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Abstract
In ultrasound images, clutter is a noise artifact most easily observed in anechoic or hypoechoic
regions. It appears as diffuse echoes overlying anatomical structures of diagnostic importance,
obscuring tissue borders and reducing image contrast. A novel clutter reduction method for
abdominal images is proposed, wherein the abdominal wall is displaced during successive-frame
image acquisitions. A region of clutter distal to the abdominal wall was observed to move with the
abdominal wall, and finite impulse response (FIR) and blind source separation (BSS) motion filters
were implemented to reduce this clutter. The proposed clutter reduction method was tested in
simulated and phantom data and applied to fundamental and harmonic in vivo bladder and liver
images from 2 volunteers. Results show clutter reductions ranging from 0 to 18 dB in FIR-filtered
images and 9 to 27 dB in BSS-filtered images. The contrast-to-noise ratio was improved by 21 to
68% and 44 to 108% in FIR- and BSS-filtered images, respectively. Improvements in contrast ranged
from 4 to 12 dB. The method shows promise for reducing clutter in other abdominal images.

I. Introduction
In diagnostic ultrasound, clutter is a noise artifact that appears as diffuse echoes overlying
structures or signals of interest. It is most easily observed in anechoic or hypoechoic regions
of images, such as in the gall bladder or urinary bladder. clutter obscures diagnostic
measurements and degrades image contrast [1].

Previous work identifies 2 primary mechanisms of clutter generation: off-axis scatter and
reverberation [2]-[4]. Harmonic imaging, in which higher harmonics generated by nonlinear
sound propagation through tissue are imaged, has been shown to reduce clutter due to both
mechanisms [5]-[9]. a wide range of apodization [10], [11] and adaptive beamforming [12]-
[14] techniques are aimed at reducing clutter due to off-axis scatterers. In this paper, we present
a technique for reducing clutter due to abdominal wall reverberations.

Abdominal images can be modeled as containing 2 components, the abdominal wall and an
underlying organ of interest, each contributing to image clutter via one of the primary clutter
generation mechanisms. clutter due to off-axis scattering is proposed to arise from axial and
elevational structures in and surrounding the organ of interest, while structures in the abdominal
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wall are proposed to cause clutter due to reverberation. Random (thermal) noise is also a
potential source of clutter, however, clutter appears stationary in most applications, indicating
that this clutter contribution is minimal and can be ignored.

The proposed clutter reduction method is well suited for abdominal images, where tissue-to-
clutter ratios can range from 0 to 35 dB [1]. The method requires axial displacement of the
abdominal wall during real-time imaging. Given the proposed model, clutter that arises from
acoustic interaction (i.e., reverberation) in abdominal wall structures would experience similar
displacements to the abdominal wall. This clutter is reduced by applying motion filters to the
acquired images. The proposed method was tested in simulated, phantom, and in vivo images.

II. Methods
A. Field II Simulations

Field II [15], [16] was used to simulate clutter moving in the same direction and with the same
velocity as the transducer, in the presence of stationary tissue, a necessary condition for the
proposed clutter reduction method. When the motion is considered in a reference frame
attached to the transducer, clutter moving with the transducer appears stationary, and stationary
tissue appears to be moving. Thus, motion was simulated by incrementally displacing one
speckle pattern representative of homogeneous tissue relative to a stationary speckle pattern
representative of clutter.

The speckle patterns were created by insonifying a 6 cm (axial) × 5 cm (lateral) × 1 cm
(elevation) phantom, containing at least 10 scatterers per resolution volume. Half of the
scatterers in the phantom were given random amplitudes at random locations, representative
of homogeneous tissue. The other scatterers were given random amplitudes weighted by a
factor of 10(1 − zp/6), where zp is the axial distance (cm) from the proximal phantom surface.
(Note: zp is defined for 0 < zp < 6 and zp = z − 3, where z is the axial distance (cm) from the
transducer surface.) This weighting function resulted in random scatterer amplitudes that
linearly decreased with depth, similar to clutter noise in phantom and in vivo images [1]. The
scatterers representing tissue were shifted 10 times in 0.1-mm increments toward the transducer
to create motion relative to the simulated clutter. In addition to imaging tissue moving in the
presence of stationary clutter, the tissue and clutter were imaged separately (i.e., all phantom
scatterers represented either stationary clutter or moving tissue), and the resulting images were
placed side by side.

The transducer parameters used in the simulations are listed in Table I. The axial transmit focus
was 6 cm. Dynamic focusing was applied during receive beamforming, and Hanning window
apodization was applied to the transmit and receive apertures.

