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Abstract

In the healthy gastrointestinal tract, homeostasis is an active process that requires a careful balance

of host responses to the enteric luminal contents. Intestinal macrophages and dendritic cells

comprise a unique group of tissue immune cells that are ideally situated at the interface of the host

and the enteric luminal environment to appropriately respond to microbes and ingested stimuli.

However, intrinsic defects in macrophage and dendritic cell function contribute to the

pathogenesis of inflammatory bowel diseases (IBD), as highlighted by recent genome-wide

association studies. Gastrointestinal macrophages and dendritic cells participate in IBD

development through inappropriate responses to enteric microbial stimuli, inefficient clearance of

microbes from host tissues, and impaired transition from appropriate pro-inflammatory responses

to anti-inflammatory responses that promote resolution. By understanding how intestinal

macrophages and dendritic cells initiate chronic inflammation, new pathogenesis-based

therapeutic strategies to treat human IBD will be elucidated.
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Introduction

In the healthy gastrointestinal tract, homeostasis is an active process that requires a critical

balance of host responses to the enteric luminal contents. Intestinal macrophages and

dendritic cells comprise a unique group of tissue immune cells that are ideally situated at the

interface of the host and the enteric luminal environment to appropriately respond to

microbes and other potential stimuli. Both commensal and pathogenic bacteria are

recognized through conserved molecular microbial patterns by pattern-recognition receptors

(PRRs). Mechanisms by which the host distinguishes commensal from pathogenic bacteria

are not well defined and represent a fundamental gap in the understanding of homeostatic

immune function and IBD.
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How do intestinal DCs and macrophages interact with the microbial environment?

Intestinal macrophages and dendritic cells (DCs) sense conserved molecular patterns on

microbes (pathogen-associated molecular patterns, PAMPs) via germ-line encoded

PRRs.1, 2PRRs are divided into four families based on shared functional domains: toll-like

receptors (TLRs), nucleotide-binding oligomerization domain (NOD), leucine-rich repeat

(LRR) receptors (NLRs), C-type lectin receptors (CLRs), and retinoic acid-inducible gene 1

(RIG-I)-like receptors (RLRs).3 Signaling downstream of each family of PRRs culminates in

activation of central immune response pathways: nuclear factor kappa-light-chain-enhancer

of activated B cells (NF-κB), the mitogen-activated protein kinases (MAPKs), and

interferon regulatory factors (IRFs).4 Upon engagement of PRRs, immune and non-immune

cells produce inflammatory cytokines, type I interferons, chemokines, and antimicrobial

peptides. As a result, neutrophils are recruited and macrophages are activated, leading to the

direct killing and clearance of microbes. Additionally, these inflammatory products induce

the maturation of DCs, promoting the induction of adaptive immune responses. A carefully

orchestrated process, microbial sensing and subsequent immune responses are highly

regulated. Dysregulation of these pathways can lead to both enhanced susceptibility to

infections and development of chronic inflammatory diseases.3

PRR recognition of its cognate PAMPs culminates in the initiation of pathogen-specific

programs designed to eradicate the prevailing insult. But how does the host recognize an

intact microbe and decide which program to initiate? In reality, one microbe has many

different PAMPs, and many PRRs may recognize one PAMP. Additionally, different cell

types express unique sets of PRRs, and each PRR may play fundamentally different roles in

the temporally distinct phases of an infection (i.e., initial infection versus memory response).

The complex crosstalk between PRR families also confers specificity to and regulates each

immune response. Thus, the assembly of a successful immune response to microbes depends

on the context of the infection, the cell types responding to it, and the array of PRRs that are

engaged during the infection.3 Furthermore, the local microenvironment provides contextual

cues to immune cells via cytokines and growth factors produced by host cells and metabolic

products from microbes.5 It is likely through this complex context of recognition that innate

immune cells distinguish between commensal and pathogenic microbes and initiate an

appropriate response program. However the precise mechanism of discernment of helpful

from harmful microbes and regulation of subsequent immune responses and how this relates

to intestinal homeostasis and IBDs remains incompletely understood.

PAMP recognition by PRRs on intestinal macrophages and DCs leads to the efficient

removal of potential stimuli while remaining immunologically nonresponsive. This feature

is unique to intestinal tissue resident macrophages and DCs.6 The importance of remaining

“inflammation anergic” is emphasized by the development of chronic intestinal

inflammation in the absence or dysregulation of macrophage and DC responses to microbial

stimuli.7 Ultimately, inappropriate host responses to the luminal microbiota in genetically

susceptible individuals disrupt homeostasis, leading to development of IBDs.

