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Abstract

Otitis media (OM), a common infectious disease in children, is associated with bacterial middle

ear (ME) infection. Tolllike receptors (TLRs) are important mediators of innate immune

responses, and TLR9 specifically recognizes the unmethylated cytidine-phosphate-guanosine

(CpG) motifs in bacterial DNA. Additional sensors of foreign DNA have recently been identified.

The role of DNA sensing and TLR9 was investigated in a murine model of OM induced by non-

typeable Haemophilus influenzae (NTHi). Expression of genes related to DNA-sensing pathways

involved in innate immunity was assessed via DNA microarray, qPCR and

immunohistochemistry. Middle ear responses to NTHi were examined in wild-type and TLR9−/−

mice by histopathology and bacterial culture. Expression of TLR9 signaling genes was modestly

up-regulated during OM, as was TLR9 protein in both ME mucosal cells and infiltrating

leukocytes. However, genes known to be regulated by CpG DNA were dramatically up-regulated,

as were genes involved in DNA sensing by DIA, Pol-III and AIM2. Toll-like receptor 9 deletion

significantly prolonged the inflammatory response induced by NTHi in the ME and delayed

bacterial clearance. The results suggest that DNA sensing via TLR9 plays a role in OM

pathogenesis and recovery. Alternative forms of DNA sensing may also contribute to OM.
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Introduction

Otitis media (OM) is an extremely common pediatric disease.1 While uncomplicated OM

typically resolves without treatment, about 10–20% of children develop more serious

chronic or recurrent disease requiring antibiotic therapy or surgery.2 The cost of OM,

including treatment and lost productivity, is estimated at more than $5 billion annually in the

US.

The etiology of OM is complex. Eustachian tube dysfunction, cognate immune status, prior

viral infection and allergy are all known to contribute to susceptibility to OM.3,4 However,

bacterial infection is the ultimate cause of most acute and/or recurrent OM, with non-

typeable Haemophilus influenzae (NTHi) the most commonly isolated pathogen.5 Otitis

media is characterized by inflammation of the middle ear (ME), mucosal hyperplasia, the

development of effusion, and leukocytic infiltration of the tympanic cavity.6,7

While cognate immunity is critical for the defense of the body against infection, it requires

the naïve organism 1–2 wk to mount an effective cognate response to a new pathogen.8

Therefore, the first line of defense against infection must be served by innate immune

responses that do not require prior sensitization. Innate immunity is mediated by receptors

that recognize molecules produced by pathogens, such as pathogen-associated molecular

patterns (PAMPs), including proteins, lipids, lipoproteins and nucleic acids. The best-

characterized of these innate immune receptors are the family of Toll-like receptors

(TLRs),9,10 but there are many other types of receptors that participate in innate immune

defense, including the NOD-like receptors (NLRs).

Non-typeable H. influenzae produces a variety of PAMPs that are recognized by innate

immune receptors. These include endotoxin (lipooligosaccharide, similar to LPS) recognized

by TLR4, as well as lipopeptides recognized by TLR2.11,12 It is likely that NTHi also

produces peptides and lipopeptides that can activate the NLRs,13 and bacterial RNA has

been shown to activate both TLRs (including TLR3 and TLR7) and NLRs, especially the

NALPs.14 However, bacterial and other forms of non-self DNA are very important PAMPs,

and several pathways for their recognition exist. All of these receptors for DNA are intra-

cellular, requiring internalization of DNA for recognition. However, internalization of NTHi

by respiratory epithelial cells has been well documented.15–17 While this internalization

occurs independently of DNA receptors,15,16 it would potentially expose the receptors to

bacterial DNA.

Toll-like receptor 9 is localized to endosomes, and recognizes unmethylated cytidine-

phosphate-guanosine (CpG) motifs that are common in bacterial, but not mammalian,

DNA.18 Access of TLR9 to bacterial DNA is enhanced by the modulator HMGB1.19

Exposure of TLR9 to bacterial DNA results in the recruitment of signaling molecules,

leading ultimately to the production of pro-inflammatory cytokines and other target genes.18

Toll-like receptor 9 is also thought to contribute to the development of effective cognate

immunity through facilitating development of the inflammasome. In this role, TLR9 has

been targeted, employing immunostimulatory sequences of DNA (ISD), to enhance immune

responses to pollen allergens for the treatment of allergic rhinitis.20 Other non-self DNA
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receptors have recently been described, which are cytoplasmic and which activate innate

immune effectors such as cytokines and IFNs. These include DNA-dependent activator of

IFN regulatory factor (DAI),21 absent in melanoma-2 (AIM2)22,23 and RNA polymerase

III.24,25

The signaling cascades activated by receptors for pathogen DNA are illustrated in Figure 1.