B. Phantom and In Vivo Studies
A siemens Antares ultrasound scanner and Siemens CH6-2 curvilinear transducer (Siemens
Medical Solutions USA, Inc., Issaquah, WA) were used to obtain phantom images and in
vivo bladder and liver images from 2 male volunteers (ages 53 and 33). The scanner was
operated in fundamental and harmonic imaging modes with transmit frequencies of 4.4 MHz
and 2.5 MHz, respectively. The Axius Direct Ultrasound Research Interface (Siemens Medical
Solutions USA, Inc., Issaquah, WA) was used to acquire raw radio frequency (RF) data without
significant time-gain compensation and before the application of nonlinear processing steps.
In harmonic imaging mode, the scanner implements the pulse inversion technique [17], [18],
and harmonic RF data were obtained by summing the normal and inverted pulse-echo signals.
To form B-mode images, the RF data obtained in fundamental or harmonic imaging mode were
envelope detected, normalized to the brightest point, log-compressed, limited to a dynamic
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range of 45 dB, and then scan-converted. The axial sampling frequency was 40 MHz. The line
densities were 0.25, 0.28, and 0.30 degrees per line, respectively, in phantom and in vivo liver
images, in vivo fundamental bladder images, and in vivo harmonic bladder images. The pulse
repetition frequencies were 7.2, 4.0, and 5.3 kHz, respectively. The frame rates were 25, 15,
and 11 Hz, respectively. All image processing and analysis was implemented with Matlab
(MathWorks Inc., Natick, MA) software.

A custom bladder phantom was created by submerging a water-filled balloon in a slurry
solution of graphite, propanol, and water (RMI, now Gammex, Inc., Middleton, WI,
SuperSpheres Model TM-C, discontinued by manufacturer). The ultrasonic transducer was
placed in the slurry solution, with its imaging surface approximately 2 cm above the submerged
balloon. A linear translation stage (Newport Motion Controller Model MM3000, Newport
Corporation, Irvine, CA) was used to translate the transducer axially at a controlled velocity
of 0.5 mm/s during real-time imaging. The distance the transducer traveled between successive
images was 0.02 MM. To generate clutter that moved with the transducer, a wiry copper
household scouring pad (ScrubIT Copper Scourers, Supply Plus, Inc. Newark, NJ) cut to 1 cm
in thickness was placed at the transducer surface, the transducer and wire mesh were confined
in A transducer bag containing enough water to provide acoustic coupling, and the motion
experiment was repeated. In a previous study [1], the copper wire mesh was shown to generate
clutter with similar characteristics to that of in vivo data (i.e., similar in magnitude, clutter
magnitude greatest in near field, magnitude decreases with depth). This clutter is likely a
reverberation artifact due to the highly reflective metallic material.

As a corollary to the phantom study, the abdominal wall was translated during successive-
frame in vivo imaging of the bladder and liver. Abdominal wall motion was achieved by asking
the volunteers to translate their abdominal muscles slowly while the hand-held transducer,
resting and lightly supported on the abdominal skin, followed the motion. We anticipate that
this motion allows the transducer, abdominal wall, and underlying clutter to move
approximately in unison, while distal tissues remain stationary.

Displacement estimates for phantom and in vivo data were obtained by applying a normalized
2-D cross-correlation search method (i.e., speckle tracking) to successive frames of envelope-
detected RF data [19]. Thus, while displacements are assumed to be axial along the probe axis,
they were calculated along the beam axis. Given that a curvilinear probe was used for imaging,
these 2 axes are similar for center beams (to the extent that the small angle approximation is
valid) but not for outer beams.

The speckle-tracking kernel size was selected by minimizing false peaks in the cross correlation
function, while maintaining acceptable resolution in displacement results. The optimal kernel
size in fundamental bladder images was 25 × 5 pixels, and this kernel size was kept constant
for all data. In scan-converted images, the kernel sizes correspond to 0.48 mm × 1.3° in phantom
and in vivo liver data, 0.48 mm × 1.4° in the in vivo fundamental bladder images, and 0.48 mm
× 1.5° in harmonic images. Kernels in one frame were compared with search regions of 100 ×
10 pixels in the consecutive frame. In scan-converted images, the search region sizes
correspond to 1.9 mm × 2.5° in phantom and in vivo liver data, 1.9 mm × 2.8° in the in vivo
fundamental bladder images, and 1.9 mm × 3.0° in harmonic images. The search regions were
centered about the kernel location. The speckle-tracking algorithm was not applied to kernels
near the edges of the B-mode image where the search region extended beyond the image border.

C. Clutter Reduction with Motion Filters
Motion filters were applied to simulated, phantom, and in vivo images to remove clutter moving
in the same direction and with the same velocity as the transducer (i.e., clutter that appears
stationary to the transducer). The first filter was a conventional 1,−1 FIR motion filter, also
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known as a stationary echo canceller, wherein the RF echoes in one frame were subtracted
from those in a consecutive frame to reject stationary RF echoes [20]. The second filter was a
BSS filter, where basis functions were selected and/or rejected to reconstruct a filtered image
[21]-[23].

BSS filtering was implemented by performing robust principal component analysis with the
robpca function in the Matlab Library for Robust Analysis [24], [25]. This function requires
an input data matrix with observations in its rows and variables in its columns. The input data
matrix consisted of envelope-detected RF echoes taken from the same lateral position
(observations) in consecutive images (variables). Basis function selection was based on the
time and depth projections associated with the principal components of the input data [22],
[23].

