, when the CPG’s output

can alter the sensory inputs, the effects of sensory

feedback are hard to predict (Pearson et al. 2006).

In particular, the CPG’s frequency when isolated may

be quite different from the frequency of the complete

coupled system (e.g., Fig. 1). Mathematical models

(Williams and DeWeerth 2007; Futakata and Iwasaki

2008) and some experimental data (Hatsopoulos and

Warren 1996; Ausborn et al. 2009; Tytell and Cohen

2009) both have suggested that proprioceptive feed-

back may cause the system to oscillate at the

mechanical resonant frequency of the body or

limbs, a frequency that may be quite different from

the baseline frequency of the CPG on its own.

Pacemaker interactions: Examples from jellyfish

Due in part to their relatively simple design, a sig-

nificant body of work in comparative biomechanics

and neurobiology has focused on understanding

jellyfish’s locomotion and feeding. Fluid dynamics

of jellyfish have been investigated using mathematical

modeling (Daniel 1983, 1984; Dabiri et al. 2007),

experiments (Costello and Colin 1994; McHenry

and Jed 2003; Dabiri and Gharib 2005;

Santhanakrishnan et al. 2012), and numerical simu-

lations (Lipinski and Mohseni 2009; Mohseni and

Sahin 2009; Peng and Dabiri 2009; Hamlet and

Miller 2011; Herschlag and Miller 2011).

Contractions of the bell are generated by pacemakers

that activate a ring of coronal swimming muscles

and a set of radial muscles (Arai 1997). Expansions

of the bell are due solely to muscle relaxation and the

bell’s passive elastic properties. The electropotentials

of interacting pacemakers used for locomotory con-

trol have been mathematically modeled as coupled

van der Pol oscillators (van der Pol and van der

Mark 1927; Low et al. 2006). Accurate models of

the jellyfish’s motor and diffuse nerve nets are in

need of development. While propagation of nerve

impulses is typically modeled in animals using

Hodgkin–Huxley type equations, jellyfish’s motor

axons can conduct both rapid Naþ-dependent

action potentials and low-amplitude Ca2þ spikes

(Mackie and Meech 1985). Ermentrout and Terman

propose an interesting tristable model for the prop-

agation of fast-moving Naþ action potentials and

slow Ca2þ spikes in Aglantha digatale that warrants

further investigation (Ermentrout and Terman 2010).

Fluid–structure simulations of pulsing jellyfish

bells suggest that the timing of the bell’s contraction

and expansion have significant implications for

swimming and the resulting patterns of fluid

mixing. Short, pulsing cycles can increase swimming

speed and can sweep fluid rapidly around and past

the oral arms. Pulses with long pauses between

expansion and the subsequent contraction can

create regions of slow of mixing over the oral arms

and allow the water brought into the bell to be sam-

pled for longer periods of time (Hamlet and Miller

2011). In the case of the upside-down jellyfish,

Cassiopea xamachana, the duration of contraction

and expansion times are rather constant (Hamlet

et al. 2012). The length of the rest periods between

expansion and the subsequent contraction vary

greatly from cycle to cycle and can be described as

a bimodal distribution of the pause times between

cycles. This suggests that a simplifying assumption

might be that the lengths of the pauses are described

by the Markov Property. The Markov Property is

such that given a system that exhibits a particular

state i at time t, the probability that the system tran-

sitions to state j at time t þ 1 is independent of past

behavior. Using this assumption, a two-state dis-

crete-time Markov chain (DTMC) can be used to

simulate pulsing dynamics of the jellyfish bell.

Pause times generated by the DTMC and used as

inputs into fluid dynamic simulations suggest that

an effective strategy for feeding by Cassiopea might

be to alternate between sampling phases and advec-

tive phases via long and short pause times.

Guidance mechanisms: Example from copepods

A more complex design is that of the small aquatic

crustacean, the copepod. Considered to be the most

abundant multicellular organisms on earth, copepods

play a key role in the aquatic food chain, transform-

ing primary production into bite-sized pieces for

consumption by larval fish, thus promoting recruit-

ment into the fish population and supporting the

fisheries industry of humans. However, copepods

are much more than fish food. As heterosexual or-

ganisms, the male must find his mate. This is not an

easy task for individuals that typically are separated

by large volumes of water relative to their size. The

mechanisms by which copepods locate mates were

examined by Doall et al. (1998). The male copepod

relies on the interaction of the pheromone emitted

by the female copepod and the hydrodynamic wake

she creates as she moves through the water in an

intermediate Re realm. The female copepod swims

generally at a steady speed along either straight or

circular paths. The 1-mm multi-oared male copepod

is able to randomly intersect the filamentous odor

trail left by the 1-mm female copepod within 10 s,
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before turbulent diffusion erases the trail. It is always

the male who detects and pursues mates. As soon as

he encounters the female’s trail, the male copepod

closely traces the female’s path, suggesting that the

male follows detectable chemical and/or hydrody-

namic signals left by the female. Using his sensory

apparatus, primarily the pair of antennules, the ap-

pendages that stretch the farthest from the body in

exploring the environment, the male is able to com-

pare the chemical and hydrodynamic gradients in the

environment and use these cues as a guide to the

signal source, the female copepod. Within 2 s of find-

ing the trail, which averages 10 cm or less in length,

yet expands the 1-mm target by up to 100 times the

body length, the male is able to accelerate along the

trail, stay on track, and catch up with the moving

target, the female, and capture her. Using a trail

mimic (Yen et al. 2004), this trail-following behavior

was visualized in laboratory experiments and dis-

played a remarkable ability of the male to sense,

follow, and stay on the track of the scent mimic

(Fig. 2).

In the example in Fig. 2a, the male copepod in-

tersects the female-scented trail (the white line), de-

forming the signal as he swims up the trail; see

Borazjani and Sotiropoulos (2010) for a computa-

tional fluid-dynamic analysis of the details of this

drag-based swimming, and Catton et al. (2011) for

an experimental study of the flow field generated by

the female’s swimming motion. The main goal of the

work of Kanso and Yen (2011) is to model the

mechanisms by which the male follows the female’s

trail. As a starting point, we consider an idealized

description of the trail in which the fluid moves in

the x-direction along the trail and diffuses in the

y-direction with kinematic viscosity �. Similarly,

it is assumed that the chemical concentration

C(x, y, t) (the female scent) carried by the trail

also diffuses in the y-direction but at a much

weaker diffusivity m. An illustration of the hydrody-

namic and chemical trail is shown in Fig. 2.