Like other TLRs, TLR9 utilizes the TLR adaptor molecule MyD88, which leads, via the

activation of NF-κB, to the production of TNF-α and other pro-inflammatory cytokines such

as IL-6. We have shown previously that MyD88 and TNF-α are important for the resolution

of OM caused by NTHi infection.26 However, the role of TLR9 in this disorder has not been

well characterized. Toll-like receptor 9 has been found to be a significant mediator of

inflammation at other sites, and to synergize with other TLRs that we have found to be

involved in OM pathogenesis.27–29 Moreover, in a model of sepsis,30 mortality was reduced

by its inhibition or in its absence. In addition, reperfusion injury in the liver has been shown

to be decreased by inhibition of TLR9.31 These studies emphasize the potential for TLR9

signaling to contribute to disease and injury pathogenesis.

With respect to other pathways able to recognize pathogen DNA, DAI signals via a complex

of proteins associated with mitochondria and the endoplasmic reticulum to activate IRF3

and IFN production.21 Pol-III transcribes bacterial DNA into RNA, where it is sensed by

RIG-1 and also induces IFN production.24,25 Upon interaction with bacterial DNA, AIM2

complexes with (ASC) and pro-caspase 1 to form an inflammasome, leading to caspase 1

activation and subsequently to maturation of IL-1 and IL-18.22,23 The role of these innate

immune DNA sensing pathways in OM also remains unexplored.

Simple injection of bacterial DNA into the ME seemed unlikely to be informative, since all

of the receptors noted above are intracellular and entry of DNA into cells is most likely

dependent upon other bacterial elements. To determine whether pathogen DNA plays a role

in bacterial OM, we characterized, using DNA microarrays, the expression of genes

involved in the DNA sensing pathways described above, as well as genes known to be

induced by their activation, during the course of OM induced by NTHi in mice. In addition,

we evaluated OM in mice that are genetically deficient in TLR9 (the only non-self DNA

sensor for which a gene deletion mouse is commercially available) using a well-established

model of NTHi inoculation of the mouse ME.32,33

Materials and methods

Animals

C57Bl/6:CB F1 hybrid mice were purchased from Jackson Laboratories (Bar Harbor, ME,

USA) for gene array analysis. Toll-like receptor 9−/− mice on a C57BL/6 background (6×

crossed) were originally generated by Akira and colleagues34,35 and used with their

permission, but were generously supplied by Dr Eyal Raz of UCSD. Age-matched C57BL/6

control mice were purchased from Jackson Laboratories.
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Bacteria

Haemophilus influenzae strain 3655 (non-typeable, bio-type II; NTHi), a clinical isolate

from the ME of an OM patient, was used at a concentration of 105–106/ml to induce acute

OM.32

Surgery

For DNA microarrays, 40 C57BL/6:CB F1 hybrid mice per time point were used. The

TLR9−/− and C57BL/6 mice were divided into groups of six mice for each experimental

time point (3 each for histopathology and bacterial culture). Animals were inoculated with

NTHi as described previously.29,32 Uninoculated animals (time 0) served as controls.

DNA microarray

Expression of selected genes involved in DNA sensing was evaluated in wild-type mice by

DNA microarray. Forty wild-type ME mucosae were harvested at each of the following

intervals: 0 (no treatment), 3 h and 6 h, as well as 1, 2, 3, 5 and 7 d after NTHi inoculation.

The tissue was homogenized in TRIzol™ (Invitrogen, Carlsbad, CA, USA) and total RNA

was extracted. RNA was labeled and hybridized to two Affymetrix MU430 2.0 microarrays.

This procedure was then duplicated for each time point to obtain an independent replication.