As described by Gallippi et al. [22], [23], a time projection yields the motion profile associated
with a particular principal component, while the corresponding depth projection indicates the
relative strength of that principal component at each axial position. For example, a time
projection with zero slope represents a basis function associated with a stationary signal
component, while a time projection with nonzero slope represents a basis function associated
with a moving signal component. A depth projection with uniform amplitude represents a basis
function associated with a signal component that is equally weighted at all axial positions. A
depth projection with dominant magnitudes at specific axial positions indicates that the
associated basis function is dominant at those positions. The relative amplitudes in a depth
projection also depend on relative amplitudes in the associated signal component.

Although known to be true in simulated images and expected to be true in phantom images,
axial motion was assumed to be uniform across the lateral dimension of in vivo images. Uniform
motion implies similar basis functions for all lateral positions, thus, the selected basis function
generated by one lateral position was used to filter all axial lines in an image. To reconstruct
a BSS-filtered image, the data matrix of each axial line was projected onto the selected basis
function, as described by

(1)

where yi is the ith lateral position (or ith axial line) of the filtered image, xi is the data matrix
of the ith lateral position in the original image, v is the eigenvector of the selected basis function,
and vT is the eigenvector transposed. The filtered RF lines were then normalized to the brightest
point, log-compressed, and limited to a dynamic range of 45 dB. Scan conversion was the final
step in filtered phantom and in vivo images.

Filter efficacy was demonstrated with contour maps illustrating magnitude differences between
filtered and reference images. The contour maps were formed from envelope-detected RF echo
data. The reference and motion-filtered data were low-pass filtered with a rectangular kernel
of 151 × 15 pixels (2.9 mm × 3.8°, 2.9 mm × 4.2°, and 2.9 mm × 4.5° in scan-converted phantom
and in vivo liver images, in vivo fundamental bladder images, and in vivo harmonic bladder
images, respectively), and the pixel-wise ratio between resulting images was calculated.

The contrast in reference and filtered phantom and in vivo data was calculated using

(2)
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where So and Si are the mean envelope-detected RF data outside and inside a hypoechoic region,
respectively. The contrast-to-noise ratio (CNR) in phantom and in vivo data was calculated
using

(3)

where σo is the standard deviation of the envelope-detected RF data outside the hypoechoic
region [26], [27].

III. Results
A. Field II Simulations

Fig. 1(a) shows the simulated images representing linearly decreasing clutter noise (left panel),
homogeneous tissue in the presence of the clutter noise (middle panel), and tissue (right panel).
A stationary echo canceller FIR filter was applied to the RF data in 2 consecutive frames, and
the resulting image is shown in Fig. 1(b). The corresponding map of magnitude reductions in
the filtered image is shown in Fig. 1(c). The left panel of this image shows the reduction of the
clutter noise. Although the contour map was limited to 33 dB, the clutter in this region was
reduced to zero, and the magnitude reduction in this region is infinity. In the second panel, the
maximum reduction in the proximal region (3 to 3.5 cm) ranges from 21 to 24 dB. The distal
region (8.5 to 9 cm) experiences 0- to 3-dB magnitude reduction. There are also regions with
a 3- to 6-dB signal increase. In the third panel, the average signal increase is 4 dB. Notice that
the magnitude increase at the bottom of the second panel is similar to the increase in the third
panel.

Robust principal component analysis was applied to the central lateral position of Fig. 1(a) (0
cm in C+T image), and Fig. 2(a) shows the first 4 time and depth projections, corresponding
to the 4 most energetically significant principal components. The first depth projection has a
slope that decreases with depth, much like the slope of the weighting function applied to the
simulated clutter amplitudes. Similar results were achieved for the first depth projection of all
lateral positions, as shown in Fig. 2(b). The first time projection has zero slope, indicating that
this component of the signal is stationary (relative to the transducer). Similar results were
achieved for the first time projections of all lateral positions, as shown in the top panel of Fig.
2(c). The described characteristics of the first depth and time projections provide strong
evidence that the first basis function is associated with the simulated clutter.

The slope of the second time projection in Fig. 2(a) is constant and nonzero throughout,
indicating that it is associated with uniform displacement, much like the incremental
displacement applied to the simulated tissue. Similar results were achieved for the second time
projections of all lateral positions, as shown in the bottom panel of Fig. 2(c). The described
characteristics of the second time projection provide compelling evidence that the second basis
function is associated with the simulated tissue motion. Given the characteristics of the third
and fourth time and depth projections, their basis functions are likely associated with a mixture
of stationary noise and tissue motion.

The second basis function generated by the central lateral position was determined to represent
the most energetic nonstationary principal component. It was selected to filter all axial lines
and reconstruct the BSS-filtered images shown in Fig. 1(d). A filter performance map of
magnitude reductions in the filtered images is shown in Fig. 1(e). In the left panel of Fig. 1(e),
the average reduction is 38 dB. In the middle panel, the map shows a maximum clutter reduction
of 33 dB near the proximal phantom surface and a minimum reduction of 0 to 3 dB near the
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distal surface. In the right panel, the average reduction is 7 dB. Notice that the reductions at
the top and bottom of the center panel are similar to the reductions of the left and right panels,
respectively.

