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Abstract

Understanding a complex pathology such as inflammatory bowel disease, where host genetics 

(innate and adaptive immunity, barrier function) and environmental factors (microbes, diet, and 

stress) interact together to influence disease onset and severity, requires multipronged approaches 

to model these numerous variables. Researchers have typically relied on preclinical models of 

mouse and rat origin to push the boundary of knowledge further. However, incorporation of novel 

vertebrate models may contribute to new knowledge on specific aspects of intestinal homeostasis. 

An emerging literature has seen the use of zebrafish as a novel animal system to study key aspects 

of host–microbe interactions in the intestine. In this review, we briefly introduce components of 

host–microbiota interplay in the developing zebrafish intestine and summarize key lessons learned 

from this animal system; review important chemically induced and genetically engineered 

zebrafish models of intestinal immune disorders; and discuss perspectives and limitations of the 

zebrafish model system.
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Inflammatory bowel diseases (IBDs), such as Crohn’s disease and ulcerative colitis, affects 

millions of people in the western world and shows rapidly increasing incidence and 

prevalence in developing countries in Asia.1–7 The etiology of human IBD is still unclear, 

but the pathology has been recognized as multifactorial, involving intricate interplay 

between the immune system, intestinal microbes, genetic factors, and environment.8

The role of microbial entities, especially commensal bacteria, in disease development has 

taken center stage in IBD research. Using next-generation sequencing of microbial genes, 

researchers have achieved unprecedented resolution of the intestinal microbiota, and 
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numerous studies have revealed marked differences in microbial composition between IBD 

patients and healthy subjects. 9–11 In general, the IBD-associated intestinal microbiota 

displays reduced species richness and diversity, and lower temporal stability, with particular 

bacterial taxa being enriched (e.g., Enterobacteriaceae) or depleted (e.g., Lachnospiraceae). 

In addition, great progresses have been made on the host genetic side with the identification 

of more than 163 IBD susceptibility loci in the human genome, many of them associated 

with the innate and adaptive immunity, bacterial host response, and autophagy.12 There is 

also a growing appreciation of environmental factors as important contributors to IBD. 

Correlations between IBD and diet, medication, smoking, lower plasma vitamin D, 

psychosocial stress, etc., are being actively explored.13–15

A number of animal IBD models, mostly of murine origin, have been developed over the 

years to functionally address the importance of these various microbial, genetic, and 

environmental factors.16 These models have provided key information regarding the role of 

epithelial barrier function, innate sensors, adaptive immunity, autophagy, microorganisms, 

and cellular compartment implicated in disease susceptibility and development. Despite the 

great contribution of murine models to IBD research, a number of limitations such as cost, 

imaging capacity, and genetic manipulation have hindered progress, and scientists have 

explored the potential of incorporating other vertebrate systems in their experimental 

approaches. The introduction of a new model system would need to take into account key 

aspects of the human intestine, which is the presence of innate and adaptive immunity, 

epithelial barrier, and a microbiota, all essential contributors to IBD. Moreover, the model 

system would need to provide a robust and novel way to study host–microbe interactions, as 

well as to allow manipulation (genetic/pharmacological) of these interplays to gain new 

insights into disease pathogenesis.

The zebrafish (Danio rerio) has gained popularity among researchers interested in host–

microbe interactions in the gut mucosa17,18 and modeling human immune disorders such as 

IBD.19 This lower vertebrate has many advantages over higher mammal systems: low cost 

to produce and maintain in laboratory conditions, small size, rapid development, high 

fecundity, and optical transparency at embryonic and larval stages (even at adulthood for 

certain zebrafish lines20). Other important properties that contribute to the rapidly growing 

popularity of zebrafish include sophisticated genetic manipulation techniques to carry out 

forward and reverse genetics,21,22 delayed maturation of adaptive immunity23,24 enabling 

focused investigation of innate immunity, and an aqueous living environment allowing easy 

temporal control over microbial and chemical interventions. Finally, the presence of a 

diverse microbiota and the ability to manipulate the microbial ecosystem through germ-free 

(GF) derivation and gnotobiotic techniques in zebrafish clearly represent a unique 

opportunity to study key aspects of host–microbe interactions and evaluate functional 

impacts on health and diseases.
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HOST–MICROBE INTERACTIONS IN THE DEVELOPING ZEBRAFISH 

INTESTINE

The zebrafish Gut, Intestinal Microbiota, and Immunology

The zebrafish digestive system undergoes rapid development with morphogenesis initiated 

at approximately 18 hours after fertilization.25–27 At 2 to 3 days post fertilization (dpf), the 

larvae hatch and a continuous gut tube is formed. Soon after, the mouth and vent open, 

exposing the intestinal lumen to the environment, including microorganisms. By 5 dpf, the 

digestive tract supports feeding and digestion, and many digestive organs, such as the 

intestine, liver, gall bladder, and pancreas, functionally resemble their counterparts in 

mammals.

