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Summary

Inflammatory caspases play a central role in innate immunity by responding to cytosolic signals 

and initiating a twofold response. First, caspase-1 induces the activation and secretion of the two 

prominent pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, either caspase-1 

or caspase-11 can trigger a form of lytic, programmed cell death called pyroptosis. Pyroptosis 

operates to remove the replication niche of intracellular pathogens, making them susceptible to 

phagocytosis and killing by a secondary phagocyte. However, aberrant, systemic activation of 

pyroptosis in vivo may contribute to sepsis. Emphasizing the efficiency of inflammasome 

detection of microbial infections, many pathogens have evolved to avoid or subvert pyroptosis. 

This review focuses on molecular and morphological characteristics of pyroptosis and the 

individual inflammasomes and their contribution to defense against infection in mice and humans.
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Introduction

Different forms of cell death can be classified based on whether they are lytic or non-lytic. 

Also, cell death can be programmed by specific signaling events or result from accidental 

injury. Caspases are ancient cysteine proteases that trigger two distinct types of programmed 

cell death: apoptosis or pyroptosis. Apoptotic caspases include initiator caspases (caspase-2, 

-8, -9, -10) that respond to an extrinsic or intrinsic apoptotic signal. These cleave and 

activate the effector caspases (caspase-3, -6, -7), which in turn cleave target proteins to 

orchestrate apoptotic cell death. In contrast, both the initiator and effector functions are 

contained within one inflammatory pyroptotic caspases (caspase-1, -4, -5, -11).

This review focuses on pyroptosis in vivo. We describe the morphological and molecular 

determinants and the upstream signaling required to initiate pyroptosis. Pyroptosis plays an 

important role in the defense against microbial infections, but systemic caspases activation 

can be harmful. We review the balancing act between protective and detrimental roles of 
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pyroptosis and conclude by discussing the evasion strategies employed by microbes to avoid 

pyroptosis altogether.

Morphological and molecular determinants of pyroptosis

Pyroptosis was first described in 1992 by Zychlinsky and colleagues (1), who observed a 

lytic form of cell death in Shigella flexneri-infected macrophages. This cell death was at first 

termed apoptosis because it shared some characteristics with apoptosis, including DNA 

fragmentation, nuclear condensation, and caspase dependence. Later, as caspase-1-

dependent cell death was further characterized, it was found to be distinct from apoptosis. 

Thus, caspase-1-dependent cell death was named pyroptosis in 2001. ‘Pyro’, meaning fire, 

reflects the inflammatory nature of this form of cell death, and ‘ptosis’, meaning falling, 

matches the terms used for other forms of programmed cell death (2).

Pyroptotic cell death is defined by several criteria. First, it is programmed by an 

inflammatory caspase. The proteolytic activity of the caspase is required, but autoproteolytic 

processing of the caspase is not. This is important to note, since processing of the caspase 

has often been used as a proxy for proteolytic activity. Yet, this is not necessarily the case in 

pyroptosis, at least when the caspase is activated directly via a CARD-containing 

inflammasome.

Second, inflammatory caspase activation results in pore formation in the plasma membrane, 

and the cell becomes permeable to small molecular weight, membrane-impermeable dyes 

such as 7-aminoactinomycin (7-AAD), ethidium bromide (EtBr), and propidium iodide (PI). 

These pores are likely between 1.1 and 2.4nm in diameter (3). In contrast, apoptotic cells 

remain intact and fragment into apoptotic bodies that do not stain with 7-AAD or PI.

Following permabilization of the plasma membrane, ions and water rush into the cell 

causing it to swell and lyse, resulting in the release of cytosolic contents (3). After 

membrane rupture, the inner leaflet of the plasma membrane is exposed to the extracellular 

fluid and thus can be stained with Annexin V, which binds to the inner leaflet-sequestered 

lipid phosphatidyl serine (PS) (4). In contract, during apoptosis, PS is translocated by a 

flippase to the extracellular surface of the plasma membrane, permitting Annexin V staining. 

Thus, Annexin V does not distinguish between apoptotic and pyroptotic cell death. The 

majority of the work addressing the morphological events that accompany pyroptosis has 

been performed with caspase-1 specific agonists, and it is assumed that these observations 

apply to caspase-11-induced pyroptosis as well. A detailed comparison is therefore needed 

to confirm this assumption.

Third, pyroptotic cells display DNA damage and are positive in a TUNEL assay, but at a 

lower intensity than apoptotic cells. Further, there is little DNA laddering present during 

pyroptosis. Chromatin condensation also occurs, but in comparison to apoptosis, the nucleus 

remains intact. Whereas DNA damage during apoptosis is dependent on the caspase-

activated DNase (CAD), CAD remains bound to its inhibitor ICAD during pyroptosis even 

though caspase-1 can cleave ICAD in vitro. Yet, DNA damage is not required for 

pyroptosis, as inhibition of DNA fragmentation with a nuclease inhibitor does not prevent 

cell lysis (3).
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Finally, during lytic, non-programmed, necrotic cell death, DNA damage activates ADP-

ribose polymerase (PARP), which consumes NAD+, thereby depleting ATP. Apoptotic 

effector caspases cleave and inactivate PARP, maintaining the cellular levels of ATP needed 

to drive apoptosis. Unlike in apoptotic macrophages, PARP is not inactivated during S. 

typhimurium-induced pyroptosis, though caspase-1 is capable of cleaving PARP in vitro (5). 

It is unknown if caspase-11 can cleave either ICAD or PARP in vitro similar to caspase-1. 

Yet, Parp−/− macrophages readily undergoing pyroptosis (6), indicating that PARP activity 

is not required for pyroptosis. PARP-1 has been reported as a cofactor of nuclear factor-κB 

(NF-κΒ) to regulate lipopolysaccharide (LPS)-induced transcription of caspase-11 in vitro, 

but as shRNA knockdown of PARP-1 did not affect interferon-γ (IFN-γ)-induced 

caspase-11 transcription (7), PARP-1 is unlikely required for caspase-11-mediated 

pyroptosis. For a summary of the molecular and morphological characteristics of pyroptosis 

compared to apoptosis, see Table 1.