Gene transcript expression levels were evaluated using variance-modeled posterior inference

(VAMPIRE).36 Functional gene families were assessed by gene ontogeny (GO) analysis,

and specific genes were assessed at individual time points, after Bonferonni correction for

multiple tests, using Genespring GX 7.3 (Agilent).

mRNA quantification by qPCR

Gene expression due to TLR signaling was investigated during NTHi-induced OM in six

MEs per time point of C57BL/6 and TLR9−/− mice using real-time PCR (qPCR). The

mRNA was extracted using Dynabeads mRNA DirectTM (Invitrogen). Messenger RNA (20

μl) was reverse transcribed using the SuperScript™ First-Strand cDNA Synthesis kit

(Invitrogen). Quantitative real-time PCR was performed using 1 μg/μl of cDNA and

predeveloped TaqMan qPCR primers (Applied Biosystems) for TNF-α and IL-10 in the ABI

Prism 7000 Sequence Detection System (Applied Biosystems). Fold induction was

calculated using the comparative threshold cycle (Ct) method as previously described.29

Relative expression of the target gene was normalized to GAPDH and compared to

uninfected mucosa.

Histology

Wild-type and TLR9−/− MEs were harvested at 0 (uninoculated), 1, 2, 3, 5, 10 and 14d post

inoculation, processed into paraffin, sectioned and stained with H&E. Sections from

standardized locations were digitally recorded and mucosal thickness determined

morphometrically using NIH Image-Pro image analysis software. The percentage area of the

ME lumen occupied by inflammatory cells at these locations was measured using the same

software, and computer-averaged to obtain a measure of cellular effusion present within the

ME, as described previously.26 This measure is used to quantify cellular inflammation in

other tissue spaces.37,38 The numbers of neutrophils and macrophages comprising ME
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infiltrates were also counted in five randomly selected clusters of cells for each ME (400×)

by two independent observers and computer-averaged.

Immunohistochemistry

Four wild-type MEs at each time were harvested 0, 1, 2, 3, 5 or 7 d (because wild-type

animals were used, OM is resolved by 7 days) after NTHi inoculation and fixed in 4% PFA.

The tissue was decalcified, cryoprotected, frozen and sectioned on a cryostat at 10 μm.

Sections were reacted with anti-TLR9 antibody, followed by a fluorescein-labeled secondary

antibody, to detect TLR9. The sections were counterstained with DAPI to visualize cell

nuclei.

Bacterial clearance

Bacterial presence was assessed from at least six wild-type and six TLR9−/− MEs per time

point, by obtaining a 1μl loop sample from each ME for NTHi culture. Culture positivity and

degree was classified as described previously.26

Statistical analysis

Except for gene array values as discussed above, data were analyzed with ANOVA using

StatView statistics calculation software, as described elsewhere.39 Differences were

considered significant at P < 0.05.

All experiments were performed according to NIH guidelines and approved by the IACUC

of the San Diego VA Medical Center.

Results

Regulation of DNA-sensing pathway genes during OM

Gene ontogeny analysis of gene array expression patterns during the course of OM

identified innate immune and inflammatory signaling as pathways significantly regulated in

the ME by exposure to NTHi, including TLR. Since a GO pathway for DNA sensing has not

been developed, we individually assessed the genes involved in each of the DNA sensing

pathways illustrated in Figure 1, as well as genes that have been identified as being

specifically up-regulated by ligands for TLR9 (CpG DNA) and DAI (interferon stimulatory

DNA, ISD).

Toll-like receptor 9 signaling genes are only modestly influenced by NTHi, but TLR9 target
genes are strongly up-regulated

We evaluated the expression of four genes involved in DNA sensing by TLR9 (see Figure 1)

in the ME mucosa of wild-type mice, using DNA microarrays (Figure 2A and

Supplementary Table 1). Expression was determined as fold change relative to control MEs.

The TLR9 gene itself was up-regulated only 2–3-fold, at 48 h after inoculation. The co-

factor UNC93, which is required for TLR9 trafficking to endosomes and for TLR9

function,40 and HMGB1 which supports DNA internalization into endosomes19 were

essentially unaffected throughout the course of OM. However, a negative regulator of TLR9
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signaling, KLRA17, was significantly up-regulated from 1–3 d after NTHi inoculation, with

a peak of 18-fold regulation at 1 d. Of downstream genes involved in signaling from a

number of TLR receptors, MyD88 showed moderate up-regulation, up to 6-fold at 1 d after

inoculation, while TRAF6 and TAK1 were minimally affected.

In contrast to TLR9 signaling genes, genes that have been shown to be specifically up-

regulated by its target PAMP, unmethylated CpG DNA,41,42 were dramatically up-regulated

by exposure to NTHi (Figure 2B and Supplementary Table 2). In particular, expression of

both CSF3 and CXCL1 were enhanced by 200– 300-fold.