The adult zebrafish intestine is highly analogous to that of mammals.26,28–30 It consists of 1 

long tube which folds twice in the abdominal cavity. Along the rostrocaudal axis, the 

intestine can be arbitrarily divided into 3 portions based on morphology: the intestinal bulb, 

the mid-intestine, and the caudal intestine. Gene expression analysis suggests functional 

segmentation of a small and large intestines, similar to that found in mammals.29 The gut 

lumenal surface is covered by a single layer epithelium that forms irregular ridge structures 

(Fig. 1). Three differentiated cell types have been identified in the gut epithelium: absorptive 

enterocytes, mucus-producing goblet cells, and enteroendocrine cells. Underneath the gut 

epithelium is the lamina propria, which harbors diverse mononuclear cells (monocytes, 

macrophages, and neutrophils) involved in gut immunity.30 Noticeably, compared with the 

mammalian intestine, the zebrafish gut lacks crypts and submucosal glands.29 Also, no 

Paneth cells have been identified25 in the zebrafish gut epithelium, although high intestinal 

expression of several β-defensins is detected.31

The initial contact between the zebrafish larva and environmental microbes occurs at 

hatching, and thereafter the zebrafish gut microbiota forms. Next-generation sequencing of 

bacterial 16 rRNA genes from laboratory-reared zebrafish intestines revealed abundant 

presence of the bacterial phyla Proteobacteria, Firmicutes, and Bacteroidetes, which are also 

the dominant members of the human and mouse gut microbiota,32,33 although at a different 

proportion. Other bacterial divisions like Verrucomicrobia and Actinobacteria are also 

shared among the teleost, mouse, and human. Longitudinal studies following the gut 

microbiota changes during development show that the bacterial community becomes more 

divergent as the fish grows.34 A recent pilot investigation indicates that the intestinal bulb 

appears to have higher bacterial diversity than the caudal intestine, with 

Gammaproteobacteria increasing while Bacilli decreasing along the rostro–caudal axis.35 

Interestingly, Gammaproteobacteria are found to be an important bacterial group in 

intestinal disorders, especially IBD.36

Remarkable similarities in the gut microbiota composition have been reported between 

laboratory-reared zebrafish and wild zebrafish, indicative of a core gut microbiota that is 

selected by the zebrafish from its living environment.37 Furthermore, gut microbiota 

transplant from the mouse to GF zebrafish showed that the gut bacterial community 

structure gradually changed from the typical mouse pattern to more zebrafish-like,32 
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suggesting host-specific preference over certain bacterial species within the zebrafish gut. 

Nevertheless, the zebrafish gut microbiota is still amenable by diet, feeding, and 

environment,38–40 similar to the situation observed in mice and humans.

At the center of host–microbe interactions is the immune system. We direct readers to a 

number of comprehensive reviews covering zebrafish immunology.30,41–49 In general, the 

zebrafish immune system closely resembles the mammalian system in both the innate and 

adaptive branches. Zebrafish have putative orthologs for all the mammalian Toll-like 

receptors (TLRs), a major class of innate immune receptors recognizing specific microbial 

molecules. Noticeably, functionally conserved orthologs of the human IBD susceptibility 

genes NOD1 and NOD212 are also found in the zebrafish.50 All the mammalian innate 

immune cell types, including macrophages, neutrophils, and dendritic cells, have been 

identified in the zebrafish. Major innate immune signaling pathways (e.g., the MYD88-

dependent pathway51) and effector mechanisms (e.g., activation of NF-κB52) are highly 

conserved between zebrafish and mammals. Zebrafish also possess specialized adaptive 

immune cells like B and T cells, which are functionally comparable to those of mammals.

However, the zebrafish immune system has some unique features when compared with the 

mammalian system. The zebrafish genome has a significant proportion of duplicated 

genes,53 indicating sequence homologs of mammalian immune genes may not perform 

conserved functions in the zebrafish. Indeed, zebrafish tlr4 genes were found not responsive 

to bacterial lipopolysaccharide (LPS), the ligand for the mammalian TLR4.54,55 

Anatomically, zebrafish do not have lymph nodes, and the fish intestine lacks Peyer’s 

patches. The zebrafish adaptive immunity also differs from that of mammals in terms of 

sites of T-cell and B-cell maturation and antibody subtypes.30 For example, B cells in adult 

zebrafish are generated in the kidney, whereas those in mammals develop in the bone 

marrow. Most noticeably, zebrafish adaptive immunity is not fully functional until around 4 

weeks after fertilization.23 This distinctive feature, however, makes the zebrafish larva a 

unique model to study the innate immunity in health and diseases without the interference of 

adaptive immunity.

Host–Microbe Interactions at Homeostasis

Myriad studies from humans and mice have established the central role of the commensal 

gut microbiota in modulating host tissue development,56 metabolism,57 and immunity.58 In 

contrast, the functional implications of host–microbe interactions in the zebrafish gut have 

only begun to be investigated. Yet, already a number of important findings have been made 

with this lower vertebrate system, providing novel perspectives and areas of research 

regarding the relationship forged between the host and its gut microbiota.