The caspase-1 canonical inflammasomes

Caspase-1 plays a central role in innate immunity by responding to cytosolic signals and 

initiating a twofold response. First, caspase-1 induces the activation and secretion of the two 

pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. Second, caspase-1 triggers 

pyroptosis. To date, both mouse and human macrophages and dendritic cells are the primary 

cells types known to undergo caspase-1-dependent pyroptosis (8, 9). Additionally, the 

majority of the work in understanding the composition and signaling of different 

inflammasomes has been done in macrophages. Nevertheless, caspase-1 expression and/or 

activity have been reported in many cell types such as keratinocytes (10) and intestinal 

epithelial cells (11), but it remains unclear if these cell types undergo pyroptosis in response 

to microbial ligands.

Caspase-1 is activated by various inflammasomes, which are multi-protein signaling 

complexes that assemble in response the detection of cellular perturbations or intracellular 

microbial ligands. The currently known inflammasomes are encompassed within three gene 

families: Nod-like receptors (NLRs) (4, 12, 13), AIM2-like receptors (ALRs) (14, 15), or 

tripartite motif family (TRIM)(of which only one member is an inflammasome: Pyrin) (16, 

17). Each inflammasome contains either a caspase activation and recruitment domain 

(CARD) or a pyrin domain (PYD) that mediates the signaling event. Those with only a PYD 

exclusively signal through the ASC adapter, which is composed of a PYD and a CARD. The 

CARD domain of ASC then recruits caspase-1 via CARD-CARD interactions. 

Inflammasomes with a CARD domain (NLRC4, NLRP1, NLRP1a, NLRP1b) can signal 

either through ASC or directly to caspase-1. For CARD-containing inflammasomes, 

pyroptosis occurs independently of ASC and caspase-1 processing. For NLRC4, cytokine 

secretion requires ASC and caspase-1 processing, while for the CARD-containing NLRP1b, 

cytokine secretion occurs independently of ASC and caspase-1 processing (18, 19). The 

reasons why NLRC4 and NLRP1b would have differential requirements for ASC in 

cytokine processing are unknown.

Pyroptosis of the infected cell removes the pathogen’s protective, intracellular niche and 

makes them susceptible to killing by a secondary phagocyte. Indeed, we propose that 
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pyroptosis is so effective in defending against intracellular infection that any intracellular 

pathogen must evade pyroptosis in vivo, lest the parasitized cell lyse. Although this concept 

is intuitively sound, there is limited experimental evidence that actually demonstrates it. 

Mice deficient in caspase-1 or caspase-11 are susceptible to a large number of bacterial 

pathogens that induce inflammasome formation. However, to understand the role of 

pyroptosis in the clearance of microbial infections, its effects must be experimentally 

isolated from the effects of IL-1β and IL-18.

NLRC4

The NLRC4 inflammasome was initially named ICE-protease-activating factor (IPAF) for 

its role in activating caspase-1 [originally named IL-1-converting enzyme (ICE)]. The 

NLRC4 inflammasome responds to three bacterial proteins when they enter the cytosol of 

host cells: flagellin, type III secretion system (T3SS) rod, and T3SS needle.

Flagellin is the monomeric subunit of the bacterial flagellum. In bacteria, flagella are 

assembled via a T3SS that is distinct from the virulence-associated T3SS that mediate 

translocation of effector proteins into host cells, though they share significant structural and 

sequence similarities. Given this conservation, flagellin is recognized and accidentally 

secreted by a T3SS that normally delivers bacterial effectors to the host cytosol where it is 

efficiently detected by NLRC4 (20, 21) (Fig. 1). Flagellin is also detected during Legionella 

pneumophila infection. Here, cytosolic flagellin is a marker of the type IV secretion system 

(T4SS) activity (22–24). It is less apparent whether flagellin is being injected across the 

phagosomal membrane by the T4SS or whether flagellin enters the cytosol by transient 

vacuolar permeabilization events occurring consequently to the T4SS activity. Cytosolic 

flagellin is also a marker for bacteria that directly invade the cytosol, such as Listeria 

monocytogenes (11, 25). Interestingly, S. typhimurium and L. monocytogenes both repress 

flagellin expression in vivo.

S. typhimurium strains deficient in flagellin expression still trigger NLRC4, indicating that 

NLRC4 is capable of responding to additional agonists (20). This observation was explained 

when it was demonstrated that NLRC4 is also capable of recognizing two additional bacteria 

ligands: the T3SS rod protein (26) and the T3SS needle protein (27) (Fig. 1). In the 

Salmonella SPI-1 T3SS these proteins are PrgJ and PrgI, respectively.

A fundamental question in the field was how the NLRC4 inflammasome responds to 

multiple bacterial ligands with little sequence similarity. Two groups independently 

demonstrated that the NLR family NAIP proteins govern the specificity of the NLRC4 

inflammasome response to different ligands (27, 28). C57BL/6 mice have four NAIP genes: 

NAIP5 and NAIP6 bind directly to flagellin, NAIP2 binds the T3SS rod, and NAIP1 binds 

the T3SS needle (27–30)(Fig. 1). In contrast, humans have a single NAIP, which responds 

only to the T3SS needle protein (27). These NAIPs control ligand-dependent 

oligomerization of NLRC4; only a NAIP5/6-flagellin and NAIP2-PrgJ interact with NLRC4. 

The NAIP and NLRC4 monomers oligomerize together to form an inflammasome hub that 

includes NAIP and NLRC4 in roughly a 2:5 ratio (31). The stoichiometry of this complex 

likely increases the sensitivity of NAIP/NLRC4 inflammasomes in comparison to other 

NLR ligands. It is peculiar that humans are limited to detecting a single bacterial ligand, the 
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T3SS needle protein. Both pathogenic and non-pathogenic bacteria express flagella. Thus, 

sensors for flagellin are perhaps more susceptible to false activation by a commensal 

microbe than are sensors for T3SS apparatus proteins, which are more specific for 

pathogens.

