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Abstract
This paper proposes a deterministic observer design for visual tracking based on nonparametric
implicit (level-set) curve descriptions. The observer is continuous discrete with continuous-time
system dynamics and discrete-time measurements. Its state-space consists of an estimated curve
position augmented by additional states (e.g., velocities) associated with every point on the estimated
curve. Multiple simulation models are proposed for state prediction. Measurements are performed
through standard static segmentation algorithms and optical-flow computations. Special emphasis is
given to the geometric formulation of the overall dynamical system. The discrete-time measurements
lead to the problem of geometric curve interpolation and the discrete-time filtering of quantities
propagated along with the estimated curve. Interpolation and filtering are intimately linked to the
correspondence problem between curves. Correspondences are established by a Laplace-equation
approach. The proposed scheme is implemented completely implicitly (by Eulerian numerical
solutions of transport equations) and thus naturally allows for topological changes and subpixel
accuracy on the computational grid.

Index Terms
Geometric observer; level set method; curve evolution; visual tracking

1 Introduction
The filtering of sensed data is a practical necessity when using the data to inform a feedback
process. Real-world signals, as derived from sensing devices, have noise and disturbances that
must be dealt with prior to incorporating the data into the feedback loop. Vision sensors suffer
from these, plus other unique drawbacks, therefore, it is sensible (and often essential) to
consider the filtering of the feedback information provided from visual sensors. Visual sensors
are fundamentally different from traditional sensors (gyros, accelerometers, range sensors,
GPS, etc.) in the sense that the true output for use in the feedback loop is usually not directly
obtained from the sensor proper but is extracted using a computer vision algorithm. This paper
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analyzes curve evolution approaches (known as active contours in computer vision) within the
context of observer theory in order to arrive at a deterministic recursive filtering strategy.

Filtering methodologies for computer vision may be divided in three broad (not necessarily
mutually exclusive) subcategories:

1. Prefiltering. Direct filtering of the image information obtained from the vision
sensors, followed by the application of a computer vision algorithm.

2. Internal-state filtering. Filtering the internal states associated with a computer vision
algorithm, based on the image information obtained from the vision sensors.

3. Postfiltering. Direct application of a computer vision algorithm to the data obtained
from the vision sensors, followed by the filtering of the output of the computer vision
algorithm.

To differentiate these methodologies, assume the objective is to track the centroid of a moving
object given noisy image information from a vision sensor. For 1), the images are
spatiotemporally filtered, the object is extracted, and the centroid is computed given the
extracted object (the segmentation). For 3), the object is segmented from an image, the centroid
is computed, and the centroid position is filtered given the centroids from previous image
frames. For 2), the object itself is modeled dynamically (system states being position, shape,
velocity, etc.), the object states are filtered based on the spatiotemporal image information of
the vision sensor, and the centroid is extracted from the internal state of the modeled object.

1.1 Observer Theory
Observers are internal-state filters. They are a classical concept in the control and estimation
theory [1], where system states need to be reconstructed from measurement data. They all have
—but are not limited to—the following fundamental observer ingredients: (O1) a dynamical
state model and a measurement model of the system to be observed for state and measurement
prediction, (O2) a measurement methodology (e.g., a device to measure velocity, a
thermometer, an object segmentation, etc.), and (O3) an error correction scheme to reconcile
measurement and prediction for state estimation. Irrespective of the observer similarities (O1)-
(O3), observer approaches differ in terms of the system and measurement class for which they
are designed and the estimation method being employed. Observers may be deterministic such
as the Luenberger observer [2] or probabilistic such as the Kalman filter [3] and its derivatives
(the unscented Kalman filter and the extended Kalman filter), as well as particle filters [4].

Constructing observers for finite-dimensional nonlinear dynamical systems in complete
generality (including noise processes) is difficult [5], [6]. The governing equations get complex
even for systems with finite-dimensional state spaces [4], [7]. Observer design for infinite-
dimensional (possibly nonlinear) systems is even more challenging and still in its infancy [8].