Among the contributing events leading to increased interest in using the zebrafish for host–

bacterial interaction studies is the development of gnotobiotic techniques.33,59 Rawls et al33 

first described generation of GF zebrafish by in vitro fertilization of eggs with sperms, both 

manually collected from adult fish. GF zebrafish larvae have impaired intestinal epithelial 

renewal and aberrant enterocyte morphology, hinting to a key role of the microbiota in gut 

tissue maturation. Gene transcription profiling of GF, CONV (GF fish subsequently 

colonized with a microbiota), and CONR (conventionally reared) zebrafish larval guts 
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reveals that the microbiota regulates over 200 zebrafish genes, of which 54 exhibit 

conserved expression changes in the mouse model and are widely involved in intestinal 

epithelial renewal, nutrient metabolism, and innate immune responses. Interestingly, 

monocolonization of GF zebrafish with the zebrafish gut commensal Aeromonas hydrophila 

but not Pseudomonas aeruginosa restores the level of the innate immune gene c3 

(complement component 3), whereas expression of the metabolism gene fiaf (fasting-

induced adipose factor) is only regulated by P. aeruginosa but not A. hydrophila 

monocolonization. Therefore, specific bacterial species induce particular host responses in 

the zebrafish, a phenomenon that is also evident in the mouse.60 Establishing the 

mechanism(s) by which microbial entities selectively trigger host responses would lead to a 

better understanding of the dialog taking place between the host and the microbiota.

Subsequently, Bates et al59 developed a protocol to generate GF zebrafish from naturally 

fertilized eggs and demonstrated that commensal microbes are required for normal gut 

development. Compared with age-matched CONR/CONV zebrafish larvae, GF larvae have 

lower ALPI (intestinal alkaline phosphatase) activity and abnormal intestinal distribution of 

glycoconjugates (GalNAcα3NAc and Galα1,3Gal), markers for gut epithelium 

maturation.61–63 GF larval intestines contain fewer goblet cells and enteroendocrine cells. 

Also, gut functions, such as protein macromolecule intake and peristalsis, are impaired in 

GF larvae. Noticeably, heat-killed bacteria or LPS restored ALPI activity but not normal 

distribution of Galα1,3Gal in GF zebrafish, indicating distinct bacterial signals promote 

various aspects of host intestine development.

Further investigation, led by Cheesman et al,64 sheds light on the mechanisms by which the 

microbiota promotes intestinal epithelial renewal during development. The Myd88 (myeloid 

differentiation primary response gene 88)-mediated innate immune signaling is required 

because knockdown of myd88 significantly reduced intestinal epithelial cell proliferation in 

CONR zebrafish. A similar role for MYD88 has also been assigned in the murine intestine 

after infection or injury,65–67 suggesting an evolutionary conserved function. Commensal 

microbes or Aeromonas veronii alone also stabilizes intracellular β-catenin in the larval 

intestine and therefore enhances Wnt signaling, a major pathway that stimulates cell 

proliferation.68 Investigation into interactions between the microbial and Wnt signaling 

reveal that the zebrafish gut microbiota promotes intestinal epithelial cell renewal, at least in 

part, by upregulating Wnt signaling downstream of axin1 (a component of β-catenin 

degradation complex) and upstream of tcf4 (a transcription factor activated by Wnt 

signaling).

Another important aspect of the host–microbe interaction is reflected by the reciprocal 

regulation of the commensal gut microbiota and host metabolism.57 Using fluorescently 

labeled fatty acid (FA) analogs, combined with live in vivo imaging, researchers were able 

to monitor FA absorption in zebrafish larvae in real time,38,69,70 highlighting the 

unparalleled power of the zebrafish system over conventional murine models. After 

incubating zebrafish with fluorescent FA analogs, Semova et al38 observed that CONV 

larvae had more and larger lipid droplets (LDs) in the intestinal epithelium compared with 

GF larvae and had intensified fluorescence signal in the liver, suggesting that the gut 

microbiota facilitates FA absorption and metabolism. A comparison of fed versus starved 

Yang et al. Page 5

Inflamm Bowel Dis. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CONV zebrafish revealed the gut-specific enrichment of the Firmicutes phylum on feeding. 

Importantly, monocolonization of GF zebrafish with the Firmicutes strain Exiguobacterium 

sp. was able to upregulate LD formation in enterocytes, suggesting that Firmicutes 

contribute to the microbiota-mediated intestinal FA absorption. Together, this study 

demonstrates the important role of specific microbial entities in regulating host energy 

balance.38

Among the zebrafish genes that are differentially regulated by the presence of commensal 

microbes, many are putatively involved in innate immune responses.33,52 By performing 

whole animal imaging on the NF-κB reporter zebrafish, Kanther et al52 examined spatial 

and temporal activation of NF-κB (nuclear factor κ-light-chain enhancer of activated B 

cells) by microbial colonization in zebrafish larvae. The microbiota was found both 

necessary and sufficient to initiate NF-κB activation in the digestive tract at around 6 dpf. 

Noticeably, commensal microbes also upregulated NF-κB in extraintestinal tissues, 

suggesting a host response at distant sites.

Another study, led by Galindo-Villegas et al,71 offered further insights into the functional 

implications of the commensal microbiota-mediated immune modulation in developing 

vertebrates. Commensal microbes, recognized mainly through the Myd88 signaling pathway 

in newly hatched zebrafish larvae, strongly induce proinflammatory effectors (il-1β, tnf-α, 

etc.), chemokines (il-8, il-8-like, and ccl-c25ab), and antiviral mediators such as ifnΦ3 

(interferon Φ3). Colonization by commensals primes neutrophils for recruitment and 

activation in response to mechanical injuries and protects fish larvae against spring viremia 

of carp virus infection. Intriguingly, increased il-1β expression was also observed in GF 

zebrafish after hatching, albeit at much lower levels than in CONR fish, suggesting that 

additional factors besides microbe-induced Myd88 signaling orchestrate the induction of 

immune genes.