The male copepod may be modeled as a kinematic

particle located at (xm, ym) equipped with two sets of

sensors in the b1 and b2 directions as shown in Fig. 2

(left panel). That is, it is able to sense the directional

concentration gradients rC � b1 and rC � b2. It can

then adjust its orientation, but not speed, based on

the chemical gradients it senses. By orientation, we

mean the angle � between the b1-direction and the

x-axis as shown in Fig. 2b. More specifically, the

motion of the male is governed by _xm¼ uxþV cos

�, _ym¼ uyþV sin �,
_�¼!(sign(rC � b2))H (��rC � b1), where ux and

uy are the components of the fluid’s velocity field

evaluated at the copepod’s location (xm, ym). When

V¼ 0, the model behaves as a passive tracer in a

background flow. When V¼ 1, the copepod actively

tries to turn in the direction of increasing concen-

tration gradient. The rapid response and efficient

error-correction performed by the male to remain

on track suggests a finely integrated sensory-motor

system for the copepod. The constant parameters !
and � determine the magnitude and duration of this

turning motion and H is the Heaviside function. It is

important to distinguish the control law proposed

here from the source-seeking algorithms of

Cochran et al. (2009), which rely on very fast oscil-

lations that continuously probe the environment.

Preliminary results show that the model is able to

track both rectilinear and circular trails without any

information on the trail’s global or relative position.

The next set of questions will address the role of the

fluid flow field in enhancing or hindering this

trail-following ability, and the interplay between the

chemical signals and hydrodynamics in achieving

such trajectory pursuit.

Muscular activation and movement

Mathematical models of muscles

Mathematical modeling can provide a powerful tool

for connecting neural activation to generation of

force. One of the earliest mathematical models of

the macroscopic behavior of muscles was developed

by Hill (1938) to describe the velocity of contraction

as a function of the force generated by muscle. This

force–velocity curve may be obtained empirically by

measuring the velocity of contraction for a given

load in a muscle that is in a constant contractile

state. The curve may be approximated using the

function; V¼ b(P0–P)/(Pþa), where b and a are

constants that arconstants that are determined

empirically, V is the contraction velocity, and P is

the load. When P¼ 0, the muscle shortens at its

maximum velocity, Vmax, and when V¼ 0, the mus-

cle’s the maximum isometric force, P0, is reached.

Mathematical models of crossbridge dynamics may

also be used to derive this empirical force-velocity

curve. Such models allow one to relate the micro-

scopic properties of crossbridge models to the

macroscopic constants of the muscle (Hoppensteadt

and Peskin 2002).

Since Hill’s original paper, numerous mathemati-

cal models of muscle have been derived. One of the

more famous is the Huxley muscle model, which

describes the release and dynamics of intracellular

Ca2+ as a function of the electropotential and the

conversion of free Ca2+ to muscular tension
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(Huxley 1957). There are simpler phenomenological

models that have also been used to simulate the

dynamics of Ca2+ release and the production of mus-

cular tension. One such model is based on a

FitzHugh–Nagumo type of system developed for car-

diac tissue by Cherubini et al. (2008).

More recently, integrative mathematical models

have been used to simulate (1) the generation and

propagation of action potentials, (2) the release and

dynamics of free Ca2+ in the muscular fibers as a

function of the electropotential and time, (3) the

conversion of free Ca2+ to tension generated by the

muscular fibers, (4) the deformation of tissues due to

the contraction of the muscles, and (5) the move-

ment of fluid due to the resulting motion of the

organ or organism. Griffith et al. (2009) and Hand

and Griffith (2010) have used an immersed boundary

formulation of the bidomain equations to study car-

diac electrophysiology and fluid dynamics of an adult

heart. The local membrane potential is used to trig-

ger the contraction of the cardiac muscle which

drives the motion of the fluid. Chen et al. (2011,

2012) have developed a complete model of a swim-

ming leech, including muscle activation, passive body

tension, and fluid dynamics. Tytell et al. (2010) per-

formed similar immersed boundary simulations in

which the activation of muscle fibers is used to

propel a virtual lamprey through a fluid (discussed

below). The muscle fibers themselves are modeled as

one-dimensional elastic fibers that produce force

according to a Hill-type model of muscular force

(Williams 2010).

Fig. 2 (A) The upper left panel shows a picture of the male copepod Temora longicornis (�1 mm in length). Along its body it is equipped

with two arrays of sensors that detect chemical and hydrodynamic signals. The upper three panels on the right are taken from a movie

based on Yen’s laboratory experiment. The source of the scent is a slow injection at the top of the tank of a female’s scent, which sinks

to the bottom of the tank. Laser optical techniques are used to illuminate the trail of the scent (the white line). The second panel from

the left shows the male copepod approaching the female’s trail. It detects the trail and first follows it in the wrong direction, that is, to

the bottom away from the source of the scent as shown in the third panel from the left. It then corrects its heading and traces the trail

in the direction of increasing chemical and hydrodynamic signals. (B) The female copepod swims to the left in the negative x-direction

at a constant velocity Uf. The fluid moves in its trail in the positive x-direction and diffuses in the y-direction, transversely to the trail,

with kinematic viscosity �. The fluid’s velocity field is shown by black arrows. Similarly, the chemical concentration C (x, y, t) (the female’s

scent) carried by the trail also diffuses in the y-direction, but at a much weaker diffusivity m. The chemical concentration is depicted

using contour plots. (C) The model tracks the gradient given in B.
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Timing and activation of patterns: Examples

from flight

The muscles of flying animals are typically categor-

ized as providing either the power necessary to pro-

duce lift and thrust to keep the animal aloft or

control inputs to help the animal maneuver and

recover from perturbations in flight. Examples of

power muscles include the pectoralis and supracor-

acoideus in birds and the dorsolongitudinal (DLM)

and dorsoventral (DVM) muscles of flying insects.

Control muscles include the intrinsic wing muscles

of birds, for example, the bicPNG and wrist exten-

sors and a suite of small muscles in flying insects that

attach to the wing’s sclerites or to the thorax along

with the DLM and DVM. In birds, control muscles

actively both influence the trajectory of the wing

stroke and change the properties of the airfoil itself

(Hedrick and Biewener 2007). In insects, control

muscles are also known to absorb energy from the

power muscles (Tu and Dickinson 1994). However,

these distinctions between power and control are not

absolute, and the power muscles of birds and insects

are asymmetrically modulated during flight maneu-

vers (Wang et al. 2008; Warrick and Dial 1998).

The power muscles of flight in vertebrates and

insects are typically stimulated prior to each half

stroke, that is, in advance of each downstroke and

upstroke, although neuromuscular latency may push

the actual neural activation of muscle far out of

phase with the apparent wing movements in animals

with high wingbeat frequencies such as humming-

birds (Altshuler et al. 2010; Tobalske et al. 2010).

Additionally, the flight power muscles of some

insect groups are asynchronous and self-stimulate

following contraction, reducing the frequency at

which neural control inputs to the flight motor

may be provided (Pringle 1957). Modulation of mus-

cles for flight control differs substantially among ver-

tebrates and insects. Vertebrates’ flight muscles are

modulated by changes in the timing and duration

of stimuli, along with the magnitude or number of

muscle motor units recruited; modulation along all

these axes may be common in maneuvering birds

(Warrick and Dial 1998; Hedrick and Biewener

2007). Unlike vertebrate flight muscle for which

neural inputs may vary in intensity, insect flight

muscles are primarily modulated via the presence

(or absence) of a neural activation and its phase

with respect to the wing-beat cycle (e.g., Kammer

1967). Phase of activation during the stretch-shorten

cycle imposed on a muscle, dramatically influences

the output of mechanical power (e.g., Josephson

1997) and is sufficient to shift a muscle from net

release of energy to net absorption of energy (Ahn

and Full 2002).