IBD pathogenesis: A macrophage- and DC-centric view—The pathogenesis of

IBDs, including Crohn's disease (CD) and ulcerative colitis (UC), is multifactorial, and
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encompasses incompletely defined and complex interactions between host immune

responses, genetic susceptibility, environmental factors, and the enteric luminal contents.8

Recent genome-wide association studies have highlighted the importance of host innate

immune responses to microbes in the pathogenesis of IBDs.9 Single nucleotide

polymorphisms (SNPs) associated with increased risk of developing IBDs were identified in

genes involving microbial sensing (NOD2, IRF5, NFKB1, RELA, REL, RIPK2, CARD9, and

PTPN22) and clearance (ATG16L1, IRGM, NCF4), and integrating antimicrobial adaptive

immune responses (IL23R, IL10, IL12, IL18RAP/IL1R1, IFNGR/IFNAR1, JAK2, STAT3,

and TYK2).10 Intestinal macrophages and DCs reside in the lamina propria (LP) and thus are

ideally positioned to continuously sample intestinal luminal contents. LP mononuclear cells

(LPMCs), including macrophages and DCs, are the sentinels and first-responders of the gut-

associated lymphoid tissues (GALT). Additionally, resident LPMCs possess unique

attributes that shape the gastrointestinal tract as a largely tolerant environment while

maintaining effective clearance of microbes. Importantly, LPMCs direct subsequent

adaptive immune responses, thereby regulating local inflammation.

This review will explore how macrophages and DCs help to initiate inflammation in the

gastrointestinal tract by first describing how these cells maintain intestinal homeostasis

under physiologic conditions. Next, the breakdown of homeostasis encouraged by

macrophages and DCs as it pertains to the development of IBDs will be described. Intestinal

macrophage and DC dysfunction is now widely recognized as a central component to the

pathogenesis of IBDs, and understanding this phenomenon is vital to the development of

effective therapies for these debilitating diseases.

Macrophages and DCs in GI Homeostasis

The gut-associated lymphoid tissue (GALT) represents the largest aggregate of lymphoid

tissue in the body. GALT includes various organized collections of immune cells within the

gastrointestinal tract, such as Peyer's patches in the small intestine, and cryp to patches in

the large intestine; and the diffuse arrangement of intestinal mononuclear cells within the

lamina propria. The close proximity of LPMCs to the enteric luminal compartment,

separated by an epithelial cell monolayer, is important for several reasons: LPMCs (1)

sample luminal antigens that gain access to the lamina propria under physiologic conditions

to maintain local and systemic tolerance, and (2) efficiently clear microbes and stimuli that

cross the IEC barrier. Resident LP macrophages demonstrate distinct attributes from

peripheral monocyte populations. While LP macrophages maintain robust microbicidal

effector functions, they do not produce inflammatory mediators upon encountering

microbial stimuli.6 Additionally, LP macrophages promote the transition from protective

inflammatory responses to resolving anti-inflammatory responses upon encountering a

danger signal. Thus, LPMCs are integral to directing appropriate immune responses and

maintaining intestinal homeostasis in the gut.

There remains active debate about the classification and ontogeny of LP macrophages and

LP dendritic cells (LPDCs). The surface integrins CD11b and CD11c are routinely used to

distinguish between macrophages and DCs in peripheral lymphoid tissues (CD11b+CD11c-

and CD11b+/-CD11chigh are characterized as macrophages and DCs, respectively).

Steinbach and Plevy Page 3

Inflamm Bowel Dis. Author manuscript; available in PMC 2015 January 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



However, the distinction between LP macrophages and LPDCs is less clear, as LP

macrophages express both CD11b and CD11c.6 It has been proposed that differential

expression of CX3CR1 (the receptor for the chemokine fractalkine, CX3CL1) and CD103

(αEβ7 integrin) reliably distinguish between LP macrophages and LPDCs.6, 11

CD103-CX3CR1hi LP macrophages express the classical macrophage marker F4/80,

demonstrate ultrastructural characteristics of macrophages, and under physiologic conditions

do not traffic to draining mesenteric lymph nodes (MLNs) where priming of adaptive

immune responses is initiated. However, there is evidence that CX3CR1hi LP macrophages

travel to MLNs during enteric microbial dysbiosis.12 Conversely, CD103+CX3CR1lo LPDCs

are F4/80- and perform functions typically associated with DC, including constitutive

trafficking to MLN, antigen presentation to T lymphocytes, and inducing gut homing

receptors on T cells. Both LP macrophages and LPDCs express high levels of MHC class II,

demonstrating their ability to interact with and shape adaptive immune responses. While

controversy remains over the exact nature and origin of these LP subsets, for our purposes,

we will classify LP macrophages as CD103-CX3CR1hi and LPDCs as CD103+CX3CR1lo

cells.

Lamina propria macrophages

Macrophages are a highly heterogeneous population of cells that demonstrate a continuum

of activation states. The wide spectrum of macrophage phenotypes is often somewhat

oversimplified into two functional groups: “inflammatory” M1 (high IL-12, low IL-10) and

“wound healing” M2 (low IL-12, high IL-10) macrophages.13 Additionally, a recently

appreciated subset of macrophages that produces high levels of IL-10 is referred to as

“regulatory macrophages.”