B. Phantom Experiments
Fig. 3(a) shows a B-mode image of the bladder phantom. The map of peak correlation
coefficients between 2 successive frames acquired during transducer displacement is shown
in Fig. 3(b). The frames were highly correlated in the regions surrounding the bladder, as well
as inside the bladder, near the borders. There is less correlation inside the bladder, farther away
from the borders, although the correlation coefficients are still high. Fig. 3(c) displays the
corresponding axial displacement map, with displacement estimates shown relative to the
transducer surface. In the reference frame of the transducer, the entire phantom is shown to
have consistent motion toward the transducer.

Fig. 3(d) shows a B-mode image acquired when the clutter-generating wire mesh was placed
between the transducer and the bladder, during simultaneous translation and successive-frame
imaging. A map of the peak correlation coefficients between 2 successive frames is shown in
Fig. 3(e). Similar to Fig. 3(b), the correlation coefficients are highest in the regions surrounding
the bladder. The coefficients are also high inside the bladder, in a region extending well below
the proximal wall. This highly correlated region inside the bladder corresponds to the clutter
generated by the wire mesh, as seen in the B-mode image of Fig. 3(d). In the corresponding
axial displacement map of Fig. 3(f), the region containing the wire mesh and the clutter region
extending below the wire mesh have similar displacement estimates, displacements that are
approximately 0 mm relative to the transducer. The surrounding regions have consistent
upward motion relative to the transducer, similar to the displacements observed in Fig. 3(c).

The regions with lower correlation coefficients (approximately 0.8) in Fig. 3(e) have
discontinuous displacement estimates in the corresponding axial displacement map of Fig. 3
(f) (e.g., the region surrounding axial position 1 cm, lateral position −3 cm). This type of
displacement is not consistent with the transducer's uniform motion toward the bladder.
Therefore, regions showing such random motion are interpreted as regions of indeterminate
displacements.

Results of the FIR filter applied to 2 consecutive frames of the phantom image with the wire
mesh are shown in Figs. 4(a) and (b). Reductions of 6 to 18 dB are seen in the clutter region
inside the bladder cavity. Reductions of 18 to 27 dB are seen in the proximal regions occupied
by the wire mesh (0 to 1 cm) and distal to the wire mesh (1 to 3 cm). The regions with reduced
magnitudes were shown to have approximately zero displacement (relative to the transducer)
in Fig. 3(f). The regions of interest (ROIs) shown in Fig. 3(d) were used to calculate contrast
and CNR in the reference and filtered phantom images. There is a 7-dB contrast increase and
42% CNR increase in the FIR-filtered image (see Table II).

The BSS filter results shown in Figs. 4(c) and (d) are similar to the FIR filter results. The central
lateral position (0 cm) was used to generate basis functions for image reconstruction. Depth
projections with large amplitudes in the distal bladder wall region and time projections with
decreasing slopes represented the principal components associated with motion (relative to the
transducer). The first basis function had the steepest time projection slope (i.e., it represented
the most energetic component associated with motion), and it was therefore selected to
reconstruct the filtered image. Reductions of 3 to 18 dB are seen in the clutter region inside
the bladder cavity. Reductions of 18 to 21 dB are seen in the proximal regions occupied by the
wire mesh (0 to 1 cm) and distal to the wire mesh (1 to 3 cm). Similar to FIR-filtered images,
the regions with reduced magnitudes in the BSS-filtered images were shown to have
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approximately zero displacement (relative to the transducer) in Fig. 3(f). There is a 9-dB
contrast increase and 44% CNR increase in the BSS-filtered image (see Table II).

The proximal bladder wall is not visualized in the filtered B-mode images of Figs. 4(a) and
(c), because the gain in this region of the original B-mode image was minimized to achieve
uniform image brightness; see Fig. 3(d). However, when the dynamic range (currently 45 dB)
was increased above 60 dB in the filtered images, the proximal bladder wall was more apparent,
but so was the clutter inside the bladder. The filter performance maps of Figs. 4(b) and (d)
reinforce this observation, because the region representing the proximal bladder wall has a
reduction that is 3 to 6 dB greater than the region representing the bladder interior.

C. In Vivo Experiment: Bladder Images
Fig. 5(a) shows a fundamental bladder image from Volunteer 1, with a manually estimated
outline of the bladder wall superimposed on the image. Fig. 5(d) shows displacement estimates
between 2 consecutive bladder images acquired during axial displacement of the abdominal
wall. The displacement of the abdominal wall is approximately 0 mm relative to the transducer,
confirming the anticipated outcome that the abdominal wall and the transducer moved
approximately in unison. Similar to the phantom experiment with the wire mesh, the
displacement map shows that clutter in the proximal bladder cavity was also moving with the
abdominal wall (displacement estimates of approximately 0 mm relative to the transducer).
The lateral and distal bladder walls and adjacent tissue have displacements of approximately
0.1 mm relative to the transducer. These results support the hypotheses about the applied
motion that the transducer, abdominal wall, and underlying clutter move approximately in
unison while distal tissues remain stationary.