Interaction of body and environment

Fluid–structure interaction

The natural world is replete with interesting exam-

ples of fluid–structure interactions such as the

pumping of blood by the heart, swimming in fluids

from the scale of bacteria to whales, flying on scales

from the tiniest parasitoid wasps to large birds,

and the flapping of fins. Efforts to understand the

dynamics of these types of problems through math-

ematical analysis, laboratory experiments, and nu-

merical modeling are a rapidly expanding area in

integrative and mathematical biology. The above

examples vary over a large range of spatial and tem-

poral scales and involve many different types of ge-

ometries. Quite often, direct measurement of the

biological flows is not practical or possible and lab-

oratory experiments can provide only limited data.

Hence, numerical simulations are a valuable means

of gaining insight into the detailed dynamics of the

fluid–structure system.

Study of swimming by fish swimming: Vortex

sheet methods

Swimming by fish is relatively well studied among

locomotory systems, and is the subject of multiple

review papers (Lighthill 1969; Sfakiotakis et al. 1999;

Triantafyllou et al. 2000; Fish and Lauder 2006) and

books (Aleev 1977; Childress 1981; Blake 1983; Webb

and Weihs 1983; Videler 1993; Sparenberg 1995;

Shadwick and Lauder 2006). The kinematics and

mechanical systems of fish have led to bio-inspired

designs for man-made vehicles, but have not always

led to propulsive advantages (Sagong et al. 2008;

Choi 2009).

Direct numerical simulation of swimming has

been successfully performed using a variety of

Navier–Stokes solvers for deforming bodies. Some

of the methods can be classified as immersed-

boundary methods (Fauci and Peskin 1988; Peskin

2002; Akhtar et al. 2007; Miller and Peskin 2009;

Borazjani and Sotiropoulos 2010; Tytell et al.

2010), or Lagrangian approaches using regularized

fluid or vortex particles (Cottet and Koumoutsakos

2000; Eldredge 2006; Hieber and Koumoutsakos

2008). An alternative method, which is less expensive

computationally, proceeds from an assumption

about the flow structure. At high Reynolds number,

the flow past a solid body typically consists of thin

layers of strong fluid shear (and vorticity) which

occur in a layer along the body’s surface, and in
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‘‘free’’ shear layers that have flowed away from the

body’s surface into the surrounding fluid. For thin

undulating bodies, or bodies with appendages such

as fins, separation at the trailing edge or distal edge

can be particularly important (Tytell and Lauder

2004; Lauder et al. 2006). Therefore, a natural as-

sumption about the flow structure, used since the

early days of airfoil theory (Thwaites 1987), is that

the boundary layer only separates at the sharp edge.

This assumption does not apply in all cases, particu-

larly for a nonstreamlined or completely smooth

body (such as a sphere) (Stewartson 1975; Smith

1986; Haller 2004). However, separation at the

edges is a good assumption for many slender flexible

bodies, such as undulating fish or flapping filaments

(Akhtar et al. 2007; Lauder et al. 2007; Shelley and

Zhang 2011). Passive flexibility can play a role in

causing separation to occur at the edges only

(Dong and Lu 2005). Anderson et al. found no sep-

aration of the boundary layer on swimming fish up-

stream of the trailing edge (Anderson et al. 2001).

When separation occurs at a sharp edge, the flux of

vorticity from the boundary layer into the surround-

ing fluid has been determined by the ‘‘Kutta condi-

tion’’ in various forms (Crighton 1985). Typically,

applying the Kutta condition at an edge corresponds

to imposing the unique value of vorticity flux there

which removes a singularity in flow velocity.

Methods have been developed to solve for the in-

viscid flows past sharp-edged bodies including plates,

tubes, and deforming and flexible filaments, using

the Kutta condition (Krasny 1991; Nitsche and

Krasny 1994; Jones 2003; Shukla and Eldredge

2007; Alben 2009). Using the methods of Alben

(2009) and Alben et al. (2012), we simulated 2D

flows past freely swimming flexible foils. In Fig. 3

we show a snapshot of a ‘‘swimming’’ flexible foil

(thick solid line) and its vortex sheet wake (dotted

line). The foil is oscillated vertically at the leading

edge, sinusoidally in time. It bends under fluid pres-

sure forces and moves horizontally to the left with a

velocity at which the period-averaged thrust and drag

forces cancel. Thrust forces are due to the difference

in pressure across the foil acting in the leftward di-

rection. Viscous drag forces act on the surface of the

foil. In Fig. 3, the dotted line representing the vortex

sheet wake is meshed adaptively to save computing

time, while preserving the large-scale roll-up of the

wake in agreement with simulations at high Reynolds

numbers (Krasny 1986; Cottet and Koumoutsakos

2000). If leading edge separation does not occur, a

leading-edge suction force is naturally included in

this model (Thwaites 1987; Saffman 1992; Eloy and

Schouveiler 2011).

In a quiescent flow, a generic vortex sheet rapidly

develops many complex spiral structures, and is quite

expensive to evolve for long times (Jones 2003).

However, if the shed vortex sheet is advected away

from the body (Alben 2008; Alben and Shelley 2008),

or, as in Fig. 3, the body swims with a non-zero

average speed, portions of the shed vortex sheet far

from the body can be approximated by a small

number of point vortices, shown by the asterisks in

Fig. 3. Details are given by Alben (2009). In this case,

the fluid–structure interaction can be reduced to

solving a small number of equations discretized on

the body, and evolving a modest number of discrete

vortex elements in the fluid.

Aerodynamics of insect flight

To stay aloft, insects must flap their wings and gen-

erate sufficient force to overcome gravity. To search

for food and avoid prey, they must perform maneu-

vers with agility. Insects’ aerial acrobatics result from

a concerted effort of the insect’s brain, flight muscles,

and flapping wings. One promising approach to un-

derstanding this complex interactive system is to

start from the exterior, analyzing the physical inter-

action between a flapping wing and the flow. The

unsteady aerodynamics of the flapping wing then

provides an input into the modeling of the 3D

flight of the coupled body and wing system. By an-

alyzing the stability and the dynamics of such a

system, we can begin to gain insights into the differ-

ent strategies employed by insects to execute maneu-

vers. Together, the analyses of these inter-connected

building blocks offer a route for obtaining mechanis-

tic understanding of complex flight behaviors.

One of the many pieces of the puzzle in under-

standing insect flight dynamics is the aerodynamics

of a flapping wing (Weis-Fogh and Jensen 1956;

Childress 1981; Ellington 1984; Spedding 1992;

Dudley 1998; Dickinson et al. 1999; Wang 2005).