NLRC4 is phosphorylated at serine 533 by protein kinase Cδ, which has been implicated in 

its activation (32); however, this has been disputed (33). This phosphorylation event was 

also observed in the crystal structure of NLRC4, which was crystallized in the inactive state 

(34). Thus, the importance of the phosphorylation event remains to be further investigated.

S. typhimurium efficiently evades NLRC4 during systemic infection. It does so by 

repressing flagellin and expressing a variant T3SS whose rod and (presumably) needle 

proteins are not detected by NLRC4 (20, 26, 35). S. typhimurium engineered to 

constitutively activate the NLRC4 inflammasome have suggested a critical role for 

pyroptosis in innate immunity. Constitutive flagellin expression leads to rapid clearance of 

S. typhimurium in wildtype (WT) mice (36). Importantly, clearance is entirely dependent on 

NLRC4 but independent of IL-1β and IL-18. This indicates that pyroptosis is responsible for 

the clearance of the infection completely independent of pro-inflammatory cytokines. By 

monitoring the cell membrane permeability of infected macrophages, it was shown that cells 

infected with flagellin-expressing S. typhimurium became permeable low-molecular weight 

dyes (36). Pore-formation was NLRC4/caspase-1 dependent, indicating that these infected 

macrophages were in fact undergoing pyroptosis. This led to the eradication of the infecting 

bacteria. After release from the pyroptotic macrophage, these bacteria were phagocytosed 

and killed by neutrophils. Similar results were seen when S. typhimurium was engineered to 

express the SPI-1 T3SS rod protein, PrgJ during systemic infection (26). L. monocytogenes 

provides a second example that proves this point. Like S. typhimurium, L. monocytogenes 

efficiently evades inflammasomes in vivo by repressing flagellin expression (37, 38). Similar 

to the S. typhimurium results, L. monocytogenes strains engineered to express flagellin or 

T3SS rod protein in vivo were efficiently cleared. These engineered bacteria remained 

attenuated in Il1b−/−Il18−/− mice, suggesting a role for pyroptosis (39, 40).

Upon pyroptosis, neutrophils phagocytose the flagellin overexpressing S. typhimurium and 

kill the bacteria via ROS production by the NADPH phagocyte oxidase system (36). Mice 

deficient in the NADPH phagocyte oxidase component p47phox (Ncf1−/−) fail to clear a 

flagellin-expressing strain of S. typhimurium. Instead, S. typhimurium accumulates in 

neutrophils of Ncf1−/− mice, since these animals induce pyroptosis but fail to clear the 

pathogens via ROS. The secondary phagocyte could potentially induce pyroptosis as well if 

the phagocytosed bacteria continued to express flagellin, but the neutrophil is likely not 

susceptible to pyroptosis for several reasons. First, ROS production dramatically exceeds 

that of macrophages and is sufficient to kill S. typhimurium. Second, neutrophils express 

caspase-1 but not NLRC4 and are therefore unable to respond to bacterial flagellin or T3SS 

rod and needle protein (36, 41). Whether neutrophils express NLRC4 was recently 

contested, however (42), although NLRC4 expression would not preclude neutrophils from 

killing bacteria prior to activation of the inflammasome.
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AIM2 and IFI16

AIM2 contains a HIN200 domain, which directly binds double stranded DNA (dsDNA) 

(43–46). It detects viral dsDNA, such as vaccinia virus and cytomegalovirus (CMV). It also 

detects bacterial dsDNA from cytosol-invasive bacteria, such as Francisella novicida or 

Listeria monocytogenes that lyse in the cytosolic compartment (47–53) (Fig. 1).

AIM2 activation induces pyroptosis in BMM in vitro in response to liposome-delivered 

dsDNA, but the contribution of pyroptosis versus cytokine secretion to host defense in vivo 

remains unclear. For example, AIM2-deficient mice have higher titers of CMV compared to 

WT mice, and IL-18 was implicated as the inflammasome-dependent effector conferring this 

phenotype (48), although a role for pyroptosis was not excluded.

Aim2−/− mice are more susceptible to F. novicida infection (47, 48, 52). Protection may be 

mediated by pyroptosis, as treating Casp1−/− Casp11−/− mice with recombinant IL-1β and 

IL-18 only partially rescues these mice (54). However, these results have not been verified 

using Il1b−/−Il18−/− mice, and further evidence of pyroptosis occurring in vivo has not been 

obtained. Similarly, Mycobacterium tuberculosis activates AIM2 in vitro, although one 

report suggests that a virulent M. tuberculosis strain but not the non-virulent M. smegmatis 

can suppress AIM2 activation in vitro (55–57). Saiga et al. (56) showed that Aim2−/− mice 

are highly susceptible to infection with M. tuberculosis. However, as the authors did not 

investigate susceptibility to infection in Il1b−/−Il18−/− mice, it is unclear is protection against 

M. tuberculosis is pyroptosis dependent.

AIM2 is the founding member of the ALR family, characterized by the presence of a 

HIN200 domain. Humans encode four ALRs, while the family is significantly expanded in 

mice (14). IFI16 is a human ALR that detects viral dsDNA in the nucleus and activates 

caspase-1 (58). It is unclear whether any of the murine ALRs are functional IFI16 homologs 

(14). Recently, IFI16 was shown to play a critical role in pyroptosis of CD4+ T cells during 

human immunodeficiency virus (HIV) infection. Depletion of CD4+ T cells is a hallmark of 

acquired immunodeficiency syndrome (AIDS) and occurs as a result of cell death in 

response to the accumulation of deficient cytosolic HIV virions (59). Doitsh et al. (60) 

recently demonstrated that CD4+ T-cell death is a result of caspase-1-dependent pyroptosis. 