Fig. 5(g) shows a harmonic bladder image from volunteer 1, with a manually estimated outline
of the bladder wall superimposed on the image. A corresponding map of axial displacements
between 2 consecutive harmonic images is shown in Fig. 5(j). Although the 2-D displacement
maps in Figs. 5(d) and (j) show displacements between 2 consecutive frames, similar results
were achieved in all consecutive frames of each data set, as shown in Fig. 6. Similar results
were achieved in fundamental and harmonic bladder images from Volunteer 2 (images not
shown).

It is important to note that the displacement results of Figs. 5 and 6 were obtained while the
abdominal muscles were relaxed (i.e., the muscles were not tensed/tightened while being
translated). With the abdominal muscles tightened during translation (results not shown),
instead of having 0 mm displacement in the proximal bladder cavity region, displacement
estimates in this region were more spatially random, much like those at 6 to 9 cm in the
hypoechoic bladder region of Fig. 5(d). Additionally, the distal and lateral bladder wall regions
contained displacement estimates near 0.1 mm, and the proximal bladder wall was shown to
have similar axial displacements to the lateral and distal bladder walls.

Results of the FIR filter applied to 2 consecutive fundamental images from volunteer 1 are
shown in Fig. 5(b) and (e). Clutter reductions of 3 to 9 dB are seen in the proximal bladder
cavity (2 to 6 cm). Results of the FIR applied to 2 consecutive harmonic images are shown in
Figs. 5(h) and (k), where clutter reductions of 0 to 12 dB are seen in the proximal bladder cavity
(3 to 6 cm). The clutter regions with reduced magnitudes in FIR-filtered fundamental and
harmonic images were shown to have approximately zero displacement in Fig. 5(d) and (j),
respectively. In corresponding filter performance maps, shown in Figs. 5(e) and (k), the
abdominal wall experiences a magnitude reduction ranging from 3 to 18 dB (with negligible
regions showing 21- to 24-db reduction), while the distal and lateral walls experience a signal
increase of 3 to 6 dB. The contrasts are improved by 5 dB in the FIR-filtered fundamental
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image and 4 dB in the FIR-filtered harmonic image, while the CNRs are improved by 31% and
21%, respectively (see Table II).

Results of the BSS filter applied to fundamental and harmonic images are shown in Fig. 5(c)
and (i), respectively. A central lateral position (0 cm and −0.7 cm, respectively) was used to
generate basis functions for image reconstruction. Depth projections with large-amplitude
near-field signals and time projections with slopes close to zero represented principal
components associated with stationary clutter (relative to the transducer). Depth projections
with large amplitudes in the distal bladder wall region and time projections with decreasing
slopes represented the principal components associated with motion (relative to the transducer).
The second basis function had the steepest time projection slope and was selected for image
reconstruction.

As shown in Figs. 5(f) and (l), respectively, clutter in the proximal bladder cavity was reduced
by 18 to 24 dB in the filtered fundamental image and 12 to 14 dB in the filtered harmonic
image. The clutter regions that experienced magnitude reductions were shown to be
approximately stationary relative to the transducer, as demonstrated in Figs. 5(d) and (j). In
the fundamental BSS-filtered image, the abdominal wall experienced similar reductions to the
proximal clutter region inside the bladder. In the harmonic BSS-filtered image, the abdominal
wall was reduced by 15 to 21 dB. The tissue surrounding the lateral and distal bladder walls
in fundamental and harmonic BSS-filtered images experienced reductions of 6 to 15 dB and 3
to 9 dB, respectively, similar to the distal clutter region inside the bladder. The contrast
improvements in the BSS-filtered fundamental and harmonic images were 8 dB and 6 dB,
respectively, while the CNRs were increased by 108% and 45%, respectively (see Table II).

D. In Vivo Experiment: Liver Images
A fundamental B-mode image of the gall bladder and surrounding liver tissue of volunteer 1
is shown in Fig. 7(a). Successive-frame liver images were acquired during axial translation of
the abdominal wall. Displacement estimates between 2 consecutive images are shown in Fig.
7(b). The abdominal wall and a region distal to the abdominal wall are shown to be stationary
relative to the transducer, while the distal tissues are shown to move toward the transducer.
The stationary region is similar to that of in vivo bladder images from the same volunteer.
Furthermore, the stationary region is juxtaposed to the moving region in the liver image,
whereas the 2 regions are separated by a region of random displacements in bladder images.

An FIR filter was applied to 2 consecutive frames in the data set. The filtered image is shown
in Fig. 7(c), and the corresponding filter performance map is shown in Fig. 7(d). Regions that
were shown to move with the transducer were reduced by 3 to 24 dB in the filtered image.
Most of the distal tissues experienced a 0 to 3 dB signal increase. There is a 12-dB contrast
increase and 68% CNR increase in the FIR-filtered image (see Table II).