Although much is known about classical airfoil

theory, an insect’s wing is much smaller than an

Fig. 3 Instantaneous position of a flexible foil (thick solid line at

left) and vortex-sheet wake (dotted line) shed from the foil’s

trailing edge, computed by the methods of (Alben 2009; Alben

et al. 2012). Asterisks at the right denote the locations of point

vortices used to approximate far-field portions of the vortex

sheet.
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airfoil and it creates unsteady flows. Consider a

dragonfly, for example: its chord (c) is �1 cm,

wing length (l) �4 cm, and wing frequency (f) is

�40 Hz. The tip speed (u) is about 1 m/s, and the

corresponding Reynolds number, Re¼ (uc/�), where

� is kinematic viscosity, is about 103. A smaller

insect, the chalcid wasp, has a wing length of

about 0.5–0.7 mm and beats its wing at about

400 Hz. Its Reynolds number is about 25. The

range of Reynolds numbers in insect flight is about

10 to 104, which lies in between the two limits that

are convenient for theories: inviscid flows around an

airfoil and Stokes flows experienced by micro-

organisms.

The flow around a flapping wing is governed by

the Navier–Stokes equation, subject to the wing’s

movement. The movement of the wing is affected,

in turn, by the movement of the flow. A mathema-

tical challenge is to determine the solution to the

coupled equations of the flow and the wing’s move-

ment. There is no simple analytic solution to such a

coupled system, even in the case of flow past a flat

plate. Therefore, one either has to make simpler but

relevant theoretical models or construct sensible

numerical algorithms for simulating these flows.

The aerodynamic models fall roughly into two

categories. One is the quasi-steady model of aerody-

namic forces, which relates the instantaneous force

to the kinematics of the wing directly. This provides

a practical tool for quick estimates (Weis-Fogh and

Jensen 1956; Weis-Fog 1973; Ellington 1984). Recent

experiments and computations have made significant

progress in taking into account some of the key

unsteady effects, such as dynamic stall, in revising

the traditional models based on thin airfoil theory

(Dickinson et al. 1999; Sane 2003; Andersen et al.

2005; Wang et al. 2004). The other kinds of

models treat the flow as a collection of vortices or

vortex sheets in an otherwise inviscid flow (Wagner

1925; von Karman and Burgers 1963; Pullin and

Wang 2004). The rules for generating vortices is

based on variants of the Kutta condition, which

was first introduced in the analysis of airfoil

theory. These models provide a tractable system for

computing and analyzing the unsteady effects and

the coupling between the flow and the wing and is

appealing for its computational efficiency (Alben

2008; Jones and Shelley 2005; Alben 2008).

Neuromechanical phase lags

Fluid–structure interaction seems to be particularly

critical for the development of a ‘‘neuromechanical

phase lag’’: a lag between muscle activation and

muscle shortening that gets increasingly longer at

points closer to the tail (Wardle et al. 1995).

Fishes, swimming amphibians and snakes, and lizards

that move through sand all develop a phase lag.

Fishes

Near the tail tip in fishes, the neuromechanical lag

can be so long that muscles near the tail are electri-

cally active even as they are forcibly stretched

by external fluid forces. Muscles produce the

highest forces when they are stretched while active

(McMahon 1984), and thus the increasing phase lag

has been hypothesized to stiffen the flexible tail so

that it transfers force more effectively to the fluid

(Blight 1977).

Recent computational results support the hypoth-

esis that the phase lag may increase swimming effi-

ciency. Tytell et al. (2010) simulated a flexible

swimming animal for which the body forces and

fluid forces were fully coupled together, but with

no sensory feedback (i.e., the right three boxes in

Fig. 1). Certain combinations of body stiffness and

muscle strength resulted in a phase lag (Fig. 4A),

similar to that seen in fishes (Williams et al. 1989).

Those swimmers that had large phase lags also used

relatively little energy for locomotion (Fig. 4C), but

also accelerated slowly (Fig. 4D). Unlike the condi-

tion in fishes (Wardle et al. 1995), the phase lag in

the computational swimmer was highly sensitive to

tail beat frequency (Fig. 4B), suggesting that sensory

feedback may be important for maintaining an

appropriate phase lag over a range of frequencies.

Sandfish Lizard

A diversity of small organisms, including lizards

(Mosauer 1932), snakes (Norris and Kavanau

1966), scorpions, and beetles inhabit dry deserts

(Brown 1974; Ezcurra 2006) composed of sand, a

granular material (Jaeger et al. 1996b). Many of

these organisms move effectively on and within a

substrate that displays both solid and fluid-like char-

acteristics in response to stress. Little is known about

the behaviors and neuromechanical control strategies

used by animals when they are subsurface. Recent

studies (Maladen et al. 2009, 2011) of the locomo-

tion of a small (�8 cm long, snout-vent length)

desert-dwelling lizard, the sandfish (Scincus scincus)

(Fig. 5), which inhabits the Saharan Desert of Africa,

observed that when challenged with a granular

medium of 0.3-mm glass particles (with properties

similar to desert sand) the animal walked on the

surface using its limbs to propel itself. High speed

x-ray imaging revealed that once subsurface the

animal no longer used limbs for propulsion.
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Instead it placed the limbs against its sides and exe-

cuted an undulatory motion of the body with large

amplitude axial oscillation, using the body to ‘‘swim’’

within the granular medium at speeds up to �2 bl/s.

Subsurface swimming kinematics were well charac-

terized by a single-period sinusoidal traveling wave

propagating along the body from head to tail; the

ratio of amplitude to wavelength was approximately

0.2. The animal increased its forward speed by

increasing its frequency of undulation. The ratio of

the average forward swimming speed, �¼ vx/vw was

approximately 0.5, independent of both initial con-

ditions of the granular bed and particle size.

To investigate the neuromechanical strategy of the

sandfish during walking, burial, and swimming, we

(Sharpe et al., in review) used high speed x-ray and

visible light imaging with synchronized electromyo-

gram (EMG) recordings of the activity of epaxial

muscle (the iliocostalis muscle group) activity.

While moving on the surface, undulation of the

body was not observed and EMG showed no activa-

tion. During subsurface sand-swimming, EMG

Fig. 5 The sandfish lizard (Scincus scincus) (a) at rest on the 0.3-mm diameter glass particles. (b) Multiparticle discrete element method

(DEM) simulation of the sandfish swimming subsurface in a simulated box of glass particles, 3 mm in diameter. (c) Midline trajectories of

the simulated sandfish during swimming. (d) Forward swimming speed versus frequency of undulation in a biological experiment

(points), DEM simulation (dashed lines) and resistive force theory (solid lines) in a loosely packed granular medium (58% by volume)

(Maladen et al. 2011). (e) Physical robot model of the sandfish at rest on a granular medium of plastic particles, 6 mm in diameter. The

robot swims with performance comparable with that of the live organism.