Concurrently, two groups identified IFI16 as the sensor of reverse transcribed ssHIV DNA, 

leading to pyroptosis and cytokine secretion (61, 62). These observations therefore 

significantly extend the role of AIM2-related proteins in sensing and protection against 

retroviral infection.

NLRP3

Cumulative evidence suggests that NLRP3 does not directly sense the many signals that are 

capable of inducing NLRP3 inflammasome formation. Instead, fungal, bacterial, and viral 

pathogens, pore-forming toxins, crystals and DAMPs are thought to induce a cytosolic 

perturbation that is sensed by NLRP3 (Fig. 1). The work of several groups have identified 

potential converging signals, such as potassium efflux (63), mitochondrial ROS production 

(64), and changes in cell volume (65). To date, however, there is little evidence to indicate 

that pyroptosis acts in vivo downstream of NLRP3. We are not aware of reports that have 
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shown an NLRP3-dependent protective effect against infection that was not dependent upon 

IL-1β and/or IL-18.

NLRP1

Humans express a single NLRP1 protein that has an unusual structure: it consists of an N-

terminal PYD domain, an LRR domain, a function-to-find domain (FIIND), and a C-

terminal CARD domain. Mice, however, express three homologues: NLRP1a, NLRP1b, and 

NLRP1c. NLRP1a and NLRP1b contain the CARD signaling domain but lack the PYD 

domain (66), while NLRP1c is truncated and has neither a CARD nor a PYD signaling 

domain (67). Another critical difference between the human and mouse NLRP1 is that 

certain alleles of mouse NLRP1b activate in response to the anthrax lethal toxin (LT), 

whereas human NLRP1 does not. LT cleaves the N-terminus of NLRP1b, activating the 

inflammasome and inducing pyroptosis and cytokine secretion. NLRP1b recruits caspase-1 

via CARD-CARD interactions, and ASC is dispensable for induction of pyroptosis and 

IL-1β secretion (68). Similar to NLRC4-dependent pyroptosis, NLRP1b induces pyroptosis 

independent of caspase-1 autoprocessing (69). The three mouse homologues are highly 

polymorphic among mouse strains. For example, 129S1 mice do not express NLRP1a and 

NLRP1c and express a LT responsive NLRP1b allele. In contrast, C57BL/6 mice express all 

three genes, but the C57BL/6 NLRP1b allele does not respond to LT (66, 67). Interestingly, 

the NLRP1 family FIIND domain was recently shown to have autoproteolytic activity, 

which is required for inflammasome activation (70, 71).

Besides LT, NLRP1b responds to the parasite Toxoplasma gondii in vitro (72–74). In vitro 

knockdown of NLRP1b in a human monocytic cell line leads to decrease in parasite-

mediated pyroptosis and cytokine secretion (74). Earlier reports indicated that human 

NLRP1 can detect muramyl-dipeptide (MDP) in vitro (75, 76), but it is unclear if this 

observation is physiologically relevant, as murine NLRP1 proteins do not detect MDP (68), 

and the relevance of MDP responses in vivo in humans has not been examined. Whether 

NLRP1 senses T. gondii by N-terminal cleavage events as in LT or via signals interacting 

with the LRR domain remain unknown.

The NLRP1 inflammasome protects against Bacillus anthracis-derived LT and T. gondii in 

vivo (77, 78). Infection with B. anthracis leads to rapid respiratory failure following lung 

tissue necrosis, circulatory collapse and pulmonary edema, largely mediated by LT (79). 

Kovarova et al. (68) demonstrated that NLRP1b mediates lung injury in response to LT 

injection in mice. The NLRP1b-driven pathology was independent of IL-1β; thus, pyroptosis 

is likely the primary mediator of LT-induced pathology.

Human NLRP1, however, detects T. gondii infection in vitro, and certain SNPs in the 

NLRP1 gene are associated with susceptibility to congenital toxoplasmosis (74). 

Toxoplasma is a macrophage tropic intracellular pathogen, thus pyroptosis would be 

expected to eliminate this intracellular niche and contribute to host defense. However, this 

protection is entirely dependent on IL-18, as Il18−/− and Asc−/− mice both succumb to T. 

gondii infection, suggesting that NLRP1b-mediated defense occurs via cytokine production 

(80, 81).
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NLRP1-mediated pyroptosis has also been implicated in the development of immune 

suppression by depletion of hematopoietic cells (82). A murine germline gain-of-function 

mutation in NLRP1a induced pyroptosis of hematopoietic progenitor cells, IL-1β secretion 

and resulted in a lethal inflammatory disease. Pathology was independent of ASC and 

cytokine secretion, implicating NLRP1a-driven pyroptotic cell death as the primary 

mediator of inflammation. Notably, the human NLRP1 is genetically linked to several 

autoinflammatory diseases (83). Given the role of NLRP1-mediated pyroptosis in the 

depletion of hematopoietic cells, future work should be directed at determining if NLRP1-

dependent cell death plays a role in the development of other autoinflammatory diseases.

The caspase-11 non-canonical inflammasomes

The inflammatory caspase locus in mice contains caspase-1, caspase-11, and caspase-12, all 

encoded in close proximity on chromosome 9. In humans, caspase-11 is duplicated as 

caspase-4 and caspase-5, and most humans encode a defective caspase-12 gene. 

Interestingly, Casp1−/−, Casp11−/−, and Casp12−/− mice are all resistant to endotoxic shock 

(84–86). The two caspase-1 knockout mouse lines (84, 87) were known to be deficient in 

caspase-11 expression (88), yet this garnered little attention in the published literature until 

2011. Then, the caspase-11 deficiency was shown to arise from a natural mutation in the 129 

mouse line that was back crossed into C57BL/6 along with the engineered Casp1−/− 

mutation; these two Casp1−/− mouse lines are now referred to as Casp1−/−Casp11−/− mice. 