Although conferring numerous benefits to the host, the gut microbiota also provides a 

continuous source of antigens and toxins that have the potential to provoke host 

inflammatory responses. It is not clearly understood how the host gut maintains immune 

tolerance to commensal microbes. The zebrafish system was key in unraveling one of the 

underlying mechanisms.72 Bates et al72 observed that LPS stimulation or gram-negative 

bacterial colonization induced ALPI in the larval zebrafish intestine through Myd88 

signaling. Conversely, ALPI inhibits LPS-induced innate immune activation, thereby 

detoxifying LPS and preventing excessive host innate responses to gram-negative 

commensals. The discovery of the zebrafish ALPI as an in situ peacemaker between the host 

immunity and gut microbiota has spurred a series of studies investigating the 

immunoregulatory role of ALPI in other organisms and its beneficial effects for treating 

inflammation-related intestinal injuries.73

The zebrafish has been widely used for studying functional mechanisms of probiotics in 

animal development and reproduction. 74 Recently, Rendueles et al75 described a zebrafish 

oro-intestinal pathogen infection model and revealed distinct protection mechanisms of 

different probiotic strains. In this model, 6 dpf GF zebrafish larvae were immersed in water 

containing the channel catfish pathogen Edwardsiella ictaluri for 6 hours and were then 

Yang et al. Page 6

Inflamm Bowel Dis. Author manuscript; available in PMC 2015 November 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



transferred and incubated under sterile conditions. E. ictaluri was found to colonize in the 

gut and head of GF zebrafish larvae, induce proinflammatory and anti-inflammatory 

cytokines (tnf-α, il-1β, il-22, and il-10), and lead to strong neutrophil recruitment to the 

perioral region and high mortality. Preincubating GF zebrafish larvae with Vibrio 

parahaemolyticus or 2 Escherichia coli strains protected animal against E. ictaluri-induced 

mortality. Interestingly, although V. parahaemolyticus monocolonization upregulated 

cytokine gene expression and inhibited E. ictaluri-induced neutrophil redistribution, 

incubation with E. coli did not elicit obvious inflammatory responses and had little effect on 

cytokine induction and neutrophil redistribution on E. ictaluri infection. Further 

investigation revealed that V. parahaemolyticus likely functioned by directly inhibiting E. 

ictaluri growth, whereas the E. coli strains protected larvae against E. ictaluri infection by 

presenting adhesion molecules such as F pili to promote intestinal adherence and 

colonization of E. coli and thereby exclusion of E. ictaluri. Together, this work highlights 

the potential of using the zebrafish system to delineate roles of probiotic bacteria in 

intestinal homeostasis and pathology.

Overall, the highly conserved gut biology and immunology system present in zebrafish 

suggest a potential use for this vertebrate animal in research related to intestinal immune 

disorders.

ZEBRAFISH MODELS OF INTESTINAL IMMUNE DISORDERS

A number of zebrafish models mimicking some aspects of human inflammatory disorders 

have been recently developed. This section describes and discusses key findings made 

within these models, which are categorized into 2 groups: the chemically induced and the 

genetically engineered models (Table 1).

Chemically Induced Models of Intestinal Immune Disorders

The first chemically induced enterocolitis model developed in the zebrafish system used the 

hapten oxazolone (4-ethoxymethylene-2-phenyl 2 oxazolin-5-one). Brugman et al76 reported 

that intrarectal administration of 0.2% oxazolone in 50% ethanol induced acute enterocolitis 

in adult zebrafish, which is manifested by severe thickening of the bowel wall, disruption of 

the intestinal fold structure, depletion of goblet cells, and infiltration of neutrophils and 

eosinophils. Colitis was evident at 5 hours after oxazolone injection and persisted for a 

week, with the most pronounced phenotype in the posterior mid-intestine. At the molecular 

level, oxazolone upregulated expression of the proinflammatory cytokines il-1β and tnf-α as 

well as the anti-inflammatory cytokine il-10 in the intestine, all highly relevant molecules to 

human colitis.

An interesting finding from this model is that the composition of the intestinal microbiota 

influences disease susceptibility, 76 a phenomenon also observed in mice.77 Oxazolone 

causes enterocolitis only in zebrafish maintained under stand-alone tank conditions but not 

in those under continuous flow tank conditions. Subsequent analysis shows that fish 

maintained in stand-alone tanks have a significantly higher load of intestinal bacteria but a 

much smaller proportion of the phylum Fusobacteria in their microbiota. Remarkably, 

pretreating the “dirty” fish with the antibiotic vancomycin, which targets gram-positive 
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bacteria, mitigated oxazolone-induced colitis. In contrast, pretreatment with colistin sulfate, 

targeting gram-negative bacteria, albeit causing a more dramatic reduction of the intestinal 

bacterial load than vancomycin, failed to protect fish against the colitis. Further work would 

be necessary to address the role of specific bacterial species in this model.