The BSS-filtered image is shown in Fig. 7(e). The lateral position of the brightest point inside
the gall bladder image (−0.2 cm) was used to generate the basis functions for image
reconstruction. The second basis function had the steepest time projection slope, and it was
selected for image reconstruction. As shown in Fig. 7(f), the clutter in the gall bladder is reduced
by 19 to 21 dB. The region that was shown to move with the abdominal wall, as shown in Fig.
7(b), is reduced by 12 to 21 dB (disregarding the small 3- to 9-dB regions to the right of the
image). There is a 9-dB contrast increase and 68% CNR increase in the BSS-filtered image
(see Table II).
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IV. Discussion
A. Implications for Clutter Reduction in Abdominal Images

Clutter noise is apparent in the hypoechoic regions of the bladder and gall bladder (previous
literature states that these regions should be hypoechoic or anechoic in the absence of clutter
[28], [29]). Such hypoechoic regions are not always present in abdominal images of diagnostic
interest. The tissue may be completely echogenic throughout the field of view, allowing clutter
noise to be less noticeable. The simulation results of Fig. 2 demonstrate that the FIR and BSS
filters are able to reduce stationary clutter in the midst of moving tissue signals that are
completely echogenic. These results imply that the proposed motion-based clutter reduction
method can be implemented in several types of abdominal images, with or without hypoechoic
regions for easy visualization of clutter reductions.

The inclusion of the wire mesh in phantom images produced clutter distal to the mesh, which
moved with the transducer during axial translation; see Fig. 3 (f). When the mesh was absent,
the clutter seen in the anechoic region of the phantom image did not move with the transducer;
see Fig. 3 (c). The clutter that moved with the transducer is suspected to arise from sound
reverberation in the wire mesh. It was reduced, as shown in Fig. 4, via the proposed clutter
reduction method.

Similarly, in the hypoechoic regions of in vivo bladder and liver images, the displacement maps
of Figs. 5 and 7 show that there is a persistent region of clutter distal to the abdominal wall
that moved at the same rate as the transducer and the displaced abdominal wall. This clutter is
suspected to arise from acoustic interactions within the abdominal wall, such as sound
reverberation. This clutter region was not as prevalent in displacement maps when the
experiment was performed with tightened abdominal muscles, further supporting the
hypothesis that a major source of this clutter is reverberation in abdominal tissue. A region of
similar shape and size appears in the hypoechoic region of bladder images from the same
volunteer—e.g., compare Figs. 5(d) and 7(b)—as well as in the anechoic region of the phantom
image with the wire mesh; see Fig. 3 (f). This region of clutter is believed to overlay a large
portion of the in vivo liver image (not just the hypoechoic region) and is most likely present in
other abdominal images.

Additional confirmation that clutter overlays abdominal images is found in the displacement
data of in vivo images. Although random displacements were primarily seen at the boundary
separating stationary and moving signals in hypoechoic regions of bladder images, as seen in
Figs. 5(d) and (j), such random displacements did not separate the 2 motions in the liver image;
see Fig. 7 (b). Instead, the regions containing the 2 motions were juxtaposed, and the boundary
separating them occurred in the echogenic tissue region distal to the gall bladder. Thus, the
echogenic regions distal to the gall bladder (as well as the echogenic regions surrounding the
gall bladder) are either due to tissue (moving regions) or clutter overlying the tissue (stationary
regions). This is most likely true for echogenic regions in other abdominal images. As
demonstrated with simulated and in vivo liver data, the proposed clutter reduction method is
feasible in such echogenic environments.

B. Motion Filter Advantages and Limitations
The expected performance of the FIR and BSS motion filters is confirmed by simulation results.
When applied to the left panel of Fig. 1(a) (the panel containing only clutter noise), the FIR
filter successfully cancels stationary echoes, reducing the magnitude to zero, while the BSS
filter reduces clutter magnitude by 38 dB. When applied to the right panel of Fig. 1(a) (the
panel containing only tissue), the filters have similar responses to the distal region (8.5 to 9
cm) of respective center panels, confirming the similarity of these regions and demonstrating
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repeatable filter performance. In the FIR-filtered image, the distal region of the center panel
experiences a magnitude reduction of 0 to 3 dB, which is expected given that the clutter in this
region has approximately zero amplitude. Furthermore, the proximal region (3 to 3.5 cm) of
this FIR-filtered image experiences a magnitude reduction ranging from 18 to 24 dB, which is
close to expected, given that the average magnitude of the clutter noise in this region is
approximately 10 times (20 dB) greater than the average magnitude of the simulated tissue.
The BSS-filtered image has greater reductions than the FIR-filtered image, as discussed in
greater detail later in this section. The center panels of both FIR- and BSS-filtered images have
the greatest reductions in the near-field and decreasing reductions with depth.