Specific combinations of cytokines within the microenvironment polarize macrophages, and

evidence suggests that macrophages maintain considerable plasticity between activation

states. M1 macrophages are polarized by IFN-γ produced by NK and T helper (Th) 1 cells,

TNF-α produced by granulocytes or other antigen presenting cells (APCs) and engagement

of PRRs by PAMPs, which activates suppressor of cytokine signaling 3 (SOCS3) to induce

the M1 phenotype.14-16 M1 macrophages produce pro-inflammatory cytokines (TNFα,

IL-12, IL-6), and reactive oxygen and nitrogen species. Production of these mediators

promotes the differentiation and activation of Th1 and Th17 cells.13, 17-19 The Th1 response

in turn helps macrophages by enhancing their ability to clear intracellular pathogens. While

M1 macrophages are essential for the eradication of intracellular infections, they also

produce pro-inflammatory cytokines implicated in IBD pathogenesis. Furthermore,

unregulated M1 macrophage activity can induce tissue damage, predispose the host to

developing neoplastic lesions, and induce insulin resistance.20, 21

M2 macrophages are polarized by IL-4 produced by granulocytes or Th2 cells in response to

tissue injury and activation by some fungi and parasites and initiation of SOCS2 signaling.13

M2 macrophages produce matrix metalloproteases, growth factors, and demonstrate efficient

phagocytosis of debris without producing pro-inflammatory cytokines. Th2 responses are

aimed at inducing wound healing and clearing parasites, although the exact mechanisms

underlying parasite eradication are unknown. Indeed, down regulation of microbicidal
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functions in M2 macrophages can render the host more susceptible to certain infections.22-27

M2 macrophages are also efficient at recruiting Foxp3+ T regulatory (Treg) cells, which

would further down regulate local immune responses.16 Furthermore, unregulated M2

macrophage activity can promote the development of fibrotic lesions through elaboration of

TGFβ and enhanced allergic responses.28, 29

Regulatory macrophages are polarized by a wide array of signals, including IgG immune

complexes, IL-10, prostaglandins, and apoptotic cells, potentially by activation of the

MAPK extracellular signal-regulated kinase (ERK).13 However, typically two signals are

necessary to induce regulatory macrophages, such as engagement of PRRs by PAMPs.

Regulatory macrophages differ from M2 macrophages in that they do not produce

extracellular matrix components but express high levels of costimulatory molecules (CD80,

CD86) necessary for the activation of T cells. Like M2 macrophages, regulatory

macrophages produce high amounts of the anti-inflammatory cytokine IL-10 and can render

the host more susceptible to certain infections.30-36 Furthermore, unregulated regulatory

macrophage activity may also play a role in the induction of neoplastic lesions by

dampening anti-tumor macrophage defenses and promoting angiogenesis.37, 38

LP macrophages are unique tissue resident macrophages characterized by the inability to

produce inflammatory cytokines in response to microbial stimuli. However, these cells

maintain robust phagocytic and microbicidal effector capabilities. The tolerant phenotype of

LP macrophages is likely conditioned by locally produced IL-10 and TGF-β.39, 40 However,

the ontogeny of these cells is unknown. LP macrophage maintenance may depend on local

proliferation rather than repopulation from migrating blood monocytes, but this is

experimentally difficult to determine due to the extremely low turnover rate of these cells.

Additionally, the context during which blood monocytes are recruited to the intestines may

determine the final phenotype of the LP macrophages. During non-inflammatory

homeostatic conditions, Ly6Chi monocytes almost exclusively repopulate the lamina propria

with CD11c+ (F4/80hiCX3CR1hiCD11b+CD103-) LP macrophages.41 In contrast, under

inflammatory conditions, Ly6Chi monocytes recruited to the lamina propria differentiate

into CD103+CX3CR1intCD11b+ DCs that produce high levels of the inflammatory cytokines

IL-12, IL-23, iNOS, and TNF-α.41

CX3CR1hi LP macrophages extend dendrites between IECs to sample luminal antigens and

promote local tolerance through constitutive production of the anti-inflammatory cytokine

IL-10,42 the absence of an inflammatory response to activating stimuli, very low expression

of co-stimulatory molecules CD80, CD86 and of the macrophage activating receptor

CD40.40 Although these cells that sample the luminal environment were originally defined

as DCs43, recent work supports that they may represent a macrophage population.44 IL-10

produced by LP macrophages promotes the persistence of Foxp3 expression in Treg cells in

the intestine.45 Additionally, CX3CR1hi LP macrophages participate in the induction of

systemic oral tolerance.42 It has been suggested that CX3CR1hi LP macrophages sample

luminal antigens and deliver them to CD103+ LPDCs, which are then able to traffic to MLN

to prime adaptive immune responses.46 However, there is recent compelling evidence that

CX3CR1hi LP macrophages do traffic to MLNs in a CCR7-dependent manner during

dysbiosis of the enteric microbiota.12
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Unique intracellular signaling pathways contribute to the inflammation anergic characteristic

of LP macrophages; however, it remains unclear exactly what makes LP macrophages

distinct from circulating monocytes and other tissue resident macrophages. Additionally,

inflammation anergic LP macrophages are distinct from the more widely studied endotoxin-

resistant macrophages. For one, LP macrophages do express PRRs, contrary to conventional

thought. Recent studies suggest that the enteric microbiota are not necessary to program LP

macrophages to express high amounts of the anti-inflammatory cytokines IL-10 and TGF-

β.47, 48 One enticing candidate for inducing LP macrophage nonresponsiveness to PAMPs is

IL-10. Importantly, IL-10-deficient mice49 and mice with myeloid-specific ablation of the

IL-10 signaling molecule STAT350 develop spontaneous colitis reminiscent of human IBD.