DAI and Pol-III signaling genes are up-regulated during OM more than their target genes

Genes encoding the proteins that mediate DAI and Pol-III DNA signaling (see Figure 1)

were strongly up-regulated during OM in wild-type mice (Figure 2C, D and Supplementary

Table 1). Expression of DAI itself peaked at more than 40-fold induction, while several

additional genes were up-regulated by 5–10-fold. In contrast, genes that are preferentially

regulated by a DIA/Pol-III ligand, ISD,42,43 showed no, or only modest, regulation during

NTHi-induced OM (Figure 2E and Supplementary Table 2).

Genes involved in AIM2 DNA signaling are up-regulated during OM

The expression of five genes involved in AIM2 DNA sensing was determined (Figure 2F

and Supplementary Table 1). AIM2 and the inflammasome targets IL-1β and IL-18 were

significantly up-regulated from 3- and 9-fold. Caspase1 showed brief down-regulation

followed by modest up-regulation, while ASC was consistently down-regulated.

Toll-like receptor 9 protein is observed in the ME during OM

Little or no TLR9 immunoreactivity was observed in the resting ME mucosa. However,

TLR9 was present in both epithelial and inflammatory cells during OM from 6–72 h after

inoculation. Toll-like receptor 9-positive cells were observed, scattered through the ME

mucosa, and were primarily epithelial cells. Within inflammatory exudates, TLR9 was more

prevalent, and was detected primarily in mononuclear leukocytes that had the appearance of

macrophages (Figure 3A).

Toll-like receptor 9−/− mice show delayed ME inflammatory response to NTHi and
compromised OM recovery

To assess the functional role of TLR9, we investigated the ME response to NTHi inoculation

in TLR9−/− mice, as compared to wild-type controls. The wild-type mice exhibited a typical

response to NTHi.26 This response included hyperplasia of the ME mucosa, which reached a

maximum thickness 2 d after inoculation with NTHi (Figure 3A,B). Mucosal thickness

remained elevated at 3 d, and then recovered to baseline by 5 d. Toll-like receptor 9−/− mice

exhibited modestly, but significantly, greater thickness of the ME mucosa prior to NTHi

administration, compared to wild-type mice. However, in contrast to wild-type mice, NTHi

induced no significant increase in mucosal thickness for the first 3 d after inoculation.

Thickness then increased from days 5–14, with recovery not complete at the longest post-

inoculation time point examined.
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The infiltration of cells into the ME lumen of TLR9–/– mice after NTHi inoculation was

assessed by measuring the percentage of the ME lumen covered by cells (Figure 4A).

Infiltration peaked at 2–3 d in wild-type mice and then declined to low levels. No cells were

present in the ME lumina of uninoculated TLR9−/− mice. Moreover, after inoculation, ME

cellular infiltration in TLR9−/− mice was not significantly different from that observed in

wild-types. However, when individual cell types were assessed, significantly fewer

polymorphonuclear leukocytes were observed in the ME exudates of TLR9−/− mice at 1 d

and 3 d after inoculation, when compared to wild-type mice (Figure 4B). Macrophage

infiltration was not significantly different (Figure 4C). Interestingly, two TLR9−/− MEs

showed both neutrophils and macrophages at 14 d after NTHi inoculation, more than one

week after these cells had been cleared from all wild-type mouse MEs. In these two cases,

the kinetics of both cell types might have been delayed by lack of TLR9.

Cytokine expression was enhanced in the MEs of TLR9−/− mice

Cytokine expression is often regulated by NF-κB, a primary downstream target of TLR9 via

MyD88. Therefore, expression of the classical pro-inflammatory cytokine TNF-α (Figure

5A) and the classical antiinflammatory cytokine IL-10 (Figure 5B), were compared in the

MEs of wild-type versus TLR9−/− mice by qPCR. The TNF-α mRNA showed a biphasic

response in wild-type mice, with high levels at 1 d and 2 d after NTHi inoculation, a steep

decrease, and then modest levels of mRNA at 5 d and 10 d. While the TLR9−/− ME also

displayed a biphasic response, significantly more TNF-α mRNA was recovered from

TLR9−/− MEs than from wild-type mice 2 d and 10 d after NTHi inoculation. The minimum

was observed at 5 d. In contrast, IL-10 mRNA expression peaked at 5 d in the TLR9−/− ME,

but was not observed in the wild-type ME.