Fig. 4 In a computational swimmer with no sensory feedback, the neuromechanical phase lag changes with mechanical parameters

(A) and frequency of tailbeat (B) and has an impact on swimming performance (C and D). (A) Change in maximum phase lag between

muscle activation and the beginning of muscle shortening for a swimmer with a relatively floppy body (flexural stiffness EI¼ 0.64 MPa)

and weak muscles (open bar), for an intermediate body (EI¼ 0.76 MPa; filled bar), and for a stiff body (EI¼ 0.98 MPa) with relatively

strong muscles (filled gray bar). (B) Change in maximum phase lag for an intermediate swimmer as frequency of tailbeat changes.

(C, D) Trade-off between cost of transport (C) and initial acceleration from rest (D) for the three swimmers shown in panel (A).

Data from Tytell et al. (2010).
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revealed an anterior-to-posterior traveling wave of

muscle activation that traveled faster than the kine-

matic wave, similar to organisms swimming in

Newtonian fluids (Wardle et al. 1995; Tytell et al.

2010; Chen et al. 2012). This ratio was independent

of the volume fraction of the granular bed.

Sand–structure interaction

The study of locomotion on and within granular

media (GM) like desert sand presents challenges to

modeling, in part because the physics of interac-

tion—that of localized forcing, for example, the

penetration and movement of feet, limbs, heads, or

bodies (Li et al. 2009; Maladen et al. 2009;

Mazouchova et al. 2010)—is presently poorly under-

stood, relative to progress made in rapid granular

flows (Jenkins and Richman 1985; Goldhirsch

1999), or slowly deforming flows described by soil

mechanics (Terzaghi 1943; Nedderman 1992). GM

exhibit complex rheology (Jaeger et al. 1996a)

affected by both the properties of the particles

(e.g., coefficient of friction, polydispersity, particle

shape) and the compaction state of the medium.

The frictional nature of GM produces a yield force,

a threshold below which grains do not flow in

response to forcing (Nedderman 1992). Above the

yield force GM flow and, for low intrusion speeds,

the force on the intruder is independent of speed

(Wieghardt 1975), unlike the case for fluids. Like

the hydrostatic force in fluids, the average stress

within GM increases approximately linearly with

depth.

Studies of localized forcing with horizontally and

vertically translating intruders in initially homoge-

neous GM have been conducted (Albert et al. 2001;

Geng et al. 2001; Goldman and Umbanhowar 2008;

Umbanhowar and Goldman 2010). Vertical intrusion

of objects into GM results in a penetration force

linear in depth and linear in projected intruder sur-

face area. The resistance of GM to penetration � is a

function of the material properties and packing state.

Much like the case of fluids, intruders moving hor-

izontally through GM experience forces of drag and

lift. In GM however, these forces arise from normal

and frictional forces on the intruder’s surface, which

are supported by force chains between particles in

the bulk (Geng et al. 2001). For arbitrary shapes of

intruders, we have discovered that both drag and lift

can be well approximated by decomposing the lead-

ing surface into flat plates and summing the normal

and tangential (frictional) forces on the plates. Since

part of the grains can also be pushed upward or

downward by the leading surface, the intruder may

experience a net positive or negative lift depending

on its shape (Ding et al. 2011).

Closed-loop control of locomotion

In addition to the body–environment interactions

described above, such as fluid–structure interactions,

which lead to changes in shape in flapping wings of

insects and consequently to changes in aerodynamic

performance, animals also interact with the environ-

ment at a whole-organism scale (Hedrick et al.

2009). These interactions come in the form of

changes in the state of the environment such as the

arrival of a gust of wind, or changes in the state of

the animal such as a maneuver that initiates a left

turn, or even continued forward acceleration chang-

ing the velocity of the organism with respect to its

environment. The ability of animals to manage these

environmental interactions lies at the heart of their

apparent locomotor stability and allows them to

move through spatially and temporally varying

environments.

Studies of locomotor stability and interactions of

animals and environments often begin with a pertur-

bation applied to a freely behaving or freely moving

animal. Permitting free movement of the animal is

critical in these cases because the response of an

animal to a perturbation can arise both from an

active, sensory-based change to the locomotor pat-

tern, or through the interaction of the current loco-

motor pattern with the new environmental

condition. Studies such as tethered-flight experi-

ments on insects (e.g., Götz 1968; Robert and

Rowell 1992) that do not permit movement of the

animal cannot reveal the portion of the response due

to environmental interaction, even in cases in which

sensory feedback is presented in a closed-loop

manner. However, perturbations to freely behaving

animals, whether brought about by direct mechanical

effects (e.g., Jindrich and Full 2002), sensory manip-

ulations (e.g., Rohrseitz and Fry 2011), or resulting

from maneuvers performed by the animal (Cheng

et al. 2011), result in a closed-loop response incor-

porating both animal–environment feedback and

sensory feedback. These different modes of response

can be separated and quantified by combining

whole-animal perturbation or maneuvering experi-

ments with physical or computational models capa-

ble of revealing the response of the locomotor system

to a new environmental state in the absence of sen-

sory feedback, that is, the open-loop response of the

system. Once the open-loop response is quantified,

the closed-loop sensory feedback portion of the re-

sponse is revealed as the difference between the
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observed experimental response and the model

open-loop response (Cowan and Fortune 2007; De

2010). Depending on the nature of the system in

question, the open-loop response may need to incor-

porate one or more internal feedback loops. For ex-

ample, muscle-driven locomotion is subject to

intrinsic limits on force or power set by the proper-

ties of the actuator and may not be able to adopt the

same kinematic pattern in a new environment, given

a constant neural input. Additionally, the effects of

multiple levels of neural feedback may also be in-

cluded. For instance, proprioceptive feedback to the

CPG may enhance (or reduce) stability, requiring less

(or more) compensation in the outer sensory feed-

back loops.

Cheng et al. (2011) provide a recent, illustrative

example of the power of this combined approach of

modeling and whole-animal perturbation applied to

free-flight pitch maneuvers in hawkmoths. First, the

equations of motion for a rigid body with six degrees

of freedom were reduced to the set of equations gov-

erning the observed motion of the animal.

Coefficients for the coupling terms relating the equa-

tions to one another were determined from a phys-

ical model incorporating the wing kinematics of

steady hovering by the animal. Next, the values for

the coupling terms observed in the natural behavior

of the animal were extracted from the kinematics via

nonlinear regression fits to the equations of motion;

the differences between the coefficients from the

model and the animal reveal the effects (or absence)

of sensory feedback relating to the different degrees

of freedom in the model.

Control algorithm for a yaw turn in flapping flight

An exciting recent advance in the study of insect

flight is the integration of a kinematic tracking algo-

rithm, aerodynamic modeling, and dynamic analysis

with high-precision experimental measurements of

free flight (Ristroph et al. 2009b, 2010; Bergou

et al. 2010). We illustrate this approach with a

recent analysis of a yaw maneuver (Bergou et al.

2010) (see Fig. 6). To generate the vertical force nec-

essary to sustain flight, small insects must beat their

wings hundreds of times per second. Under the con-

straint of rapid wingbeats, how can insects manipu-

late these wingbeats to induce flight maneuvers?