Additionally, blocking IL-10 restores PAMP responsiveness in LP macrophages. Our lab

described a mechanism for IL-10-mediated suppression of IL-12p40 via altering histone

acetylation and RNA polymerase II accessibility to the Il12b promoter,48 suggesting that

IL-10 directly inhibits the production of pro-inflammatory cytokines in response to PAMP

stimulation. IL-10 additionally exerts its anti-inflammatory effects on the innate immune

system by regulating transcriptional elongation,51 microRNA induction,52 mRNA

stability,53 and transcriptional repressors and corepressors.54

Additionally, the phosphoinositide 3-kinase (PI3K) pathway negatively regulates signaling

through TLRs in macrophages. In particular, the p110δ isoform of PI3K is enriched in

leukocytes and regulates IL-12p40 production in LP macrophages in response to microbial

stimulation. PI3K p110δ is indispensable for intestinal homeostasis as mice harboring an

inactivating point mutation in p110δ (p110δ kinase-dead, or p110δKD mice) develop

spontaneous colonic inflammation. LP macrophages from p110δKD mice produce

significantly more IL-12p40 and less IL-10 upon stimulation with heat-killed Escherichia

coli.55 Thus, a loss in the critical negative regulation of TLR signaling results in the

disruption of intestinal homeostasis.

Lamina propria dendritic cells

Broadly speaking, DCs are professional APCs with the ability to initiate adaptive immune

responses against pathogens. Like macrophages, DCs comprise a heterogeneous population

of cells with functional diversity. DCs originate from blood monocytes or a common DC

progenitor (CDP) in the bone marrow at steady state. DCs repopulating tissues from

monocyte precursors rely on granulocyte-macrophage colony stimulating factor (GM-CSF)

for local proliferation.56 Conventional DCs (cDCs) arising from the CDP express high levels

of CD11c, varying levels of CD8α and CD11b, and reside in secondary lymphoid tissues.

Plasmacytoid DCs (pDCs) also originate from the CDP and are specialized in the production

of type I interferons. In addition to functional subsets of DCs, the maturation state of DCs

has important implications in immunity. Mature DCs that have previously encountered

microbial products and inflammatory stimuli are highly specialized for antigen presentation.

Thus, mature DCs express high levels of co-stimulatory molecules and tend to reside in

secondary lymphoid organs where they are ideally positioned to prime antigen-specific T

cells.57 On the other hand, immature DCs demonstrate low surface expression of co-

stimulatory molecules and constitutively migrate in low numbers to lymph nodes, perhaps to

maintain tolerizing signals there.57, 58
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LPDCs also comprise a heterogeneous group of cells in the intestines. Only recently has it

also been appreciated that LPDCs play an active and direct role in maintaining peripheral

tolerance to self and intestinal luminal antigens. Like LP macrophages, LPDCs represent a

spectrum of functionally distinct phenotypes. CD8α+pDCs in the LP are capable of inducing

regulatory T cells and supporting their function.59 However, most LPDCs are

CD11b+CD8α-, but CD11b-CD8α+ and CD11b-CD8α- subsets are also present. These DCs

weakly stimulate antigen-specific T cell proliferation and constitutively express IL-10 and

type I interferons.60 Furthermore, LPDCs are divided into CD103+ and CD103- (E-cadherin

receptor) populations, each demonstrating distinct functions. CD103+ LPDCs are able to

induce Foxp3-expressing Treg cells,61-63 whereas CD103- LPDCs are efficient at inducing

Th17 cells when stimulated with flagellin or microbial ATP.64-66 While the Th17 response

is important for antimicrobial immunity, dysregulation of Th17 lymphocytes and cytokines

is implicated in a number of autoimmune disorders.67

CD103+ LPDCs represent a population of tolerizing innate immune cells that express the

enzyme retinaldehyde dehydrogenase (RALDH), which produces retinoic acid (RA) from

retinaldehyde, and the important regulatory cytokine TGF-β. Both CD103+ LPDC-produced

RA and TGF-β are necessary for the induction of Treg lymphocytes in the intestine.61-63

Additionally, CD103+ LPDCs produce indoleamine 2,3-dioxygenase (IDO), which

participates in the induction of Treg cells and suppression of Th cell proliferation.68

The induction of CD103 expression in LPDCs is dependent on the vitamin A metabolite RA

and the local production of factors from IECs and stromal cells. IECs induce CD103

expression in LPDCs in an RA-, TGF-β-, and contact-dependent manner.69 In addition to

TGF-β, stromal cells in the LP constitutively produce prostaglandin E2, which inhibits the

production of pro-inflammatory cytokines in DCs.70 Importantly, thymic stromal

lymphopoietin (TSLP) produced by IECs conditions LPDCs to induce Th2 cell

differentiation, although its necessity in inducing and maintaining Treg cells is

controversial.69 Nonetheless, TSLP produced by IECs confers a homeostatic phenotype on

LPDCs to protect mice from colitis.69, 71-73 CD103+LPDC differentiation is dependent on

Notch2 signaling, as Notch2-/- mice demonstrate a selective loss of CD11b+CD103+

LPDCs.74 Furthermore, the preferential expansion of CD103+ LPDCs depends on the DC

differentiating molecule Fms-related tyrosine kinase-3 ligand (Flt3L).75 The function of