Middle ear bacterial clearance was delayed in TLR9−/− mice

Bacterial clearance of the ME cavity was examined in TLR9-deficient mice and compared to

that observed in wild-type animals (Table 1). In wild-type mice, 4 out of 6 culture plates

were positive at day 1, increasing to 6/6 at day 2, and decreasing to 3/6 on day 3. Thereafter,

no bacteria were recovered from wild-type MEs. The TLR9−/− MEs were very similar to

wild-type MEs from days 1–3 after NTHi inoculation, with 3/6, 4/6 and 2/6 MEs positive for

bacterial colonization, respectively. In contrast to wild-type, CFUs could still be detected at

5 d and 10 d, with two culture-positive MEs out of 6 at each time. This observation suggests

that bacterial clearance is compromised in the MEs of TLR9−/− mice, compared to wild-type

animals. However, TLR9−/− ME cultures were negative at 14 d, thus clearance was delayed,

not prevented.

Discussion

In this investigation, we obtained evidence that detection of DNA by intracellular innate

immune receptors contributes to the pathogenesis of NTHi-induced OM in mice, and also

plays a role in bacterial clearance and OM recovery. After NTHi infection of wild-type

mice, the expression of genes encoding DNA sensing receptors and many associated

downstream signaling genes, as well as a number of target genes, was up-regulated.

Moreover, animals deficient in TLR9 exhibited altered OM, consisting of prolonged and
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enhanced morphological signs of mucosal hyperplasia and inflammation, as well as a delay

in bacterial clearance and OM recovery.

Interestingly, TLR9−/− mice showed greater baseline thickness of the ME mucosa than wild-

type mice, in the absence of overt signs of inflammation such as effusion or leukocyte

infiltration. The reasons for this are not clear. It seems unlikely that TLR9 would directly

influence mucosal growth. However, it is possible that prior ME infections with bacterial

species unrelated to NTHi are responsible.

Genes encoding proteins that participate in the DAI/Pol-III signaling pathway were most

strongly up-regulated during OM, suggesting the potential for a significant role for these

DNA sensing cascades in this disorder. However, genes that are known to be directly

regulated by this pathway, including type I IFN genes, showed only brief, modest up-

regulation. Interestingly, genes that negatively regulate these pathways were also up-

regulated. This implies that inflammation produced in response to the activation of these

pathways is tightly regulated. This may help to explain why DAI/Pol-III target genes were

only briefly up-regulated.

The DNA sensing pathway that showed the least gene regulation of its signaling molecules

during OM was TLR9, with only one adapter molecule and one negative regulator showing

strong up-regulation. In contrast, the expression of genes that are known to be preferentially

regulated by the TLR9 ligand CpG DNA41,42 were dramatically enhanced. Moreover, OM

in TLR9−/− mice was more severe and prolonged than that in wild-type animals. These

disparities may be clarified by the results of immunohistochemistry for TLR9 protein. Little

TLR9 protein was detected in the resting ME, and only scattered mucosal cells were positive

for TLR9 during OM. However, more TLR9 was present in infiltrating leukocytes, which

may bring TLR9 protein into the ME pre-formed.

The small amounts of TLR9 induced in epithelial cells may nevertheless be important. The

lower level of neutrophil infiltration observed in the MEs of TLR9−/− mice (Figure 4B) was

particularly noteworthy. NTHi up-regulated the neutrophil chemokine, CXCL5, in wild-type

mice more than 30-fold at 3, 6 and 34 h after inoculation (Figure 2B and Supplementary

Table 2). Since CXCL5 is known to be preferentially induced by CpG DNA via TLR9, it is

possible that a reduction in the production of this mediator may contribute to reduced

neutrophil chemotaxis in response to NTHi infection in the TLR9−/− ME.