The resistance of Casp1−/−Casp11−/− mice to endotoxic shock was attributed primarily to 

the caspase-11 deficiency, rather than caspase-1. Because caspase-11 independently directs 

pyroptosis, this pathway was termed the noncanonical inflammasome to contrast it with the 

canonical inflammasome pathway that activates caspase-1. Because of their 129 origin 

Casp12−/− mice backcrossed to the C57BL6 background are expected to have the same 

caveat and to be Casp11−/−Casp12−/− mice, and the resistance of these mice to endotoxic 

shock may arise from a caspase-11 mutation.

LPS within the cytosol was subsequently identified as the bona fide caspase-11 agonist (89, 

90). Caspase-11 displays LPS structural specificity as the caspase is only activated in 

response to cytosolic lipid A with six acyl groups, but not lipid A species with four acyl 

groups. Thus, caspase-11 detects LPS in the cytosol, while Toll-like receptor 4 (TLR4) 

detects LPS in the extracellular or vacuolar space.

Prior to activation, caspase-11 must be primed via either type I interferon or IFN-γ (91–97). 

Besides pyroptosis, caspase-11 also induces IL-1β secretion in cooperation with NLRP3, 

ASC and caspase-1. The molecular mechanism linking caspase-11 and NLRP3-caspase-1 

has yet to be established. The physiologic relevance of the link between caspase-11 and 

IL-1β secretion has not been demonstrated.

Until recently, all known initiator caspases besides caspase-11 were activated by an 

upstream caspase-activating platform: the inflammasome, apoptosome, PIDDosome, or 

DISC for caspase-1, caspase-9, caspase-2, and caspase-8, respectively. It was thus widely 

assumed that an upstream noncanonical inflammasome detected cytosolic LPS and in 

response recruited and activated caspase-11. A recent study, however, demonstrated that 
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caspase-11 is itself the LPS sensor, upending the dogma of caspase activation (98). The 

caspase-11 CARD domain binds LPS and in response mediates caspase-11 oligomerization. 

Several basic residues within the caspase-11 CARD domain are required for LPS binding, 

presumably interacting with the acidic phosphate moieties of lipid A. The authors further 

showed that human caspase-4 and caspase-11 are bona fide homologues, inducing 

pyroptosis in response to LPS and supporting the importance of this cytosolic LPS detection 

pathway in both mice and humans (98). Why this pathway has been duplicated in humans 

remains to be elucidated.

Similar to caspase-1, the study of caspase-11 function has focused on macrophages. Humans 

encode two homologues of caspase-11, caspase-4 and caspase-5. Whether these two 

homologues both function similarly to caspase-11 has been unclear. Shi et al. (98) recently 

demonstrated that caspase-4 detects LPS in human monocytes, where it appears to be 

constitutively expressed. This is in contrast to caspase-11, which is inducible in myeloid 

cells, indicating that a priming step is not required for LPS-mediated endotoxic shock in 

humans. This model of caspase-11 expression restricted to macrophages was recently 

expanded by a publication demonstrating a role for caspase-11 pyroptosis in intestinal 

epithelial cells (99). Caspase-4 is moreover expressed and induces pyroptosis in 

keratinocytes and epithelial cells, but not in T-cells or pre-myeloid cells (98, 100, 101). 

Caspase-5 also binds LPS and can reconstitute pyroptosis Casp-11−/− deficient BMMs, yet 

caspase-5 was not expressed in macrophages. This may indicate that the two human 

inflammatory caspases are expressed in different cell types or under very different 

conditions. Whereas caspase-4 is constitutively expressed, caspase-5 may require priming 

by an unknown mechanism, such as IFN-γ as suggested by Lin et al. (100).

Caspase-11 induced pyroptosis has been implicated in the clearance of cytosolic bacterial 

pathogens in vivo (95). Mutant strains of both S. typhimurium and L. pneumophila that 

escape the vacuole (SifA and SdhA, respectively) are detected by caspase-11, and this has 

been shown to promote clearance of the ΔsifA S. typhimurium mutant in vivo (95). When 

macrophages are primed with LPS or IFN-γ, they rapidly undergo caspase-11 dependent 

pyroptosis during infection with a flagellin deficient mutant of L. pneumophila (94). 

However, WT L. pneumophila induces caspase-1-dependent pyroptosis in WT macrophages 

primed with LPS in vitro, presumably since the bacteria are confined to the structurally 

intact, stable vacuole and do not enter the cytosol. Yet, Akhter et al. (102) observed a mild 

contribution of caspase-4 in restricting WT L. pneumophila growth in vitro, perhaps 

reflecting a small number of bacteria that aberrantly enter the cytosol.

Since caspase-11 detects cytosolic LPS, it has remained unclear how these vacuolar bacteria 

are detected by caspase-11. One possibility is that the interferon inducible GTPases alter the 

integrity of the bacteria-containing vacuole, allowing some LPS to enter the cytosol (103, 

104).

Caspase-11 also defends against infection by the cytosolic pathogen B. thailandensis and B. 

pseudomallei (95). However, it remains unclear to what extend pyroptosis plays in 

protection. Defense against B. pseudomallei in WT mice requires both pyroptosis and IL-18, 

whereas IL-1β actually has a detrimental effect (41). In contrast to B. pseudomallei, B. 
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thailandensis infection is still lethal in, Il-1β−/− ll-18−/− mice, suggesting that pyroptosis is 

the dominant effector mechanism (95). As with F. novicida in vivo infection data, the 

occurrence of pyroptosis in vivo for these infections has not been fully characterized.

Two groups independently recently suggested a protective role for caspase-11-dependent 

pyroptosis in the intestinal epithelium, using two different models of intestinal 

inflammation. Demon et al. (105) showed that Casp11−/− mice are hypersusceptible to 

DSS-induced colitis, but it is unclear if protection is mediated by pyroptosis or cytokine 

secretion. The second report (106) established how caspase-11 protects against S. 

typhimurium infection of intestinal epithelial cells by promoting shedding of infected cells 

via pyroptosis. Since caspase-11 specifically detects LPS in the cytosol, it is likely that S. 

typhimurium is only detected by caspase-11 after vacuolar disruption.