CD103+ LPDCs depends on several factors. Dietary vitamin A induces RALDH expression

in CD103+ LPDCs76 and is necessary for these cells to imprint T cells with gut-homing

receptors.77, 78

Aside from inducing Th17 differentiation, CD103- LPDCs are involved in the induction of

immunoglobulin A (IgA) class switching of B lymphocytes, both in the Peyer's patches and

intestinal LP. IgA is abundantly produced in the intestine and prevents the harmful effects of

bacterial overgrowth and bacterial adhesion to IECs in the intestinal lumen.79 In the isolated

lymphoid follicles of the LP, CD70+ LPDCs expressing TLR5 and any of various ATP

receptors induce IgA class switching in RA-dependent and T lymphocyte-independent

manners.64 LPDCs that produce iNOS and TNF also support IgA class switching.80

Cytokines produced by IECs, stromal cells, and LPDCs, including B cell activating factor
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(BAFF), a proliferation-inducing ligand (APRIL), IL-4, TGF-β, and IL-10, support the

induction, maintenance, and expansion of IgA+ plasma cells.81

LPDCs have a higher turnover rate than LP macrophages due to frequent trafficking to MLN

to present antigen to naïve T lymphocytes.57 Evidence suggests that CD103+CD11b- LPDCs

are replenished by DC-committed precursors (pre-cDC) in a Flt3L-dependent manner,82

whereas CD103-CD11b+ LPDCs are derived from circulating Ly6Chi monocytes in a GM-

CSF-dependent manner.83 Additionally, the preferential expansion of regulatory CD103+

LPDCs is also Flt3L-dependent.75 The conditions under which precursors are recruited to

and the existing microenvironment of the LP likely determine the final phenotype of

LPDCs. For instance, under steady-state conditions F4/80loCD103+CD11c+ LPDCs are

repopulated from circulating Ly6Chi monocytes, however during colitis Ly6Chi monocytes

repopulated inflammatory CD103-CX3CR1intCD11b+ LPDCs and exacerbated

inflammation.41, 83

Summary

Populations of macrophages and dendritic cells within the intestinal LP are diverse. LP

macrophages and LPDCs interact with the intestinal environment and luminal contents to

maintain homeostasis through the production of protective mediators, dampening of pro-

inflammatory responses, and the active induction of adaptive immune tolerance. Distinct

functional populations of LP macrophages and LPDCs actively promote tolerance while

others have the propensity to enhance protective inflammatory responses to foreign antigens.

However, an imbalance in any of these physiologic processes may tip the balance toward

chronic intestinal inflammation and IBD, as we will explore in the next section.

Macrophages and DCs in IBD Pathogenesis

Murine Experimental IBD

There are a number of phenotypic and functional alterations described in LP macrophages

and LPDCs during IBD development. Recent research highlights a central role for

macrophages and DCs in the pathogenesis of colitis, as numerous IBD susceptibility SNPs

affecting innate immune cell functions have been identified.9 Additionally, the selective

depletion of macrophage and DC subsets in mouse models of colitis has been particularly

informative about the protective and pathogenic roles innate immune cells play during

discrete stages of disease pathogenesis. Lymphocyte deficient mice (severe combined

immunodeficiency, SCID) develop colitis upon treatment with the intestinal irritant dextran

sodium sulfate (DSS), suggesting that macrophages and DCs are pathogenic in this model in

the absence of mature lymphocytes.84 Depletion of phagocytes in Il10-/- mice,85 and

blocking myeloid cell recruitment in both 2,4,6-trinitrobenzene sulfonic acid (TNBS)-

induced86 and T cell adoptive transfer87 colitis ameliorate disease, as does selective

depletion of LPDCs during DSS colitis.88, 89 Contrary to these findings, depletion of LP

macrophages and LPDCs prior to the induction of DSS colitis results in exacerbated

disease.90, 91 Furthermore, different subsets of macrophages and DCs have distinct effects

on the severity of colitis in animal models. M2 polarized macrophages protect mice from

DSS colitis, whereas M1 polarized macrophages contribute to disease pathogenesis.92-94
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Selective expansion of CD103+ LPDCs by Flt3L protects TNFΔARE mice from ileitis,75 but

E-cadherin-expressing DCs increase colonic pathology in DSS colitis.95 Thus, the

protective/pathogenic role of distinct macrophage and DC populations in the LP remains an

active area of investigation.

In general, there are three ways in which defects in innate immune cell functions can initiate

IBD development: (1) by responding inappropriately to normally benign stimuli such as

commensal microbes, (2) by inefficiently clearing microbes, leading to chronic immune

stimulation, and (3) by failing to switch from an appropriate pro-inflammatory response to

an inflammation-resolving anti-inflammatory response. Here we will discuss each of these

defects and how each leads to chronic inflammation and IBD.