In previous studies, we and others have found that the TLR signaling molecule MyD88

plays a significant role in OM.26,44,45 In fact, this adapter can be required for OM recovery,

since OM induced by NTHi in MyD88-null mice persists for weeks, and bacteria can be

cultured from some MyD88−/− MEs 6wk after bacterial inoculation.26 While TLR9

primarily employs MyD88 to activate downstream signaling and target gene expression, and

MyD88 gene expression was up-regulated during OM, the more severe phenotype observed

in MyD88−/− mice reflects the demonstrated role of other receptors that signal via this

adaptor, including TLR2 and TLR49 and IL-1 receptors.46 Deletion of TLR2 or TLR4 also

prolongs OM.29 Thus TLR9 participates as one component of a broader innate immune

response to NTHi that is mediated via MyD88.
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Evidence for a complex role of TLR9 is provided by the behavior of cytokines in the ME of

TLR9-deficient mice. The expression of cytokine genes is preferentially regulated by NF-

κB, which often functions downstream of MyD88. This can include cytokines that are either

pro- or anti-inflammatory. We noted significant changes in the expression of mRNA

encoding indicator cytokines chosen to represent each category, TNF-α and IL-10,

respectively. Initial expression of proinflammatory TNF-α during OM was unchanged in

TLR9-null mice, but expression was higher at later times, in a biphasic manner, when

compared to wild-type. However, expression of anti-inflammatory IL-10 was also

dramatically up-regulated later in OM in the mutants. Interestingly, the peak of IL-10

production in the TLR9−/− ME exactly corresponded with the trough in TNF-α production.

These results cannot be explained by a simple model of signaling disruption. They,

therefore, underscore the complex interplay of different elements of the innate immune

response during the response to NTHi in the ME, and the importance of balance between

pro- and anti-inflammatory mediators. The significant delay in bacterial clearance observed

in TLR9-null mice indicates that this receptor plays an important role in recovery from OM.

However, the strong up-regulation of KLRA17, a negative regulator of TLR9, in wild-type

mice suggests that this receptor is tightly regulated, presumably to limit potential damage to

tissue.

The existence of parallel DNA signaling pathways in addition to TLR9 further suggests the

potential for both redundancy and synergy in the response to pathogen DNA. An example of

the latter is provided by IL-1β, the inactive precursor of which is encoded by an important

target gene of CpG DNA via TLR9, and is strongly up-regulated during NTHi-induced OM.

The simultaneous up-regulation of AIM2 signaling genes which we also observed provides a

substrate for formation of the inflammasome, with subsequent cleavage of pro-IL-1 into its

active form.

It should be noted that both our gene array and qPCR cytokine data were obtained from

homogenates of ME tissue that include a number of mucosal cell types as well as

inflammatory cells, and we cannot identify the cellular sources of gene expression.

Especially in the case of cytokines, it is likely that infiltrating leukocytes contribute

significantly to our data and indeed to ME pathogenesis during OM. However, epithelial

cells can also produce all of the cytokines assessed in this study.47

Similarly, while we have discussed DNA signaling in the ME globally, it should be noted

that this signaling may vary between different cell types. Given the many different cell types

that participate in OM and may be exposed to bacterial DNA, including epithelial and

stromal cells as well as many types of leukocytes, the situation in the ME is doubtless

complex. Additional research will be required to explore fully the role of bacterial DNA in

the pathogenesis and resolution of OM. The development of gene deletion models for other

DNA receptors48 will be helpful in this regard.

Conclusions

The results of the present study demonstrate that many genes associated with innate immune

responses to pathogen DNA are up-regulated during OM. Thus the substrates for innate
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immune response to DNA are present in the ME during OM. Moreover, the data also

support a significant role for TLR9 activation by NTHi nucleic acids in OM pathogenesis

and recovery. Modulation of responses mediated by pathogen DNA may offer new means of

treating OM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AIM2 absent in melanoma-2

ASC apoptosis-associated speck-like protein containing a caspase recruitment

domain

CFUs colony-forming units

DAI DNA-dependent activator of IFN regulatory factor

EUs endotoxin units

IHC immunohistochemistry

IRF interferon regulatory factor

ME middle ear
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MyD88 myeloid differentiation factor 88

NALP NACHT-LRR- and pyrin

NTHi non-typeable Haemophilus influenzae

OM otitis media

PFA paraformaldehyde

Pol-III RNA polymerase III

RIG-1 retinoid-inducible gene 1

TRIF Tir-domain-containing adaptor inducing interferon β
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Figure 1.
A schematic representation of pathogen DNA sensing. NTHi internalized as intact bacteria

or fragments releases DNA, which can interact with specific pathogen DNA receptors. Toll-

like receptor 9, located in endosomes, signals primarily via MyD88 to stimulate NF-κB and

cytokine production. DAI can activate IRFs, leading to type I IFN production, via several