Aberrant activation of pyroptosis in vivo

With the additional knowledge that LPS is the caspase-11 agonist, there are now two LPS 

detection pathways: cytosolic LPS is detected by caspase-11, and extracellular and vacuolar 

LPS is detected by TLR4, and Tlr4−/− are also resistant to LPS-mediated endotoxic shock 

(89, 90, 107). Endotoxic shock has therefore been proposed to occur in a two-step manner: 

(i) TLR4 detects LPS in the extracellular or vacuolar space, resulting in IFN-β secretion that 

primes caspase-11, and (ii) detection of aberrantly cytosolic LPS by caspase-11. 

Caspase-11-mediated pyroptosis then facilitates endotoxic shock. Treating mice with a low 

dose LPS results in TLR4 detection and TLR4-depepent priming of the caspase-11 pathway. 

These mice then become exceedingly susceptible to a subsequent challenge with a low dose 

LPS (89). In fact, the requirement of TLR4 can be bypassed, by priming the mice with the 

TLR3 agonist poly(I:C). Priming with poly(I:C) and subsequently challenging mice with a 

low dose LPS is also lethal. Hence, TLR4 can be bypassed in a mouse model of LPS-induce 

endotoxic shock, whereas caspase-11 is responsible for the mortality in this model. Since 

Nlrp3−/− mice do not show the same resistance as Casp11−/− mice (108), it is likely that 

IL-1β and IL-18 are not primary effectors of caspase-11-driven endotoxic shock. This would 

suggest pyroptosis as a primary driver in endotoxic shock, although this deserves further 

study.

As evidenced by the role of caspase-11 in sepsis, excessive, uncontrolled pyroptosis is 

detrimental to the host. This detriment is also evident in systemic activation of caspase-1. 

Flagellin can be delivered to the cytosol of host cells in vivo by replacing the catalytic 

subunit of anthrax lethal toxin with flagellin (FlaTox) (109). FlaTox is rapidly detected by 

NLRC4, activating caspase-1 and inducing pyroptosis. Mice treated with FlaTox 

systemically activate the NLRC4 inflammasome, leading to an eicosanoid storm, vascular 

permeability, and death. Systemic NLRC4 activation is independent of cytokines, as 

FlaTox-treated Il-1β−/− Il18−/− mice survive, suggesting pyroptosis is the driver of 

pathology. The COX inhibitor indomethacin can block production and secretion of these 

lipid mediators, and mice treated with indomethacin survive FlaTox treatment. In fact, 

inhibiting eicosanoid production also rescues mice primed with poly(I:C) and challenged 

with low dose LPS (89). Combined, these data indicate that eicosanoids are critical 

mediators of mortality in endotoxic shock downstream of caspase-1 and caspase-11. It 
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remains unclear whether pyroptosis is directly related to eicosanoid production in these 

models, or whether instead caspase proteolytic activity activates a different pathway to drive 

eicosanoid production.

The detrimental effects of aberrant inflammasome activation have recently been well 

illustrated in humans. Aberrant NLRP3 activation and cytokine secretion has been 

implicated in several human autoimmune diseases (110). For example, gain of function 

mutations in NLRP3 causes a syndrome characterized by spontaneous inflammasome 

activation and increased secretion of IL-1β called cryopyrin-associated periodic syndromes 

(CAPS). Patients with CAPS are successfully treated with IL-1β blocking antibodies. Thus, 

like in CAPS, inflammasome-mediated cytokine secretion rather than pyroptosis seems to be 

the underlying mechanism of most NLRP3-mediated autoimmune disorders.

Recently three groups identified several de novo gain-of-function mutations in close 

proximity to each other in the nucleotide-binding domain (NBD) of NLRC4 that is 

associated with inflammatory syndromes in humans (111–113). These are the first reports of 

disease associations with genetic variants of NLRC4 in humans. Given the strong links 

between NLRC4 and pyroptosis, it was tempting to speculate that autoactivation of NLRC4 

would result in a pyroptosis driven disease in vivo. However, this syndrome was 

successfully treated with IL-1 receptor antagonist, suggesting that the cytokines, rather than 

pyroptosis drive the clinical symptoms. However, we must keep in mind that two of these 

mutations are very mild (threonine to serine, and valine to alanine) (111, 112), while the 

third appears to be autoactivated only upon exposure to cold temperatures (113). We 

speculate that a stronger activating mutation may result in a pyroptosis-driven clinical 

syndrome.

In summary, we therefore propose that an early pyroptotic response during infection ablates 

the intracellular replicative niche that pathogens attempt to exploit. This is beneficial and 

results in clearance of the infection. In contrast, during sepsis where infection has failed to 

be controlled, aberrant cytosolic PAMP entry could trigger inappropriate pyroptosis on a 

broad scale, resulting in wholesale release of cytosolic DAMPs that drive shock.

Microbial pathogens evade pyroptosis

The importance of inflammasome activation and pyroptosis in expelling pathogens from 

their intracellular niche is highlighted by the fact that many pathogens have evolved to avoid 

activating this innate immune response. Pathogens employ multiple mechanisms to subvert 

detection. (i) Pathogens can restrict expression of the ligand to compartments devoid of 

inflammasome activity or render the ligand unavailable for binding to an NLR sensor. (ii) 

Pathogens modify the structure of the ligand detected by inflammasomes to evade detection. 