The enteric microbiota is essential for the development of colonic inflammation in most

murine models of colitis.96, 97 Perturbations in the negative regulation of innate immune

responses to stimuli enhance susceptibility to colitis development. The well-characterized

Il10-/- murine model of spontaneously developing colitis demonstrates the necessity of the

potent anti-inflammatory cytokine IL-10 in the maintenance of intestinal homeostasis.49

Indeed, LP macrophages derived from germ free (GF) Il10-/- mice produce increased

IL-12p40 compared to GF WT LP macrophages at baseline, suggesting that IL-10 is the

critical driver of the LP macrophage phenotype.48 Furthermore, IL-10 produced by CD11b+

LP macrophages is necessary for the maintenance of Foxp3 expression in Treg cells and

protection from colitis.45 The IL-10- and microbiota-inducible nuclear transcription factor,

interleukin-3 regulated (NFIL3) negatively regulates IL-12p40 production in LP

macrophages and has been recently implicated in intestinal homeostasis.98 Thus, studying

the regulation of IL-10 production and its downstream signaling effects is crucial to

understanding intestinal homeostasis.

IL-10-independent regulation of innate immune responses also contributes to intestinal

homeostasis. One negative regulator of intestinal macrophage activation is paired

immunoglobulin-like receptor B (PIR-B). PIR-B is expressed on colonic LP macrophages, B

cells, and neutrophils and contains several immunoreceptor tyrosine-based inhibitory motifs

(ITIMs) that activate intracellular phosphatases, negatively regulating TLR signaling.99 PIR-

B is highly upregulated on LP macrophages following DSS administration in mice.

Furthermore, PIR-B-deficient (Pirb-/-) macrophages produce significantly more TNFα and

IL-6 in response to Escherichia coli, and WT mice reconstituted with Pirb-/- macrophages

demonstrate increased susceptibility to DSS colitis. PIR-B expression is also important in

human intestinal biology, as LP mononuclear cells from both healthy controls and patients

with UC express immunoglobulin-like transcript-2/leukocyte Ig-like receptor-1 (ILT-2/

LIR-1), a human homologue of PIR-B. Our lab recently described spontaneous colitis

development in mice harboring a kinase-dead phosphoinositide 3-kinase (PI3K) catalytic

subunit p110δ (p110δKD), a potent negative regulator of TLR responses in macrophages.55

CD11b+ LPMCs from p110δKD mice produced increased pro-inflammatory cytokines

(IL-12p40, IL-23) and decreased anti-inflammatory IL-10 in response to enteric microbes

compared to CD11b+ LPMCs from WT mice. Conversely, triggering receptor expressed on

myeloid cells-1 (TREM-1) amplifies TLR-induced inflammatory responses in macrophages,

and blocking its activity attenuates murine colitis.100, 101 Indeed, resident LP macrophages
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do not express TREM-1 but abundant TREM-1-expressing LP macrophages can be found in

patients with IBD.102, 103 Thus, unrestrained pro-inflammatory responses of LP

macrophages and LPDCs participate in the induction of chronic inflammation by continued

recruitment of inflammatory cells, inducing altered barrier function of the IEC layer, and

promoting pathogenic adaptive immune responses.

The enteric microbiota interacts with host immune cells to induce protective anti-

inflammatory responses and maintain intestinal homeostasis. Dysregulation of these

protective pathways, either by enteric microbial dysbiosis or intrinsic defects in macrophage

and DC responses to stimuli, may underlie IBD pathogenesis. Short chain fatty acids

(SCFAs) are anti-inflammatory metabolites produced by specific phyla of enteric bacteria

(Bacteroidetes, Firmicutes).104 When DSS colitis is induced in immune cell-specific

Gpr43-/- mice (a host receptor for SCFAs), colonic inflammation is exacerbated, pointing to

the beneficial anti-inflammatory effect of SCFAs in the colon.105 Interestingly, bacteria also

actively suppress intestinal inflammatory responses, although a bacterium can exploit this to

promote its pathogenicity. Citrobacter rodentium and Helicobacter pylori express bacterial

proteins with domains similar to host ITIMs.106 ITIMs negatively regulate immunoreceptor

signaling pathways in immune cells, and bacterial ITIM-like-containing proteins dampen

immune responses in murine colons. On the other hand, analysis of the enteric microbiota of

patients with IBD demonstrates decreased biodiversity, decreased proportions of Firmicutes,

and increased Gammaproteobacteria.107 While it is unknown whether enteric dysbiosis in

IBD patients contributes to or is a consequence of colonic inflammation, researchers

demonstrate reproducible increases in bacteria with unique abilities to adhere and invade

mucosal cells in patients with IBD (i.e., adherent-invasive E. coli),108 as well as decreases in

bacteria capable of producing protective SCFAs.109 Furthermore, it was recently shown that

E. coli is especially adept at using nitrates as electron acceptors, supporting its selective

growth during intestinal inflammation, when nitrates are produced in abundance.110 This

suggests that the interplay between host and bacteria actively shapes intestinal homeostasis

and participates in IBD pathogenesis.