1.2 Problem Description
This paper focuses on the design of an observer for the infinite-dimensional space of closed
curves.1 To make the observation problem tractable, we propose here, as an initial step towards
observer design on the space of curves, a deterministic observer, where the system model is
time continuous and the measurements are time discrete. Special emphasis is given to a
geometric formulation of the infinite-dimensional state observer. The proposed approach may
be viewed as a geometric filtering method for the class of computer vision algorithms using
curve evolutions (e.g., active contours or snakes), where the fundamental observer building
blocks (O1-O3) are interpreted in the context of dynamic curve evolution.

1The approach may be extended to objects of codimension one in space.
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A fundamental issue that has not been fully explored is how one should resolve the curve when
the curve measurements are not faithful to the truth. Essentially equivalent to this is the problem
of interpreting the curve signal when the image properties imply unobservability or poor
observability of the target. Typical solutions introduce complicated segmentation models or
utilize low-dimensional knowledge-based curve representations. Instead, this paper proposes
a temporal filtering strategy for the static segmentations arising from an image sequence. The
resulting geometric observer should generate a signal that has improved temporal and spatial
properties of the curve proper that cannot be achieved through the sequential application of
equivalent static curve evolution algorithms and is robust with respect to unknown disturbances
(e.g., measurement and system noise) and—especially as regards visual tracking—with respect
to unmodeled dynamics.

1.2.1 Intellectual Precursors—To impose spatial consistency, static segmentations
frequently rely on expected shape, statistical, or appearance information to drive the
segmentation process. Some curve-based filtering methodologies use spatially consistent
segmentations for each image frame [9]. Alternatively, dynamic segmentations arising from
video sequences may incorporate temporal consistency: an expected object state will be
conditioned on previous image measurements.

Bayesian estimation approaches have been central to a number of finite-dimensional curve-
based tracking approaches. Blake and Isard [10] proposed a particle-filter-based curve tracking
framework for evolving the coefficients of a B-spline representation of a curve. More recent
work has focused on combining particle filters with shape models, both for curve
representations [11], [12], [13] and in combination with active shape models [14], [15]. Learned
shape-based priors have been combined with jointly learned shape-dynamics using Gaussian
probability distributions in [16]. Curve-tracking may also be formulated as a region-tracking
problem [17].

While research in curve-evolution-based methods for segmentation has expanded to the point
that there are a large variety of methods for achieving a desired segmentation2 and a variety
of finite-dimensional tracking methods exist (see paragraph above), curve-evolution-based
filtering and tracking has received less attention. When online estimation is not required, the
process may be regarded as a segmentation problem in space and time. Standard volumetric
segmentation procedures can be used to perform tracking over the space-time volume,
however, modeling temporal changes can still be beneficial for estimation performance. An
example is the work by Papadakis and Mémin [18] for batch estimation using a data
assimilation approach. The current focus is on online estimation methods to ultimately facilitate
visual feedback control. Fundamental challenges for online curve-based filtering and tracking
are the prediction (O1) and the error correction and estimation (O3) steps.

1.2.2 Curve Error Correction—To influence the state estimation by the measurements,
one needs to define what constitutes a measurement and how measurements affect state
estimation, leading to curve error correction. Error correction for curve-based observers, i.e.,
the construction of a corrected estimate of the current state given the predicted and measured
states, is intimately linked to curve registration.

Blake and Isard [10] approach this problem in the context of particle filtering by defining the
probability of a measurement conditioned on the system state. This conditional probability is
based on the likelihood of image features along a prespecified number of normals to the curve
corresponding to candidates for the true measurement. Curve registration is implicitly encoded
in the search along normal directions; corresponding points are expected to be found in a

2Covering this diversity of approaches is beyond the scope of this text.

Niethammer et al. Page 3

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



direction normal to the curve. Direct curve point correspondences are not explicilty established
since the curve is represented by a low-dimensional B-spline space. Peterfreund [19] uses
image gradient and optical flow measurements along the curve. The method does not compute
correspondences but relies on measurements computed at the current curve position. Rathi et
al. [11] define measurement probabilities conditioned on the system state based on a curve
evolution energy using the system state as its initial condition. Measurement and system
dynamics are merged, creating spatial correspondences between curves by a curve evolution
process that does not get run to steady state. Jackson et al. [20] use a registration approach,
where a chosen similarity measure quantifies the difference between the estimated object and
the actual image measurements over a finite number of image frames, subject to the degrees
of freedom imposed on the registration by the motion group of choice.