intermediaries. Pol-III can convert bacterial DNA into dsRNA, also activating IRFs. DNA

interaction with AIM2 recruits ASC and procaspase1 to form an inflammasome, leading to

caspase1 activation and IL-1/IL-18 maturation.
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Figure 2.
Middle ear expression of genes related to DNA sensing in wild-type mice during OM,

assessed by DNA microarray. (A) The ME expression of most genes involved in TLR9

signaling (see Figure 1) was minimally affected by NTHi. Exceptions were KLRA17, a

negative regulator of TLR9 signaling, which was strongly (18×) up-regulated during OM,

and the general TLR adaptor, MyD88, which was up-regulated 6×. (B) In contrast, TLR9

target genes, known to be induced by unmethylated CpG DNA, were highly up-regulated by

NTHi. (C,D) mRNA encoding several genes of the DAI/Pol-III signaling pathways was
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significantly up-regulated during OM, especially from 1-5 d after NTHi inoculation. DAI

itself was up-regulated more than 40-fold, 2 d after ME inoculation with NTHi. (E) In

contrast, DAI/Pol-III target genes, known to be induced by ISD, were modestly up-regulated

early in the response to NTHi. (F) Moderate up-regulation of genes involved in AIM2

signaling from pathogen DNA was observed, although mRNA encoding caspase1 was

actually down-regulated from 3–6 h after NTHi inoculation. *P < 0.05, **P < 0.01, ***P <

0.001.
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Figure 3.
Mucosal response to NTHi in the MEs of wild-type versus TLR9−/− mice. (A) Left.

Immunocytochemistry for TLR9 in the wild-type ME during OM. Skin from the external ear

canal strongly expressed TLR9 in the epidermal layer (Epid). While little TLR9 was

observed in the untreated ME (0h), TLR9 was observed in both the ME mucosa (MEM) and

in cells infiltrating the ME lumen (MEI) during OM, as shown for examples at 6 h and 1 d

after inoculation; × 100 original magnification. Similar results were observed on days 2 and

3. By days 5 and 7, TLR9 immunoreactivity was no longer present in the ME. Right.

Hematoxylin and eosin staining of wild-type and TLR9−/− ME at 0, 1, 3 and 10 d after NTHi

challenge; ×40 original magnification. (B) Quantitative evaluation of mucosal thickness in

wild-type and TLR9−/− mice during NTHi-induced OM. Inoculation of NTHi into the MEs

of TLR9−/− mice resulted in significantly enhanced thickness prior to and by 10–14 d, and

full recovery was not observed.

Leichtle et al. Page 17

Innate Immun. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4.
Leukocyte infiltration of the ME cavity in wild-type versus TLR9−/− mice. (A)

Inflammatory cell infiltration into the ME lumen of wild-type and TLR9−/− mice during

OM, measured as a percentage of ME luminal area covered by cells. There was no

significant difference in the recruitment of cells to the MEs of TLR9−/− mice during OM. n

= 6–8 MEs per time point; bars represent the mean ± SEM. (B) Neutrophils increased

significantly less from days 1-3 compared to wild-type mice, but their presence in the ME

was prolonged. (C) There was no significant difference in the recruitment of macrophages to

the TLR9−/− ME. n = 6–8 MEs per time point; bars represent ±SEM.

Leichtle et al. Page 18

Innate Immun. Author manuscript; available in PMC 2014 June 02.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5.
Cytokine expression in the ME mucosa of wild-type versus TLR9−/− mice. (A) ME TNF

mRNA and (B) IL-10 mRNA during NTHi-induced OM, assessed by qPCR. Target genes

were normalized to GAPDH and compared to uninfected wild-type mucosa. n = >6 MEs

per/point; mean±SEM.
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Table 1

Comparison of impaired bacterial clearance in wild-type and TLR9−/− MEs

Time after NTHi instillation C57BL/6 TLR9−/−

Day 1 4/6 3/6

Day 2 6/6 4/6

Day 3 3/6 3/6

Day 5 0/6 2/6

Day 10 0/6 2/6

Day 14 0/6 0/6

Bacterial colonization of the culture positive plates was evaluated using semi-quantitative analysis of bacterial colonization: 0 indicates no CFUs, 1
indicates one quadrant with CFUs, 2 indicates two quadrants with CFUs, 3 indicates three quadrants with CFUs and 4 indicates four quadrants with
CFUs. Data represent positive culture plates out of six.
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