Both macrophages and DCs actively promote the transition from inflammation to the return

to homeostasis after immune system activation, and non-resolving inflammation is

associated with many chronic diseases, including IBD.111 A study found that the pro-

resolution mediator prostaglandin D2 (PGD2) was upregulated only in UC patients who had

achieved long-term remission, suggesting that intact pro-resolution pathways are necessary

to halt damaging intestinal inflammation.112 Additionally, a SNP associated with low

expression of the immune cell ectonucleotidase CD39, which generates the pro-resolving

mediator adenosine, is associated with CD.113 Immune cells are major contributors of

extracellular adenosine at inflammatory sites. Adenosine interacts with its receptor A2B on

macrophages and DCs to inhibit pro-inflammatory cytokine production, expression of co-

stimulatory molecules, and induction of T lymphocyte proliferation while increasing IL-10

production.114

Other pro-resolving soluble mediators with diverse effects on macrophages and DCs are

resolvins, lipoxins, protectins, and maresins.115 These mediators are derived from

polyunsaturated fatty acids (PUFAs), and both CD and UC patients have demonstrated
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deficiencies in these resolving mediators.116, 117 Interestingly, there was found to be a very

low incidence of IBD among a population in Northwest Greenland that consumes high

amounts of PUFAs, suggesting that dietary precursors of pro-resolving factors helps to

prevent chronic gastrointestinal inflammation.118 PUFA-derived mediators enhance the

capacity of macrophages and DCs to promote the resolution of inflammation by inducing

efficient phagocytosis of apoptotic granulocytes and debris, preventing further recruitment

of neutrophils, inducing anergy or deletion of effector T lymphocytes, and promoting repair

of local damage.115 Treatment with resolvin E1 ameliorates pathology in two experimental

murine models of colitis, illustrating the powerful effects of PUFA-derived mediators on

resolving inflammation.119, 120

Macrophages and DCs additionally respond to resolving mediators by switching to unique

“resolution phase” phenotypes. DCs generated in the presence of resolvin E1 demonstrate

decreased expression of co-stimulation molecules, TNF-α, and IL-12, while inducing

antigen-specific CD4+ T lymphocyte apoptosis via IDO production and activation.121 A

defining distinction of resolution phase DCs from tolerogenic DCs is the continued

expression of CCR5, which enhances chemotaxis toward inflammatory sites, without

upregulation of CCR7, which induces chemotaxis to lymph nodes, on resolution phase

DCs.121 Similarly, resolution phase macrophages demonstrate a distinct phenotype from

both M1 and M2 macrophages. Like M2 macrophages, resolution phase macrophages

express high levels of molecules associated with the recognition and clearance of apoptotic

cells, TGF-β, IL-10, and arginase 1.122, 123 However, resolution phase macrophages also

possess features of M1 macrophages, such as expression of iNOS, COX2, and CCR5.122, 123

It is likely that local factors condition both macrophages and DCs to switch phenotypes and

promote the resolution of inflammation, and that generation of these local factors or innate

immune cell responses to these factors are defective in IBD.

Human IBD

In human IBD, inflammatory lesions demonstrate an increase in accumulation of

macrophages that display enhanced expression of co-stimulatory molecules (CD80, CD86)

and macrophage activating receptors (CD40),124 TLRs,125 triggering receptor expressed on

myeloid cells-1 (TREM-1),101, 102 and CD14.103, 126 Likewise, there are higher frequencies

of LPDCs positive for markers of mature DCs (CD83, S-100, CD40)127-130 and for PRRs

(CD209, TLR2/4) found in patients with IBD.128, 129Interestingly, IECs from patients with

CD secreted less TSLP, suggesting that the conditioning factors produced by IECs and

stromal cells in the intestine that are necessary for inducing homeostatic LPDCs are

deficient in IBDs.72 Indeed, LPDCs from IBD patients also produce significantly more pro-

inflammatory cytokines (IL-12, IL-6, IL-8, TNF-α) compared to those from healthy

controls.129, 130 Furthermore, there is an increase in frequency of LP pDC from IBD

patients.131 However, stimulated peripheral blood pDC from IBD patients secrete

significantly less IFN-α compared to those from healthy controls, suggesting that a decrease

in functional tolerogenic pDC in IBD patients contributes to disease pathogenesis.131, 132

There is accumulating evidence that inappropriate macrophage and DC responses to the

enteric microbiota contribute to human IBD pathogenesis.8 These include both inadequate
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protective and enhanced pathogenic responses to such stimuli. Macrophages isolated from

both CD and UC patients demonstrate altered cytokine production in response to bacterial

challenge: CD macrophages produce more pro-inflammatory IL-23 but less of the protective

cytokine IL-10, whereas UC macrophages constitutively produce high levels of the pro-

inflammatory cytokine IL-12.133 This may be in part due to impaired regulation of TLR-

induced inflammatory responses in macrophages. For instance, patients with IBD

demonstrate significantly decreased expression of intestinal NFIL3, an IL-10- and

microbiota-induced transcriptional repressor of IL-12p40 expression, compared to tissue

from healthy, non-inflamed control patients.98 Additionally, increased numbers of TREM-1-

expressing LP macrophages are found in intestinal tissue from patients with IBD compared

to tissue from control patients.102 TREM-1 critically amplifies TLR-induced inflammatory

responses of macrophages and is implicated in IBD pathogenesis. Conversely, LP

macrophages from IBD patients produce less of the cytokine G-CSF, which is protective in

experimental models of colitis, in response to the probiotic Lactobacillus rhamnosus GR-1

compared to those from healthy controls.134

There has long been evidence that patients with IBD demonstrate impaired ability to