Similar to the center panel of filtered simulation images, the near-field regions in phantom and
in vivo images experience the greatest clutter reduction. The near-field reduction is most
dramatic in the filtered phantom images, as seen in Figs. 4(a) and (c), where both clutter and
tissue signal are removed. Reduction of the tissue signal in the phantom data indicates that the
proposed BSS and FIR filters reduce slowly moving tissue as well as stationary echoes (relative
to the transducer). However, when applied to the in vivo data, the filters yield a more realistic
representation of near-field structures.

Considering that the primary goal of these filters is to reduce echoes that are stationary relative
to the transducer, it is expected that the wire mesh (phantom images) and the abdominal wall
(in vivo images) would be reduced in the filtered images, because these structures were moving
with the transducer. Although this goal is beneficial when considering clutter that moves with
the wire mesh and abdominal wall, it results in the reduction of these structures. To circumvent
this issue, one might consider cropping near-field structures out of the image before motion
filtering, then adjoining the cropped portion to the filtered image afterwards. Nevertheless,
when imaging structures at depth, near-field abdominal layers are often unimportant.

The simulated and in vivo FIR-filtered images show increased signal magnitudes in regions
that are moving relative to the transducer. Signal increases are not observed in the phantom
FIR-filtered images. The increase is likely due to the subtraction of RF lines with large axial
shifts (shifts in simulated and in vivo data are an order of magnitude larger than shifts in
phantom data). For example, if identical regions in the shifted RF lines have the same
magnitude but opposite signs, subtraction would yield a signal that is twice the magnitude of
the original signal. This situation may be encountered when RF lines are shifted by half the
transmit pulse wavelength, λ, which occurs when there is a displacement of λ/4 relative to the
transducer. Axial displacements are comparable to λ/4 in simulated and in vivo images and
smaller than λ/4 in phantom images (λ/4 = 0.15 mm in simulation and harmonic images, λ/4 =
0.088 mm in fundamental images). Thus, large (~λ/4) axial displacements are likely the reason
for the 3- to 6-dB signal increases observed in FIR filter performance maps of simulated and
in vivo data.

Although the performance of FIR and BSS filters is similar in phantom images, the reductions
in simulated and in vivo BSS-filtered images are greater than those in respective FIR-filtered
images. The greater reductions in BSS-filtered simulation and in vivo images are likely due to
the fact that the second principal components were used to reconstruct simulated and in vivo
data, while the first principal component was used to reconstruct the phantom image. Because
higher-order principal components contain less of the original image energy [21], [23], it is
expected that images reconstructed with the second principal component would contain less
energy than images reconstructed with the first principal component. Thus, images
reconstructed with higher order principle components experience signal attenuation and are
expected to contain decreased signal-to-noise ratios when significant levels of random
(thermal) noise are present.
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Despite the greater reductions seen in BSS filter performance maps of simulated and in vivo
images, the relative clutter reductions in BSS filter performance maps are comparable to
relative clutter reductions in corresponding FIR filter performance maps. This explains why
some BSS filter performance maps show greater reductions than corresponding FIR filter
performance maps, yet the clutter seen in corresponding FIR- and BSS-filtered B-mode images
is similar; e.g., compare Fig. 5(b) with Fig. 5(c).

Previous studies have shown that harmonic imaging reduces clutter in bladder images by 15 ±
3 dB (average of 5 volunteers) [1]. Clutter reductions achieved with the BSS filter applied to
in vivo fundamental images is comparable to clutter reductions achieved with harmonic
imaging, while the FIR filter yields less clutter reductions. The FIR and BSS filters applied to
harmonic images were shown to reduce clutter in the harmonic images, suggesting that higher
levels of clutter reduction may be achieved when this motion-based approach is applied to
harmonic images. Note that motion artifacts in the harmonic data are negligible, given the high
pulse repetition frequency (5.3 kHz) compared with the smaller frame rate (11 Hz).

The contrast in filtered phantom and in vivo images was increased by 4 to 12 dB. The CNR
was improved by 21 to 68% in FIR-filtered images and 44 to 108% in BSS-filtered images.
Given the limited number of volunteers, performance assessment in a broad range of
individuals is unavailable and beyond the scope of this paper. However, similar contrast and
CNR improvements are likely if the proposed clutter reduction method were applied to other
abdominal images.

Real-time implementation of the proposed method is more feasible for the 1,−1 FIR filter
because it only requires a lag of one frame and a subtraction operation. On the other hand, the
BSS filter must be implemented over several frames, and appropriate basis functions must be
identified before filter implementation. The speed of the processor and the size of data sets are
also important factors in determining the real-time feasibility of BSS filtering.