In contrast, this paper is interested in establishing explicit, elastic, correspondences between
curve points on the predicted, the measured, and the estimated curves. Further, this paper seeks
to develop a nonparametric geometric observer framework for dynamically evolving curves,
where every curve point is endowed with additional state information; the observer model
requires a correction method for both curve position and the additional states. The primary
difficulty associated with direct error correction between closed curves is the fact that two
curves will, generically, not be identical, meaning that there is now a data association problem
to be solved between the state information for the two curves, where the space of closed curves
is infinite dimensional and has a nontrivial topology [21], [22]. To be compatible with the
observer framework proposed in this paper, a curve correspondence method should establish
a homotopy between curves (assuming that curve parts are neither created or destroyed) to be
used for curve interpolation. Prior work in this area includes methods based on defining metrics
on the space of curves [23], [24], [25], [21], [22] and geometric-distance-based approaches,
frequently combined with additional matching terms [26], [27], [28]. The class of matching
methods based on defining metrics on the space of curves naturally results in curve interpolation
paths. Correspondence schemes allowing for the deletion and addition of curve segments exist
as well [29], [30]. Alternatively, curve correspondence computations may be performed by
representing the curve by the inside and outside regions it separates and performing nonlinear
registration using these regions [31], borrowing from the rich class of registration methods
developed, in particular, for medical image registration problems such as large deformation
metric mappings [32] and optimal mass transport [33].

1.2.3 Contribution—The contributions of this paper are best understood when examined
within the context of observer theory and design for infinite-dimensional nonlinear systems.
The proposed observer incorporates a dynamical model of the computer vision algorithm’s
evolving states, here, a closed curve and an associated vector fiber, and also a correction
algorithm for moderating between the predicted and measured states. The consequences of this
procedure are analogous to finite-dimensional systems. Appropriately designed, the observer
will improve the active contour segmentation procedure while resulting in smoother state
estimations and track signals.

The method proposed in this paper utilizes an infinite-dimensional motion model whose motion
gets implicitly constrained by the measurement (which itself can be unconstrained, shape
constrained, area based, etc.). Under the defined infinite-dimensional motion model, objects
with changing topology are trackable; a global motion model describing the arbitrary splitting
or merging of an object is not required. The present work also defines a method to establish
one-to-one correspondences between the measured and the estimated curves in order to
exchange information between them for dynamic filtering. The method is geometric in nature,
as it involves the computation of a homotopy between two curves that, in turn, induces a
mechanism for interpolating the state information. The geometric nature of the homotopy leads
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to intuitively tunable gains for position and state filtering. The gains are not derived from an
underlying statistical model for the system uncertainties.

1.2.4 Outline—Section 2 briefly reviews curve evolution equations, related notation, and
level-set implementations. The overall specification of the observer framework is given in
Section 3, followed by a discussion of the individual components (O1)–(O3): The possible
motion models of the system in Section 4, potential measurement models in Section 5, and the
correction step in Section 6. Examples to validate the claims are given in Section 7. Concluding
remarks and possible further research directions follow in Section 8.

2 Curve and State Evolution
This section briefly outlines standard material from that in [34],[35],[36], to which we refer
the reader for relevant details.

This paper uses smooth closed planar curves to represent image segmentations. The space of
smooth closed planar curves, denoted by C∞(S1; IR2), forms an infinite-dimensional manifold
[34], meaning that there is no finite set of parameters that uniquely characterizes the space.
Moreover, there is no unique description of a given element of such a space. When dealing
with the evolution of curves, an additional temporal parameter is added to the curve description
(C∞(S1 × IR+; IR2)), and so, planar curve evolution may be described as the time-dependent
mapping in the following manner: (p, t): S1 × [0, τ) ↦ IR2, where p ∈ [0, 1] is the curve’s
parameterization on the unit circle S1, (p, t) = [x(p, t); y(p, t)]T, such that (0, t) = (1, t).

In this work, we will also use the level set methodology [35], [36]. Hence, we represent the
one-parameter family of closed curves  implicitly by the family of level set functions Ψ:
IR2 × [0, τ) → IR, where the trace of the curve on the domain is related to the zero level set of
the implicit function by

Many times, the level-set function Ψ is chosen to be a signed distance function, defined by

where int( ) and ext( ) denote the interior and exterior, respectively, of the curve .