Oxazolone-induced colitis appears mainly driven by neutrophils in the zebrafish as 

vancomycin but not colistin significantly reduced neutrophil infiltration.76 Interestingly, the 

microbiota influences neutrophil location and activity,78 and it would be important to 

investigate whether this microbial effect on neutrophils influences colitis development. As 

opposed, colitis in the murine oxazolone model is mainly mediated by natural killer cells.79 

Nevertheless, the oxazolone-induced zebrafish enterocolitis, in large part, phenotypically 

mirrors the mouse model.80 The central role of the microbiota in enterocolitis development 

is well established by studies from humans and mouse IBD models.81 Vancomycin was also 

reported to attenuate colitis in the Il-10−/− mouse model.77 The zebrafish oxazolone colitis 

model recapitulated these observations, proving the feasibility of using zebrafish to model 

host–microbe interactions in intestinal inflammation.

Another model of intestinal inflammation consists of immersing the zebrafish larvae in a 

medium containing the haptenizing agent trinitrobenzene sulfonic acid (TNBS).82–86 

Fleming et al83 reported that 75 μg/mL TNBS caused profound intestine-specific 

pathological changes in zebrafish larvae: dilated gut lumen, smoothened lining of the gut, 

compromised gut barrier, and increased the goblet cell population in the mid-intestine and 

posterior intestine regions. In comparison, Oehlers et al85 showed that zebrafish larvae 

exposed to 75 μg/mL TNBS displayed widespread skin damage but no gross change in 

intestinal cell morphology or the number of goblet cells. The differential sensitivity of 

zebrafish to TNBS dosage could be related to husbandry conditions between these facilities. 

A closer look at the microbiota composition in relation to TNBS sensitivity could help 

address this possibility. At a concentration of 50 μg/mL, TNBS exposure leads to shortening 

of the larval mid-intestine, disruption of the intestinal vasculature,85 and liver 

discoloration.86 The low-dose TNBS treatment also resulted in leukocyte enrichment and 

recruitment from the caudal hematopoietic tissue to the intestine and epidermis,85,86 

enhanced global cell proliferation,85 and excessive nitric oxide production in the cleithrum 

and notochord.86

Despite some discrepancies, TNBS exposure consistently induces intestinal inflammation 

and impairs gut functions in zebrafish larvae, reminiscent of higher vertebrate systems.16 

The intestinal inflammation is marked by induction of proinflammatory cytokines (e.g., tnf-

α and il-1β), the protease mmp9, and leukocytosis.83–85 Gut function disruption is reflected 

by loss of peristalsis83 and altered lipid metabolism.85 The TNBS-induced zebrafish 

enterocolitis also depends on microbiota-derived signals, as adding broad-spectrum 

antibiotics before TNBS into the fish medium enhanced fish survival and inhibited 

expression of proinflammatory cytokines.85 Interestingly, knockdown of myd88 rendered 

zebrafish larvae more susceptible to TNBS, suggesting a protective function for this gene. A 

similar Myd88 protective function was also observed in mice exposed to dextran sodium 

sulfate (DSS).87
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The zebrafish TNBS enterocolitis model proved useful for evaluating the therapeutic effect 

of compounds. The antiinflammatory drugs prednisolone and 5-ASA were shown to prevent 

TNBS-induced intestinal histopathological changes, proinflammatory cytokine induction, 

and intestinal recruitment of leukocytes in the zebrafish, but only prednisolone was effective 

for treating the TNBS colitis.83,85 Nitric oxide synthase (NOS) inhibitors could also rescue 

the zebrafish TNBS enterocolitis,83 consistent with observations made in mammalian 

systems.88,89 However, thalidomide and parthenolide, which are clinically used for IBD 

treatment, showed little effect on TNBS-induced zebrafish colitis.83

The TNBS zebrafish colitis model also provides a system to investigate inflammation-

related factors and signaling pathways that are difficult to explore within other animals. For 

example, human CXCL8 (IL-8) plays an important role in regulating neutrophil chemotaxis, 

but absence of murine Cxcl8 has made functional investigation difficult to perform.90 

Interestingly, TNBS exposure dramatically enhances cxcl8 expression in the zebrafish larval 

intestine,84 suggesting that this system could be useful for studying Cxcl8 function in 

intestinal inflammation. Heat shock proteins (HSPs) are suggested to ameliorate mucosal 

damage in IBD,91 and the mammalian HSP gene HSP70 is highly expressed in the intestinal 

epithelia on intestinal injury in humans. 92–94 Of interest, TNBS exposure upregulates 

expression of zebrafish hsp70 and HSP110 family gene hspa4a and hspa4b.82 The 

physiological importance of HSPs in zebrafish intestinal homeostasis is unclear and would 

require genetic manipulation.