eradicate bacteria,135 and antibiotic therapy in certain clinical situations is efficacious for the

induction and maintenance of remission in IBD.136, 137 The human IBD susceptibility

polymorphisms associated with NOD2 and ATG16L1 encode proteins involved in the

autophagy pathway and lead to defective bacterial clearance.138 Macrophages isolated from

patients with CD demonstrate decreased reactive oxygen species (ROS) production and

impaired eradication of bacteria.139, 140 Additionally, peripheral blood monocytes isolated

from patients with both CD and UC demonstrate decreased phagocytosis and killing of

bacteria.141 Perhaps the most compelling evidence of the link between bacterial persistence

and IBD is the long list of primary immunodeficiencies, such as chronic granulomatous

disease (CGD), associated with IBD-like clinical manifestations.142-146 Approximately 50%

of patients with CGD, in which phagocyte ROS production and bacterial clearance are

greatly impaired, develop IBD-like manifestations that share clinical and pathological

features of CD.142 Bacterial persistence and chronic stimulation of macrophages and DCs

may contribute to IBD development by producing increased pro-inflammatory cytokines

that shape pathogenic adaptive immune responses.

Conclusions

Innate immune cells are central to the pathogenesis of IBD, as susceptibility loci have been

identified in genes encoding for innate immune cell functions.9 We are beginning to

understand how macrophages and DCs maintain homeostasis in the gastrointestinal tract, a

uniquely tolerant environment. Homeostasis requires an active process, and disruption of

this balance contributes to chronic inflammation and IBD development. Defects in how

macrophages and DCs respond to enteric antigens, eradicate bacteria, and induce resolution

of inflammation underlie IBD pathogenesis (See Figure 1 for summary of pathways and

phenotypes). By understanding these pathways, we will be able to exploit them for the

development of novel and more effective therapies.
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Abbreviations

APC antigen presenting cell

CARD caspase recruitment domain

CD Crohn's disease

cDC conventional dendritic cell

CLR C-type lectin receptor

DC dendritic cell

DSS dextran sulfate sodium

Flt3 Fms-like tyrosine kinase 3

Flt3L Flt3 ligand

GALT gut-associated lymphoid tissue

GM-CSF granulocyte-macrophage colony stimulating factor

IBD inflammatory bowel disease

IDO indoleamine 2,3-dioxygenase

IEC intestinal epithelial cell

Ig immunoglobulin

IRF interferon regulatory factor

ITIM immunoreceptor tyrosine-based inhibition motif

LP lamina propria

LPDC lamina propria dendritic cell

LPMC lamina propria mononuclear cell

LRR leucine-rich repeat

MAPK mitogen-activated protein kinase

MLN mesenteric lymph node

MyD88 myeloid differentiation primary response gene 88

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

NFIL3 nuclear factor, interleukin 3 regulated
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NLR nucleotide-binding oligomerization domain, leucine-rich repeat receptor

PAMP pathogen-associated molecular pattern

pDC plasmacytoid dendritic cell

PI3K phosphoinositide 3-kinase

PIR-B paired immunoglobulin-like receptor B

PRR pattern recognition receptor

RA retinoic acid

RALDH retinaldehyde dehydrogenase

RLR RIG-I-like receptor

ROS reactive oxygen species

SNP single nucleotide polymorphism

TAK1 TGF-β-activated kinase 1

Th T helper cell

TIR toll/interleukin 1 receptor

TLR toll-like receptor

Treg regulatory T cell

TREM-1 triggering receptor expressed on myeloid cells-1

TRIF TIR-domain-containing adapter-inducing interferon-β

TSLP thymic stromal lymphopoietin

UC ulcerative colitis
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Figure 1.
LPMCs affect intestinal homeostasis in health and disease. LPMCs participate in

maintaining intestinal homeostasis and in initiating disease when homeostasis is perturbed.

(1) CD103–CX3CR1high LPMCs extend dendrites across the IEC barrier to sample luminal

bacteria and antigens. (2) IECs and stromal cells produce local factors that condition LPMCs

to be tolerant. (3) LP macrophages constitutively produce high levels of IL-10, which is

necessary for the maintenance of Foxp3 expression in LP Tregs. (4) CD103+CX3CR1low

LPDCs produce TGF-β and RA to induce Treg cells and imprint gut-homing receptors in

adaptive immune cells. (5) CD103+CX3CR1low LPDCs induce IgA class switching in B

cells. IgA is important in controlling the growth and composition of the enteric microbiota.

(6) During perturbation of intestinal homeostasis, the enteric microbiota demonstrates

dysbiosis. Additionally, the mucous layer just superficial to the IEC layer can break down,

exposing IECs to the microbiota and inducing IECs to produce inflammatory cytokines. (7)

Defects in intracellular bacterial clearance leads to persistent stimulation of LPMCs and

induction of proinflammatory cytokines. IL-12 and IL-23 support the maintenance and

differentiation of Th1 and Th17 cells, respectively. (8) CD103+CX3CR1low cells become

inflammatory, producing increased amounts of IL-12, IL-6, IL-8, and TNF-α, supporting the

differentiation of pathogenic T cells and the recruitment of inflammatory cells to the

intestines.
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