During the yaw turn, asymmetries appear in all

three wing–angle kinematics. However, not all of

these are involved in inducing the turn. For example,

the most apparent asymmetry—the shift in the mean

stroke angles of the wings—simply reorients the

aerodynamic forces about the yaw axis of the fly

and does not affect the torque that causes the turn.

To gauge the importance of the wing–motion asym-

metries for inducing the turn, one can use a

quasi-steady aerodynamic model to determine the

average yaw torque generated by the wingbeats.

The torque turns out to act as if it were generated

by a torsional spring with an adjustable equilibrium

position. The time series of this torque further shows

that a fruit fly modulates its wing pitch by shifting

the rest angle of this torsional spring. In one in-

stance, the insect modulates left and right wing

pitch by about 158 over a period of five strokes.

This bias leads to a sharp 1208 turn in 80 ms, or

18 wing beats. By changing the strength and duration

of the asymmetry in the wing’s rest angles, flies can

control their angle of turn. The model predicts a

linear relation between the yaw angle and the bias

of the equilibrium position in the torsional spring.

For fruit flies, the mechanical properties of the

wing hinge appear to be finely tuned in ways that

enable modulation of wing pitch through only slight

active actuation. The spring-like behavior of the wing

hinge also connects the time scale of a turning ma-

neuver with the time scale of the wing’s actuation.

This supports the notion that animals can take

advantage of mechanical properties of their bodies

to simplify the complex actuation necessary to

move (Dickinson et al. 2000).

Free maneuvering flight and insects’ behaviors for

recovering from external perturbations have offered a

window into the controls used to make turns and to

Fig. 6 Computer-reconstructed 3D motion of a fruit fly executing

a sharp yaw turn (figure from Bergou et al. 2010). The shadows

are from high-speed measurements fon images from a video

camera. In this case, the fly makes a 1208 turn in about 80 ms.

The asymmetry between left and right wings is generated with

the bias in the rest angle of the effective torsional spring at the

wing’s hinge.
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make the transition between different flight modes.

It will be interesting to understand the myriad active

and passive recovery strategies employed during

these different maneuvers. The integration of

theory, experiments, and computations has become

a necessity in the studies of animal locomotion and

is likely to bring new quantitative insights to impor-

tant biological questions.

Future directions and challenges

Computational methods

Deforming structures in viscous flows

The fundamental computational challenge associated

with problems of fluid–structure interaction is the

accurate simulation of a moving, flexible structure

in a surrounding fluid. A number of methods for

solving such problems have been developed and in-

clude the immersed boundary method (Peskin 2002),

the immersed interface method (Li and Lai 2001; Lee

and LeVeque 2003; Xu and Wang 2006), distributed

Lagrange multiplier methods (Shi and Phan-Thien

2005; Shirgaonkara et al. 2009), the blob projection

method (Cortez and Minion 2000), and other varia-

tions inspired by Peskins immersed boundary

method (Mittal and Iaccarino 2005). Although

these methods have significantly advanced our un-

derstanding of fluid–structure interactions in the bi-

ological world, most studies have been limited by

severe computational demands ubiquitous with

these types of problems (Newren et al. 2007; Hou

and Shi 2008). If one can make either the inviscid

or Stokes flow assumption, then the computational

time can be greatly improved using methods such as

vortex sheets (Krasny 1986) for the former case and

the Method of Regularized Stokeslets (Cortez et al.

2005) for the latter.

In the Stokes setting, when inertia can be

neglected, the fluid equations become linear and

allow the construction of a numerical method with-

out grids in the fluid domain. Structures may be

represented by a collection of Lagrangian markers.

For the case of the Method of Regularized

Stokeslets, these markers correspond to the location

of regularized fundamental solutions to the Stokes

equations. This numerical method allows a simple

representation of very thin structures like cilia and

flagella that operate at very low Reynolds numbers.

The linearity of the Stokes equations translates into a

linear relationship between velocity and force, with

the advantage that only an efficient method for solv-

ing a linear system is needed to tackle very compli-

cated fluid–structure interactions.

Intermediate Reynolds numbers and insect flight

When both viscous and inertial forces are significant,

the full Navier–Stokes equations may be used to pro-

vide an in-depth look at the physics of flows around

organisms. Direct numerical simulations have been

used to enhance our understanding of a wide range

of problems in biological fluid dynamics at interme-

diate scales, including jellyfish propulsion (Lipinski

and Mohseni 2009; Herschlag and Miller 2011),

fish swimming (Fauci and Peskin 1988; Mittal et al.

2006), ctenophore propulsion by comb plates

(Dauptain et al. 2006), multi-oared copepod propul-

sion (Borazjani and Sotiropoulos 2010), and insect

flight (Sun and Lan 2004; Andersen et al. 2005;

Miller and Peskin 2009; Nakata and Liu 2012).

To quantify the unsteady aerodynamics of insect

flight, for example, recent efforts have brought a

suite of computational fluid-dynamics techniques to

obtain detailed descriptions of the flow around the

wings. Although there are commercial software pack-

ages for simulations of flow, there is not a one-

size-fits-all computational algorithm to answer any

given question. For flapping flight, the interesting

flow behaviors tend to originate at the moving inter-

face. On the other hand, computational schemes typ-

ically encounter the greatest difficulty in resolving

flows near the interface. There have been continued

efforts to develop improved algorithms for address-

ing sharp-interface problems (Griffith and Peskin

2005; Mittal and Iaccarino 2005; Xu and Wang

2006).

Often, it is beneficial to develop a method tailored

to the question. For example, in the case of a single

rigid flapping wing, one can resort to high-order

numerical schemes and take advantage of the coor-

dinate transformations and conformal mapping to

resolve the sharp wing tips so as to avoid

grid-regeneration (Wang 2000b; Alben and Shelley

2005; Spagnolie and Shelley 2009). In the case of

multiple wings, the immersed boundary method

and the immersed interface method are versatile

tools for simulating both rigid and flexible wings

(Mittal and Iaccarino 2005; Xu and Wang 2006;

Miller and Peskin 2009). One advantage of these

Cartesian-grid-based methods is their relative ease

in handling the moving interface without grid-

regeneration (Peskin 1972). The immersed boundary

and immersed interface methods, along with other

types of computational methods, have brought quan-

titative understanding to hovering flight (Wang

2000a), transition to forward flight (Alben and

Shelley 2005), the role of clap-and-fling at small

Reynolds numbers (Miller and Peskin 2005), the
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3Ddimensional effects of flow (Sun and Lan 2004),

and the role of wing flexibility (Miller and Peskin

2009; Vanella et al. 2009).

In addition to experiments, 3D simulation of

flight will allow us to disentangle the feed-back loop-

s,for example, visual and mechanical feedbacks,

which are simultaneously present in insects (Pringle

1948; Sherman and Dickinson 2003; Dickinson 2005;

Taylor and Krapp 2007). A systematic dynamical

analysis of the intrinsic instabilities and the feedback

controls of 3D flapping flight can further inform us

about the physical constraints on the time scale of

sensory feedback loops. The solutions provide ideas

for constructing simpler models such as the ones

described previously. They may also reveal subtler

effects that are critical for our understanding of

the efficiency of flapping flight (Pesavento and

Wang 2009).