DSS is another chemical model widely used by the research community to study intestinal 

inflammation in both mice and rats.16 Recently, Oehlers et al86 reported that DSS immersion 

resulted in enterocolitis in the zebrafish larvae. DSS was added to the larva medium at 3 dpf, 

and disease manifestations, such as liver discoloration, neutrophil influx into the intestine 

and epidermis, global cell proliferation reduction, and upregulation of proinflammatory 

genes (i.e., tnf-α, il-1β, il-8, ccl20, and mmp9), were evident at 6 dpf. Remarkably, DSS 

exposure led to strong accumulation of acidic mucins in the intestinal bulb, although no 

apparent change in goblet cell number was observed.

The striking mucin phenotype associated with DSS-induced zebrafish larval colitis is in 

great contrast to the murine DSS colitis models, where mucin is typically depleted in the 

vicinity of inflamed tissue.95,96 The discrepancy could be because of the deleterious effects 

of DSS on murine but not zebrafish gut epithelial cells. Indeed, the goblet cell population is 

preserved in zebrafish larvae after DSS exposure, which likely sustains mucin production. 

The enhanced mucin retention could provide additional protection to the larval gut 

epithelium, explaining the lack of severe tissue damage in zebrafish larvae after DSS 

treatment. In agreement with this observation, DSS pretreatment protected the zebrafish 

from TNBS-induced inflammation and animal mortality.86 The DSS-induced mucin 

enrichment in the intestinal bulb is microbiota dependent because administration of broad-

spectrum antibiotics reversed the phenotype.86

Because of the distinct mucin phenotype, the zebrafish DSS colitis model provides an ideal 

system to study mucin regulations by various agents. For example, Oehlers et al86 

demonstrated that retinoic acid suppressed both basal and DSS-induced mucin production in 
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the zebrafish intestine and therefore rendered the animal more susceptible to chemically 

induced enterocolitis.

Glafenine is a clinically used nonsteroidal anti-inflammatory drug known to cause 

gastrointestinal damage in both humans and mice.97,98 Goldsmith et al99 reported that 

administration of glafenine to 5 dpf zebrafish larvae rapidly induced (within hours) 

endoplasmic reticulum (ER) stress-mediated intestinal injury. The injury was readily 

perceived by the formation of a visible “tube” in the intestinal lumen, which is composed of 

sloughing epithelial cells resulted from extensive cell apoptosis. Interestingly, the gut 

epithelial barrier remained intact after glafenine exposure. Ultrastructure characterization 

using electron microscopy revealed signs of ER stress and halted cell stress responses in the 

gut epithelium. Gene expression analysis revealed blockage of the unfolded protein response 

(UPR) signaling, indicative of impaired cell stress resolution.

Defects in ER stress response and autophagy lead to inflammation in the intestine, thereby 

contributing to IBD pathogenesis.100 In this regard, the zebrafish glafenine intestinal injury 

model provides a unique system to investigate ER stress response and intestinal 

pathogenesis. The singular appearance and the rapid induction of the “tube” structure in the 

larval gut lumen make the glafenine model useful for carrying out compound screens to 

identify cell apoptosis inhibitors, as demonstrated by Goldsmith et al.99 The investigators 

discovered that the μ-opioid receptor agonist DALDA markedly reduced the “tube” 

formation in glafenine-treated zebrafish larvae, suggesting that the μ-opioid receptor 

signaling pathway regulates apoptosis. Further studies showed that DALDA helped ER 

stress resolution by activating UPR signaling. In line with the finding, DALDA was also 

found to protect mice against DSS-induced intestinal injury.101

Along with the various chemically induced models, a growing number of zebrafish genetic 

intestinal immune disorder models are being developed to address roles of specific genes in 

controlling host–microbe interactions.

Genetic Models of Intestinal Immune Disorders

In mammals, MYD88 is an adaptor protein used in the signaling pathways of all TLRs 

except TLR3. Although it is not known which zebrafish Tlrs signal through Myd88, 

proinflammatory gene expression in response to LPS, flagellin, and bacterial infection is 

Myd88 dependent.51 Moreover, Salmonella enterica clearance and expression of the 

proinflammatory genes mmp9, il-1b, and irak2 are impaired in myd88 morpholino (MO) 

knockdown zebrafish.102,103 Furthermore, myd88 mutants are more susceptible to acute 

(Edwardsiella tarda and Salmonella typhimurium) and chronic (Mycobacterium marinum) 

bacterial infections and have impaired innate immune transcription factors (NF-κB, AP-1) 

and proinflammatory gene expression (il1-b, mmp9).51 The defects in innate immunity and 

increased susceptibility to bacterial infection in both myd88-MO and myd88 mutant 

zebrafish are consistent with phenotypes reported in Myd88−/− mice.104–108 The myd88 

mutant zebrafish could be a promising model for studying host–microbe interactions and 

intestinal inflammation.
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In humans, NOD2 gene mutations have been strongly associated with IBD.12,109,110 

Zebrafish nod1/2 functions have been assessed by MO knockdown, which revealed that 

these innate sensors control S. enterica infection and expression of dual oxidase to produce 

bactericidal reactive oxygen species.50 Mammals with NOD1 or NOD2 deficiencies are also 

susceptible to bacterial infections,111–114 indicating functional conservation. However, the 

ligands for zebrafish Nod1/Nod2 have not been identified.