(iii) They directly inhibit inflammasome function. Whether it is most important for each 

pathogen to prevent IL-1β secretion, IL-18 secretion, pyroptosis, or a combination thereof 

will likely depend upon the pathogenic strategy of the particular pathogen.
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Salmonella

S. typhimurium utilizes two distinct pathogenicity islands, SPI-1 and SPI-2, at specific times 

during infection. This permits the bacteria to secrete specific sets of effector proteins 

depending on the requirements imposed by the host environment. The T3SS apparatus 

encoded by SPI-1 functions primarily during epithelial cell invasion, is co-expressed with 

flagellin, and is readily detected by NLRC4. In contrast, the SPI-2 T3SS is expressed in a 

vacuolar compartment of both epithelial cells and macrophages. S. typhimurium suppresses 

transcription of flagellin during SPI-2inducing conditions (26), thereby avoiding detection 

by NLRC4.

A second strategy to avoid inflammasome detection involves modifying the ligand to 

prevent recognition by the sensor. The SPI-I T3SS rod protein PrgJ of S. typhimurium, but 

not the SPI-II T3SS SsaI, is detected by the NLRC4 inflammasome (26). NLRC4 activation 

in response to flagellin and the T3SS rod protein, two proteins that do not share a high 

degree of amino acid similarity, is mediated by the interaction of flagellin and T3SS rod 

protein with different NAIP proteins: NAIP5 and NAIP6 detect flagellin and NAIP2 detects 

T3SS rod protein (27, 28). Ligand-bound NAIP proteins then activate the NLRC4 

inflammasome. NAIP2 detection of SsaI is abolished due to several amino acid substitutions 

in the region critical for recognition by NAIP2 (26). In fact, NAIP2 recognition of SsaI can 

be restored by substituting the eight carboxyl-terminal aa of SsaI with the homologues PrgJ 

sequence. In combination with flagellin suppression during SPI-II expression, modification 

of the SsaI rod protein ensures that S. typhimurium effectively subverts NLRC4 detection in 

the cytosol of infected cells.

Listeria

L. monocytogenes also avoids inflammasome detection by the NLRC4 inflammasomes. At 

37°C (host temperature), L. monocytogenes suppresses flagellin expression via its 

transcriptional regulator MogR (38, 114), thus avoiding NLRC4 detection of flagellin shed 

from cytosolic bacteria that have escaped the vacuole. In vivo, Casp1−/−Casp11−/− mice 

were found to have an increased susceptibility to L. monocytogenes infection (115); 

however, this phenotype was found by other groups to be quite mild (39). That L. 

monocytogenes is primarily evading inflammasome detection in vivo is driven home by the 

severe attenuation of the bacteria when they are forced to express flagellin or T3SS rod 

protein in vivo (39, 40).

Vacuolar bacteria

Both S. typhimurium and L. pneumophila avoid caspase-11 detection by virtue of their 

replicative niche within a vacuole. The T3SS/T4SS effectors SifA and SdhA both maintain 

the integrity of the Salmonella and Legionella-containing vacuole respectively. SifA and-

SdhA-deficient strains are detected by caspase-11 as these bacteria escape the vacuole, 

likely lysing and releasing LPS into the cytosol (95). Besides preventing caspase-11 

detection of cytosolic L. pneumophila, ShdA regulation of vacuole integrity precludes AIM2 

detection (116). A small number of L. pneumophila likely lyse within the pathogen-

containing vacuole and the DNA may access the cytosol. Ge et al. (116) demonstrated that 
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DNA release into the cytosol is enhanced in cells infected with an SdhA mutant and results 

in detection by AIM2.

Francisella

The importance of maintaining the structural integrity of the pathogen during infection to 

avoid inflammasome detection is evidenced by the study of F. novicida evasion of AIM2 

and ASC. Sampson et al. (117) recently demonstrated that the clustered, regularly 

interspaced, short palindromic repeats-CRISPR associated (CRISPR-Cas) systems functions 

in maintaining bacterial envelope activity of F. novicida, and this CRISPR-Cas system is 

critical in F. novicida evasion of AIM2, ASC, and TLR2 in vitro and in vivo.

LPS is currently the only known ligand sensed by caspase-11. This implies that a variety of 

Gram-negative intracellular pathogens that either reside in or aberrantly enters the cytosol of 

infected cell can be detected via this pathway. It is therefore not surprising that the cytosolic 

bacteria Francisella novicida has evolved mechanisms to avoid caspase-11 detection of its 

LPS by only expressing tetra-acylated LPS (89).

Yersinia

A final strategy involves directly interfering with inflammasome assembly and activation of 

the inflammasome or caspase-1. The T3SS protein YopM of Yersinia pseudotuberculosis 

directly binds and inhibits capase-1 activation via a four aa region of YopM that is similar to 

YVAD, a substrate of caspase-1 (118). YopM is therefore serves as a pseudosubstrate of 

caspase-1. Interestingly, YopM can bind both inactive and activated capase-1, and inhibits 

pyroptosis induced by multiple inflammasomes. Transduced YopM directly inhibits 

caspase-1 downstream of any inflammasome. The anti-inflammasome function of YopM is 

paramount in vivo, as a YopM mutant only colonizes Casp1−/− Casp11−/− deficient mice 

but not WT mice. However, whether this phenotype is attributed to blockade of IL-1β, 

IL-18, and/or pyroptosis has not been investigated. The mechanism by which YopM inhibits 

caspase-1 appears twofold. First, YopM preferentially binds activated caspase-1 and 

prevents cleavage of its substrates. Even if a small portion of the total capase-1 available in a 

cell is activated, this enables Yersinia to halt the downstream signaling events that initiate 

pore-formation and lysis. Second, YopM prevents caspase-1 association with the 

inflammasome itself. The Yersinia secreted protein YopK has also been implicated in 

inflammasome evasion as yopK mutants are more readily detected by inflammasomes (119).