Vortex sheet methods for inviscid flows

Many aspects of vortex sheet models of high

Reynolds number (inviscid) flows remain to be un-

derstood in detail. When is the Kutta condition

valid, and how does it arise from viscous fluid me-

chanics? When is vortex sheet separation delayed to

the trailing edge for a flexible body? How does the

Kutta condition relate to dissipation of energy?

How is conservation of momentum affected in

numerical implementations? Regularization is a

robust approach to simulating free vortex sheets

with a smooth representation (Krasny 1986). Regu-

larization can be tapered to zero near the body to

limit its effect on the process of vortex shedding

(Alben 2010). How can the total momentum of the

fluid–structure system be preserved in the presence

of regularization? How can we use vortex sheets to

model separation from the leading edge of a sharp

body, even when the tangential component of the

local flow velocity is directed onto the edge? Resol-

ving these questions will help to understand the

limits of vortex sheet methods in representing flows

of high Reynolds number.

Locomotion in granular media

Unlike aerial and aquatic environments, common

terrestrial environments like dirt, leaf litter, rubble,

and sand are not yet adequately described by models

at a level comparable with those that describe the

flow of fluids (e.g., the Navier–Stokes equations).

Prediction of ground reaction force is therefore a

challenge, and consequently, quantitative discovery

of locomotor principles and construction of devices

(like robots) that operate effectively in such environ-

ments remains elusive. As noted earlier, GM provides

an excellent test-bed for studies of terrestrial loco-

motion in flowing environments. However, the phys-

ics of the flow of GM is least developed in the regime

relevant to that of locomotor-interaction, that of lo-

calized forcing. Challenged by the lack of constitutive

equations for GM, we have modeled interaction with

granular environments in two ways: Detailed simu-

lations utilizing the multi-particle Discrete Element

Methods (DEM) (Rapaport 2004; Poschel 2005) and

empirical models of interaction using a Resistive

Force Theory (RFT) inspired by theory developed

to explain swimming at low Reynolds number

(Gray and Hancock 1955).

In the DEM approach (Fig. 5b), The GM is mod-

eled as ensembles of particles that undergo collisions

among themselves and with intruders. Particle–par-

ticle and particle–intruder interactions include repul-

sive and viscous forces in the normal direction, and a

frictional force in the tangential direction. Once val-

idated against experiment, the DEM simulation can

provide a predictive model over a wide range of

experimental conditions. Multibody software can be

coupled with the DEM simulation to create models

of organisms. In the case of sand–swimming, analyz-

ing particle flow around the virtual sandfish demon-

strates that movement can be thought of as

occurring within a ‘‘frictional’’ fluid in which force

is dominated by frictional contacts within the mate-

rial locally flowing around the body. The DEM

model quantitatively reproduces kinematic features

of the locomotion (e.g. speed versus frequency,

Fig. 5). In the cases of walking and running on gran-

ular media, the DEM model accurately reproduces

the locomotion of a small robot (F. Qian et al., sub-

mitted for publication).

Although DEM allows for detailed interrogation of

fields of force and flow developed during locomo-

tion, it is computationally costly and does not allow

for analytic understanding of locomotion. Further,

DEM is limited to relatively large particles or small

volumes. Simulations of realistically large environ-

mental substrates composed of 109
� 1012

particles are at the limits of present computational

power. To remedy this, we have developed an em-

pirical approach for swimming and walking organ-

isms and robots inspired by the RFT (Maladen et al.

2009). RFT (Gray and Hancock 1955) was originally

developed for swimming at low Reynolds number to

gain insight into swimming in the granular medium.

In the RFT, the body or limb of the organism is

partitioned into infinitesimal elements along its

length. When moving relative to the medium, each

element experiences resistive thrust and drag. During

swimming, resolving these forces into perpendicular
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and parallel components and balancing them by in-

tegrating forces over the length of the body (and

head) predicts forward swimming speed at a given

frequency. Because at biologically relevant swimming

speeds (0–0.4 m/s) force is independent of speed

(Wieghardt 1975; Maladen et al. 2009), the force

on an element can be characterized as a function

of only the direction of the velocity relative to its

orientation.

Because resistive force laws in GM are not avail-

able, we measured the forces on rods with compara-

ble cross sections to the animal body as the rods

were dragged through GM at a fixed depth. With

these force laws, the RFT agrees well with the DEM

model (Fig. 5d). The angular dependence of the force

laws in GM resembles the forces generated in a

Newtonian fluid at low Reynolds number: The per-

pendicular force increases and the parallel decreases

with the angle between the velocity of the rod and its

longitudinal axis. However, while the functional

forms of the forces in low Reynolds number (Re)

can be approximated as sines and cosines, in GM,

they do not have these simple functional forms.

Further, the ratio of the average magnitude of the

perpendicular forces to the parallel forces is larger in

GM (43:1) than in fluid (�2:1). Consequently,

thrust is relatively larger in GM compared with

that in a fluid at low Reynolds number. The differ-

ence in force laws explains the higher � observed for

sandfish (�0.5) compared with non-inertial low-Re

swimmers in fluids (�0.2). The RFT also suggests

that the packing state (volume fraction) does not

affect � (or net torque) because, both thrust and

drag scale similarly with changes in packing.

Recently, we have extended the RFT laws to vertical

intrusion and find excellent predictive ability for per-

formance of a legged robot walking on a granular

medium of poppy seeds (C. Li et al., manuscript

in review). Finally, RFT and DEM approaches have

been tested against a physical robot model, a

seven-segment robotic sandfish, and compare well,

predicting performance as parameters like amplitude

and wavelength of undulation are varied (Maladen

et al. 2011) (Fig. 5e).

Closed-loop sensory-motor interactions

As described above, many challenges remain in un-

derstanding the complex physics of the interactions

between muscles, body, and environment (the right

side of Fig. 1). A further challenge is to understand

the closed-loop effects of such interactions on an

animal’s nervous system (the left side of Fig. 1).

Sensory-motor feedback in active, behaving animals

is highly challenging to approach experimentally be-

cause of the difficulties of performing neurophysio-

logical recordings in behaving animals. However,

such experiments are critical, because the state of

the nervous system can change qualitatively during

a behavior, as compared with the same cells at rest or

in an isolated preparation. For example, a class of

visual interneurons in fruit flies double their gain

during flight, compared with their state at rest

(Maimon et al. 2010).

Mathematical models, even relatively simple ones,

can be critical for understanding the role of

sensory-motor interactions in a closed-loop system.

For example, Cowan and Fortune (2007) used simple

linear models of the locomotor dynamics of a swim-

ming fish to analyze the tuning of sensory systems.