Zebrafish mutants generated with a retroviral-insertion in the CDP-diacylglycerol-inositol 3 

phosphatidyltransferase mutants (cdipthi559) lack phosphoinositide (PI) synthesis and 

display signs of ER stress in intestinal epithelial cells. These mutant fish showed abnormal 

intestinal morphology at 5dpf with reduced intestinal epithelial cell proliferation, apoptotic 

epithelial and goblet cells, inflammation, and bacterial overgrowth,115 characteristics also 

observed in human IBD patients and mice deficient in ER stress response 

components.116,117 The mechanism by which deficiencies in PI synthesis lead to ER stress 

is not clear. Nevertheless, phosphoinositide 3-kinase (PI3K) signaling plays an important 

role in intestinal homeostasis. For example, PI3Kγ has been implicated in the promotion and 

resolution of DSS and TNBS-induced colitis118,119 and mice deficient in the PI3Kγ p110δ 

subunit develop spontaneous colitis.120

The sec13sq198 mutant has a defect in the outer coat of the COPII complex, disrupting 

protein trafficking from the ER to the Golgi apparatus.121 The mutant fish show hindered 

development in the liver, pancreas, and intestine (3–5 dpf), because of reduced proliferation 

and increased cellular apoptosis. Noticeably, the sec13sq198 mutant also exhibits ER stress 

and activated components of the UPR pathway. Whether this mutant develops intestinal 

inflammation or bacterial overgrowth has not been investigated. Both the cdipthi559 and 

sec13sq198 mutants will be useful for examining how the UPR and ER stress contribute to 

intestinal inflammation. Zebrafish have homologs of many of the mammalian autophagy 

genes such as Atg16L1, but their functions and the involvement of nod1/2 in inducing 

autophagy have yet to be examined.122

A balanced immune response requires the coordinate activation of both proinflammatory 

and anti-inflammatory cytokines, a network clearly dysregulated in patients with IBD. 

GWAS studies have identified the IL-23R as a susceptibility allele in IBD patients.12 Adult 

zebrafish constitutively express il-23 in their intestine and other tissue types such as gills, 

muscle, and kidney.123 Expression of il-23 can also be induced by LPS administration or M. 

marinum infection.123 However, the functional role of il-23 in the zebrafish has not been 

examined. In mammals, IL-23 promotes TH17 stabilization and expansion, which can lead 

to excessive activation of the adaptive immunity.124 The zebrafish could be useful for 

studying components of the adaptive immunity that contribute to IBD. Such a model would 

require older zebrafish though, because fish adaptive immunity is not active for the first 

month.

The IL-10 cytokine plays a critical anti-inflammatory role in the intestine as mice deficient 

for the gene spontaneously develop IBD125 and IL-10 receptor mutations in humans are 

associated with early onset of severe IBD.126,127 The Il-10 receptor is conserved in 

zebrafish,128,129 and the IL-10 cytokine is expressed in the kidney, gills, and gut and is 
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upregulated on LPS stimulation.129 A zebrafish il-10 mutant has been identified as part of 

the zebrafish mutation project, and this mutant could be a promising model for studying 

host–microbe interactions and intestinal inflammation.130

Expression of the cytokine IL-22 is increased in Crohn’s disease patients,131 and 

experimental models have highlighted the key role of this molecule in promoting mucosal 

healing.132 Recently, il-22 function was investigated in zebrafish.133 Zebrafish il-22 is 

expressed in the intestine and enriched in the head kidney. The il-22-MO zebrafish had 

normal basal inflammatory responses but showed increased mortality and increased 

inflammatory gene expression (il-1β and tnf-α) after A. hydrophila infection. Further studies 

are needed to fully explore the role of this cytokine in maintaining intestinal homeostasis in 

the zebrafish.

Overall, a number of chemical and zebrafish genetic models are available to address the role 

of various genes in intestinal disorders and immune response.

PERSPECTIVES AND LIMITATIONS

Zebrafish offers unique opportunity for in-depth study of intestinal host–microbe 

interactions during homeostasis and in disease states. This system provides visualizing 

power to determine host cell dynamics in response to either single bacterial species or a 

complex microbial community at the whole animal level. With its rapid development and 

ease of genetic manipulation, the zebrafish system can contribute to the functional 

characterization of various IBD susceptible genes identified by GWAS and immunochip 

analyses. Microbial manipulation in the zebrafish using gnotobiotic technology is 

economically more affordable and technically less challenging than in the mouse and can 

facilitate delineation of novel paradigm implicated in host–microbe interactions in the 

intestine. The combined power of genetic and microbial manipulation in conjunction with 

outstanding imaging capacity truly positions the zebrafish system at the forefront of 

experimental models to study host–microbe interactions. The flexibility of nutrient/chemical 

interventions (continuously or temporally controlled) in the aqueous environment of 

zebrafish also represents a valuable advantage for examining the contribution of 

environmental factors such as diet and medication to intestinal disorders. Moreover, 

zebrafish could serve as a useful system for performing high-throughput screens of anti-

inflammatory compounds or small molecules susceptible to interfere with host–bacterial 

interactions.

Although the zebrafish represents a powerful tool for gastrointestinal-related research, there 

are a number of limitations associated with this lower vertebrate. First, substantial 

differences exist in the habitat and intestinal environment of zebrafish and mammals. 