Shigella

The enteric pathogen Shigella flexneri uses its T3SS to translocate OspC3, which like 

YopM, directly inhibits caspase-4 (120). Infection of guinea pigs with an OspC3 mutant 

strain of S. flexneri showed that this effector protein inhibits caspase-4 activation in the 

intestinal epithelium. Inhibition of caspase-4 is likely to be a pre-requisite for the pathogenic 

strategy of this cytosol invasive Gram-negative bacterium, since its LPS is detected by the 

cytosolic LPS detection pathway. Thus, in contrast to Francisella, which modifies the 

structure of its LPS to evade detection, Shigella actively inhibits the caspase-4 sensor.
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Viruses

Inflammasome inhibitors were first described in viruses that encode PYD-domain 

containing proteins that mimic ASC. Poxviruses express a number of PYD-containing 

proteins, of which the Myxoma M13L-PYD protein is the best described. Strains deficient in 

M13L-PYD are attenuated in vivo and ectopic expression in vitro efficiently inhibits 

caspase-1 activation and cytokine production (121). However, there is no evidence at 

present that PYD homologues inhibit pyroptosis in vitro or in vivo. Rather, prevailing 

evidence suggests that the benefit derived by the virus originates from curbing IL-1β and 

IL-18 secretion. Poxviruses, such as vaccinia virus and Cowpox, encode caspase-1 inhibitors 

called serpin-like protease inhibitors (SPI) (122). Like PYD-containing proteins, it remains 

unclear if CrmA and other SPI proteins inhibit pyroptosis besides preventing cytokine 

production.

In addition to inhibiting caspase-1 activity, viral proteins have also been shown to 

specifically inhibit NLRP1 inflammasome assembly. Orf16 encoded by Kaposi’s sarcoma 

herpes simplex virus (KHSV) is a viral homologue of NLRP1, but only contains the LRR 

and NBD domains, lacking PYD and CARD (76). Over-expression of Orf16 inhibits 

NLRP1-depepdent pyroptosis and cytokine secretion in human cells. Like Orf16, the 

vaccinia virus F1L directly binds NLRP1, preventing its activation of caspase-1 (123).

Given that the HIN200 domain of AIM2 binds and detects dsDNA, is it not surprising that 

AIM2 detects dsDNA viruses such as vaccinia virus and MCMV (48). It is therefore 

interesting that some viruses that produce cytosolic DNA as some stage during their life 

cycle, such as the dsDNA viruses HSV1 are not detected by AIM2. This may indicate that 

HSV1, and potentially other dsDNA viruses, suppresses AIM2 activation by a yet unknown 

mechanism. For a summary of microbial evasion strategies and effectors, see Table 2.

Conclusions

Detecting and responding to intracellular pathogens that have invaded host cells is 

paramount in defending against infections. Programmed cell death pathways play a key role 

in this response. Pyroptosis of infected cells removes the protective, intracellular replicative 

niche of the bacteria, enabling the innate immune effector cells to kill the pathogen. A 

number of pathogens induce inflammasome activation, and pyroptosis and cytokine 

production can both play a role in clearance, depending on the infection. Significant work is 

required to further our understanding of the role of pyroptosis in vivo and the detrimental 

downstream mediators during systemic, uncontrolled pyroptosis, for example during sepsis. 

Only then can we begin to identify potential therapeutic strategies for use in treatment of 

sepsis.
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Fig. 1. Activation of inflammatory caspases by canonical and non-canonical inflammasomes
Caspase-1 is activated by several inflammasomes, which are multi-protein signaling 

complexes that assemble in response the detection of cellular perturbations or intracellular 

microbial ligands. The currently known inflammasomes are encompassed within three gene 

families: Nod-like receptors (NLRs), AIM2-like receptors (ALRs), or tripartite motif family 

(TRIM) (of which only one member is an inflammasome: Pyrin). The noncanonical 

inflammasomes consists of caspase-11, which directly senses LPS. Activation of both the 

canonical and noncanonical inflammasome induces pyroptosis and the secretion of the pro-
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inflammatory cytokines IL-1β and IL-18. For CARD-containing inflammasomes, pyroptosis 

and cytokine secretion occurs independently and dependently of ASC, respectively, with the 

exception of NLRP1, which does not require ASC for cytokine secretion. Caspase-11 

induces cytokine secretion via NLRP3/ASC by an unknown mechanism.
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Table 1

Morphological and molecular determinants of pyroptosis versus apoptosis

Characteristic Pyroptosis Apoptosis

Inflammatory vs non-inflammatory Inflammatory Non-inflammatory

Lytic vs non-lytic Lytic Non-lytic

Initiator caspase Caspase-1/4/5/11 Caspase-2, 8, 9, 10

Effector caspase None Caspase-3, 6, 7

DNA damage

  Laddering No Yes

TUNEL stain Yes Yes

ICAD cleavage No Yes

Chromatin condensation Yes Yes

Nucleus intact Yes No

Plasma membrane pore formation Yes No

PARP cleavage No Yes

Annexin V staining Yes Yes
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Table 2

Evasion strategies by microbial pathogens

Bacteria Strategy Effector Inflammasome/
caspase

S. typhimurium Flagellin suppression Flagellin NLRC4

Agonist modification T3SS NLRC4

Maintain vacuolar stability SifA NLRC4/NLRP3

F. novicida Alternative LPS structure not recognized by Caspase-11 Tetra-acylated LPS Caspase-11

Maintain cell wall stability CRISPR-Cas AIM2

L. monocytogenes Flagellin suppression Flagellin/MogR NLRC4

Restrict LLO expression to vacuole LLO NLRP3

Y. pseudotuberculosis Inhibiting caspase-1 activation YopM Caspase-1

L. pneumophila Maintain vacuolar stability ShdA NLRC4, AIM2, Caspase-11

S. flexneri Inhibiting caspase-1 activation OspC3 Caspase-4

Virus Strategy Effector Inflammasome

Myxoma virus Inhibit caspase-1 activation M13L-PYD Caspase-1

Cowpox Inhibit caspase-1 activation CrmA Caspase-1

KHSV Inhibit NLRP1 inflammasome Orf16 NLRP1

Vaccinia virus Inhibit NLRP1 inflammasome F1L NLRP1
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