V. Conclusion
The proposed clutter reduction method requires axial displacement of the abdominal wall
during real-time imaging. The method assumes uniform displacement of the abdominal wall
and associated clutter, both of which appear stationary to the imaging transducer. FIR and BSS
motion filters were applied to reduce the stationary clutter. The method was tested in simulated,
phantom, and in vivo images. The results demonstrate that the FIR and BSS filters are able to
isolate and reduce clutter noise in hypoechoic and echogenic regions moving relative to the
transducer. Clutter reductions ranged from 12 to 24 dB and contrast improvements ranged from
4 to 12 dB. The CNR was improved by 21 to 68% in FIR-filtered images and 44 to 108% in
BSS-filtered images. The successes achieved in simulated, phantom, and in vivo images are
promising evidence of this method's potential for reducing clutter in a vast array of abdominal
images.
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Fig. 1.
(a) Simulated phantom images showing clutter noise (C), clutter noise mixed with
homogeneous tissue (C+T), and homogeneous tissue (T); (b) finite impulse response (FIR)–
filtered images; (c) corresponding maps of magnitude reductions in FIR-filtered images; (d)
blind source separation (BSS)–filtered images; and (e) corresponding maps of magnitude
reductions in BSS-filtered images.
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Fig. 2.
Blind source separation time and depth projections of the simulated data: (a) the first 4 time
(top) and depth (bottom) projections for the central lateral position; (b) average of the first
depth projection of all lateral positions; and (c) average of the first (top) and second (bottom)
time projections of all lateral positions. Error bars indicate one standard deviation.
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Fig. 3.
Bladder phantom: (a) B-mode image; corresponding maps of (b) correlation coefficients and
(c) axial displacements between 2 consecutive frames in the data set; (d) B-mode image of
bladder phantom with clutter-generating layer placed at the transducer surface (the boxes show
regions of interest used to calculate contrast and contrast-to-noise ratios in reference and
filtered data); and corresponding maps of (e) correlation coefficients and (f) axial
displacements between 2 consecutive frames in the data set. Displacements are relative to the
transducer surface, where negative indicates motion toward the transducer and positive
indicates motion away from the transducer.
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Fig. 4.
Single frame results of the motion filters applied to the phantom data: (a) finite impulse
response (FIR)–filtered image; (b) corresponding map of regional magnitude reductions in the
FIR-filtered image, when compared with the reference image in Fig. 3(d); (c) blind source
separation (BSS)–filtered image; and (d) corresponding map of regional magnitude reductions
in the BSS-filtered image, when compared with the reference image in Fig. 3(d).
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Fig. 5.
(a) Fundamental and (g) harmonic B-mode bladder images from Volunteer 1, with estimated
bladder outlines superimposed. (The images were acquired at different times, hence the
different appearances.) The boxes show regions of interest (ROI) used to calculate contrast and
contrast-to-noise ratios in reference and filtered data. (b) Finite impulse response (FIR)– and
(c) blind source separation (BSS)–filtered fundamental images and corresponding maps of (d)
axial displacements between 2 consecutive frames, (e) FIR filter performance, and (f) BSS
filter performance; (h) FIR- and (i) BSS-filtered harmonic images and corresponding maps of
(j) axial displacements, (k) FIR filter performance, and (l) BSS filter performance. Axial
displacements are relative to the transducer surface, where negative indicates motion toward
the transducer and positive indicates motion away from the transducer. Axial displacement
maps show ROI in the abdominal wall, clutter distal to the abdominal wall, and the distal
bladder wall. These ROI were used to calculate average displacements in all consecutive frames
of the data set (see Fig. 6).

Lediju et al. Page 22

IEEE Trans Ultrason Ferroelectr Freq Control. Author manuscript; available in PMC 2010 March 9.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Average axial displacements of select regions in displacement maps of consecutive
fundamental (a) and harmonic (b) images. The regions of interest used to calculate average
displacements are shown in Figs. 5(d) and (j), respectively. Displacements are relative to the
transducer surface, where negative indicates motion toward the transducer and positive
indicates motion away from the transducer.
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Fig. 7.
Results of the motion-based clutter reduction method applied to an in vivo liver: (a) fundamental
liver image from volunteer 1; the boxes show regions of interest used to calculate contrast and
contrast-to-noise ratio in reference and filtered data; (b) map of axial displacements between
2 consecutive frames in the image sequence; (c) finite impulse response–filtered image and (d)
corresponding map of regional magnitude reductions in the filtered image; and (e) blind source
separation–filtered image and (f) corresponding map of regional magnitude reductions in the
filtered image.
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Table I

Transducer Parameters for Field II Simulations.

Parameter Value

Number of elements (total) 192

Number of elements in subaperture 64

Element height 12 mm

Element width 0.314 mm

Kerf 0.014 mm

Center frequency 2.5 MHz

Sampling frequency 100 MHz

Fractional bandwidth 60%
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Table II

Contrast and Contrast-to-Noise Ratios (CNR) in Reference and Filtered Images.

Contrast
(dB) CNR

Bladder phantom images

 Reference 23.2 0.50

 FIR-filtered 30.5 0.71

 BSS-filtered 32.1 0.72

In vivo bladder images

 Reference (fundamental) 12.1 0.26

 FIR-filtered 17.4 0.34

 BSS-filtered 19.7 0.54

 Reference (harmonic) 15.8 0.38

 FIR-filtered 19.5 0.46

 BSS-filtered 22.0 0.59

In vivo gall bladder images

 Reference 16.9 0.31

 FIR-filtered 29.4 0.52

 BSS-filtered 26.0 0.52

FIR = finite impulse response; BSS = blind source separation.
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