Laboratory zebrafish are usually maintained at a temperature of 28°C and the fish intestine 

is primarily aerobic. These environmental conditions could preclude the study of specific 

bacterial or microbial communities identified in higher mammals. For example, mouse 

microbiota transplanted into zebrafish failed to maintain its core structure and instead 

adopted the recipient profile.32 Attempts to colonize the zebrafish intestine with members of 

the human gut microbiota have proved largely unsuccessful because only 2 of 30 human 
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commensal strains were able to establish residency in the fish intestine.134 Second, 

noticeable differences exist between the zebrafish and human immunology, suggesting that 

immunological observations made in zebrafish may not apply to humans and need to be 

confirmed in mammalian systems to maximize their translational impact. Finally, technical 

hurdles are yet to be overcome to fully explore the potentials of zebrafish for studying host–

microbe interactions. Most prominently, raising GF zebrafish to adulthood is not possible at 

present because of lack of adequate nutritional information. Therefore, use of gnotobiotic 

zebrafish is restricted to the larval stage (till around 8 dpf), making studies on the regulation 

and function of adaptive immunity in host–microbe interactions impossible. Although 

protocols have been developed to extend the life span of GF fish to over 1 month, these 

techniques require labor-intensive work and lack practicality.75 Another major challenge is 

the limited availability of fish-specific antibodies and reagents, which hinders 

characterization of signaling pathways and protein expression involved in host–microbe 

interactions in the zebrafish. It is likely that these technical limitations will slowly disappear 

with the growing popularity of the zebrafish system and increasing demand for bioreagents.

One important feature of any model organism is the ability to infer similarity of function 

with humans. The zebrafish has a well-developed intestine, a diverse microbiota, and a 

sophisticated immune system, all highly resembling the mammalian counterparts and 

represent key aspects of human intestinal immune disorders such as IBD. In addition, many 

observations made in humans and murine models regarding host–microbe interactions 

during gut homeostasis or at disease states have been recapitulated in zebrafish, indicating 

the suitability of the fish as a model through which we can better understand human disease 

control and pathogenesis. The zebrafish provides an excellent opportunity to address 

questions that are difficult to solve in mammalian systems. Moreover, the translational 

potential of the zebrafish is clear, especially in the area of high-throughput drug screens. In 

conclusion, we expect that integration of the zebrafish with other model systems would 

significantly push forward the boundaries of our knowledge of host–microbe interactions in 

the intestine, with likely application for inflammatory disorders such as IBD. Exciting 

advances can be anticipated in the coming years from expanding research efforts using the 

zebrafish system.
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FIGURE 1. 
The zebrafish intestine and gut microbiota. The zebrafish intestine (outlined in blue) 

undergoes rapid development, from a linear tube in the larva to a complex organ that folds 

twice in the abdominal cavity in the adult. The intestinal epithelium forms irregular ridge 

structures (gut folds) and is composed of 3 differentiated cell types, that is, the absorptive 

enterocytes, mucus-producing goblet cells, and secretory enteroendocrine cells. Underneath 

the epithelium is the lamina propria, which harbors various immune cells implicated in host–

microbe interactions in the gut. The zebrafish has a complex gut microbiota, with the 

bacterial phyla Proteobacteria, Firmicutes, Fusobacteria, Bacteroidetes, and Actinobacteria 

being dominantly present in laboratory-reared fish among different research facilities.
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TABLE 1

Zebrafish Models of Intestinal Immune Disorders

Age Phenotype References

Chemically Induced Models

 Oxazolone Adult Intestinal structure disruption 76

Goblet cell (GC) depletion

Neutrophil and eosinophil recruitment to intestine

Upregulated proinflammatory genes (il-1β, tnf-α, il-10)

 TNBS 3–5 dpf Impaired gut function 82–86

Increased GC proliferation

Leukocyte enrichment and recruitment to intestine

Upregulated proinflammatory genes (il-1β, tnf-α, mmp9)

Increased NO production

 DSS 3–6 dpf Increased GC proliferation 86

Neutrophil recruitment to intestine

Mucus accumulation

Upregulated proinflammatory genes (il-1β, tnf-α, mmp9, il-8, ccl20)

 Glafenine 5 dpf Intestinal epithelial cell apoptosis 99

ER stress in intestinal epithelial cells

Genetic models

 myd88-MO knockdown and mutant 2–6 dpf Increased susceptibility to bacterial infections 51,102,103

Impaired proinflammatory gene expression (il-1β and mmp9)

 nod1/2 MO knockdown 2–5 dpf Increased susceptibility to bacterial infections 50

Impaired dual oxidase expression

 cdipthi559 mutant 3–6 dpf Intestinal structure disruption 115

Apoptotic GCs

Inflammation

Bacterial overgrowth

ER stress in intestinal epithelial cells

 sec13sq198 mutant 2–5 dpf Impaired intestine development 121

ER stress in intestinal epithelial cells

 il-23 expression Adult Upregulated in response to LPS or bacterial infection 123

 il-10 expression Adult Upregulated in response to LPS 128,129

 il-22-MO knockdown 3–6 dpf Increased susceptibility to bacterial infection 133

Increased proinflammatory gene expression (il-1β and tnf-α)
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