They examined how fish maintain position in a

slowly moving refuge. Even though the refuge

moves slowly, for stable closed-loop dynamics, the

simple model predicts that sensory systems should

respond to high frequencies, which was indeed

what was found experimentally. More complex

models, such as that of Tytell et al. (2010), predict

that the nervous system must change its activation

properties as swimming frequency changes to main-

tain an effective neuromechanical phase lag (Fig. 4).

Understanding how an animal responds to perturba-

tions will be critical, and may require development

of new techniques for analyzing data from rhythmic

neuromechanical systems (see e.g., Revzen and

Guckenheimer 2008, 2012).

Experimental challenges

Interactions of running, crawling, and climbing or-

ganisms (Alexander 2003) on natural terrestrial sub-

strates generate many fascinating limb/body–ground

interactions. For example, organisms can encounter

surfaces with different orientations and these can re-

quire adhesive contact forces to climb (Cartmill

1985). Organisms can encounter substrates with

gaps that are large compared with the size of the

foot or body and which can require either careful

foot placement or rapid movements to bridge gaps.

Surfaces like sand or leaf litter can also flow beneath

footsteps or upon intrusion of the body. Since nat-

ural terrestrial substrates are so complex, we desire

laboratory versions that encapsulate features found in

natural environments. To that end, experiments have

been developed to create surfaces for which adhesion

and incline can be varied (Goldman et al. 2006).

Surfaces with gaps and obstacles (Bläsing and Cruse

2004; Daley and Biewener 2006; Spagna et al. 2007)

have been used to study stability and control.
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Techniques like fluidized beds (Maladen et al. 2009;

Li et al. 2009) have been used to control state of

homogeneous granular media. However it is still a

challenge to prepare states of different wetness or of

particle size and shape; novel techniques are

required.

As models of animal locomotion become more

sophisticated and include effects such as surface de-

formation in response to applied forces, or encom-

pass a closed-loop perturbation response extending

over many locomotor cycles, recording methods for

acquiring comparable measurements from freely be-

having animals must keep pace. Many current exper-

imental configurations use stereo videography

followed by semi-automated landmark tracking to

provide kinematics that are the link between exper-

iment and model. This has the great advantage of

not requiring any manipulation of the animal or at-

tachment of any apparatus, but also imposes sub-

stantial limitations. However, current videography

practices scale poorly to recording complete surfaces

rather than landmarks or extended locomotor se-

quences. For example, a model of a deforming fin

of a fish used up to 300 individually tracked land-

marks per video frame to reconstruct the deforming

locomotor surface (Mittal et al. 2006). Application of

computer vision techniques to acquisition of

kinematics can greatly enhance their throughput for

simple measurements (Fontaine et al. 2009; Ristroph

et al. 2009a) and can also, under appropriate exper-

imental conditions, allow automated reconstruction

of wing surfaces by using image–pattern recognition

algorithms to automatically match many landmarks,

building up a surface that can then be matched

to an existing model of a deforming wing (Walker

et al. 2010; Guo and Hedrick 2012). Several variants

of this overall procedure exist, including some

that use markers applied by the researcher—

necessary in the case of animals with transparent lo-

comotor surfaces (Walker et al. 2009; Koehler et al.

2011).

Techniques for recording from the nervous system

of awake, behaving animals are also becoming criti-

cal. Current techniques involve tethering an animal

in a virtual reality chamber that relays visual stimuli

(e.g., Page and Duffy 2008; Dombeck et al. 2010;

Maimon et al. 2010). Techniques for performing

such recordings as animals move and respond to

perturbations will be important.

For tiny intermediate-Re organisms, mapping out

the 3D flow field along with collecting data on the

kinematics of the locomotory appendages and direc-

tion of high-speed motion of the body is especially

difficult for aquatic organisms like plankton. Recent

developments in 3D particle image velocimetry (PIV)

incorporate multiple high-speed, high-resolution

cameras focused on a small volume illuminated at

wavelengths undetected by the organism to obtain

nonintrusive observations of flow fields of escaping

aquatic copepods that are 1–2 mm long. Asymmetry

in the flow due to motion of the body and action of

the multiple swimming legs does not match that pre-

dicted in computational fluid dynamics (CFD) or

analytical models (Kiorboe et al. 2010; Jiang and

Kiorboe 2011a,b). Improvement of our understand-

ing of how copepods have adapted to life at inter-

mediate Re is expected from empirical analyses using

tomographic PIV.

Conclusions

The above examples illustrate how theoretical frame-

works can help biologists pose and answer funda-

mental questions in biological design. Moreover,

modeling mathematically unexplored biological sys-

tems will generate new mathematical models that are

likely to identify new problems in analysis and com-

putation. For example, complex 3D fluid–structure

interaction in animal locomotion have motivated

the development of new or improved numerical

methods such as a Lattice–Boltzman formulation of

the immersed boundary method (Zhu et al. 2011),

adaptive versions of the immersed boundary and in-

terface methods (Griffith et al. 2009), hybrid vortex

sheet methods, and the application of spectral

deferred corrections to the method of regularized

Stokeslets (L. A. Miller et al., manuscript in prepa-

ration). The neuromechanical and control models

are expected to lead to similar innovations in model-

ing and numerical methods. For example, the sto-

chasticity of pacemakers appears to be an integral

component of propulsion by jellyfish and will require

the development of efficient numerical methods for

stochastic neuromechanical models. The active and

passive mechanical properties of muscle fibers and

the elastic properties of animal tissues have complex

geometries and behaviors that will motivate the de-

velopment of new methods and models for muscular

dynamics.

Beyond basic science, the application of physics

and mathematics to organismal biology can lead to

innovations in industry, medicine, and athletics. For

example, research on insect flight has led to the im-

proved design of micro-air vehicles that exhibit the

stability and maneuverability of flying animals

(Ellington 1999; Rudolph et al. 2002). New numeri-

cal methods for studying fully-coupled fluid–struc-

ture interactions could be used to model passive
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and active fin deformations and inform the design of

highly maneuverable micro underwater-vehicles

(MUVs). Research on swimming at small scales

could translate into novel designs for nanoparticles

used in drug delivery. Beyond locomotion, similar

computational methods could be applied to the

study of muscular hydrostats such as octopus arms,

earthworm bodies, and elephant trunks. Insights

from these studies could be used to improve the

design of manipulators with large degrees of

freedom.

Comparisons between performances of animals

and humans and biomechanics using the tools of

mathematics could also lead to advancements in bi-

ologically inspired devices and materials. Some ex-

amples include hiking shoes with soles modeled

after mountain-goat hooves, prosthetic limbs that

store elastic energy (Czerniecki et al. 1991), and ma-

terials that can self-heal, inspired from abalone shells

(Greenwald 2005). Quantitative analyses of these sys-

tems can also be an extremely powerful tool for un-

derstanding animal design and human biomechanics.

A striking example of this was the redesign of the

running tracks at Madison Square Garden and the

Meadowlands Arena by the late Professor Thomas

McMahon based on a simple mechanical model of

human runners (McMahon 1990).
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