Given a curve evolution equation

where v is a velocity vector and subscripts denote partial derivatives, the corresponding level
set evolution equation is
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where v is appropriately extended to be defined over the domain of Ψ [36]. The unit inward
normal, , and the signed curvature, κ, are given by

2.1 Curves with Vector Fibers
In order to define a dynamical model for curve evolution, the curve state space needs to be
expanded to include curve velocities. The corresponding space is now a vector bundle [34], in
particular, it is the tangent bundle. Briefly, a vector bundle is a family of vector spaces
parameterized by a manifold (the base space), in our case, C∞(S1; IR2), the space of smooth
closed planar curves. To each point of the manifold, a vector space is associated (the vector
fiber over that point), and these vector spaces vary smoothly. This means that locally, the vector
bundle is diffeomorphic to the cross product of a subspace of C∞(S1; IR2) and a given model
vector space W. For a one-parameter family of curves C∞(S1 × IR+; IR2), an element w ∈ W
may be described as a vector-valued function defined on trace( (·×, t)), t ∈ [0, τ]. For the
implicit representation of the family of curves C∞(S1 × IR+; IR2) represented by the one-
parameter family of level set functions Ψ as above, the corresponding time-varying vector fiber
element may be given by a family of functions, w: IR2 × [0, τ) → IR2, and thus, we can obtain
the curve velocities by evaluating w on Ψ(0, t)−1 for each t ∈ [0, τ].

When defining the evolution or deformation of a curve by the vector v, the transport of the
fiber quantities with the curve must also be defined [34]. This is typically done by lifting the
dynamics of the base space into the vector bundle. The lifted transport of the fiber element,
w0, in the implicit representation is induced by the curve evolution through the advection
equation

(1)

where Dw denotes the Jacobian of w, which is integrated in step with the level set Ψ [36].

3 General Observer Structure
In the classical observer framework, as described by Luenberger [2], there are prediction and
measurement components. Prediction incorporates the dynamical assumptions made regarding
the plant or, in the context of visual tracking, the movement of the object. To evolve the overall
estimated curve, the prediction influence has to be combined with the measurement influence,
leading to the correction step.

The observer to be defined is a continuous-discrete observer, i.e., the system evolves in
continuous time with available measurements at discrete time instants ,
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where s1, s2, and mk are the system and measurement noises, respectively,  represents the
curve position, w denotes additional states transported along with  (e.g., velocities), and (·)k
denotes quantities given at discrete time points tk.

The addition of 1) a prediction model for the active contour, 2) a measurement model for the
active contour, and 3) a correction step to the evolution and measurement form the general
observer structure. The prediction and measurement models

(2)

simulate the system dynamics and measurement process (the hat denotes simulated quantities).

For simplicity, consider the case when the complete state is measurable, hk = id (the identity
map). The proposed continuous-discrete observer is

(3)

where (−) denotes the time just before a discrete measurement, (+) the time just after the
measurement, Φ is a correction function depending on the gain parameters  (a scalar) and

 (a matrix), and (Xerr) is the error vector field. Fig. 1 shows the observer structure as given
in (3). In what follows, these observer components as applied to closed curves are described
in further detail.

4 Priors
The prediction model is a motion prior describing the evolution of the closed curve, and
possibly its vector fiber, in time. Several motion priors are described in this section. Motion
priors are problem dependent and should model as precisely as possible the dynamics of the
object(s) to be tracked, consequently, the given general-purpose priors should be substituted
by more accurate priors when available. Priors should not depend on the current, underlying
image (measurement) information. In this section, only dynamics of the curve proper are
defined; the evolution of the implicit representation can be derived using the concepts from
Section 2.

4.1 Curve Evolution
4.1.1 Static Prior—The simplest possible prior is the static prior, i.e., no motion at all
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4.1.2 Constant Velocity Prior—The next simplest prior would be the constant velocity
prior

4.1.3 Quasi-Dynamic Prior—Suppose that the richness of the target motion precluded an
accurate dynamic model but that an available instantaneous motion model, Xest, of the visual
information existed. The instantaneous velocity information could be used to propagate
forward the curve

where Xest is the estimated instantaneous velocity field. One example would be to use the
optical flow vector field as a motion prior (see Section 5.2 for details on optical flow
computations).

4.1.4 Dynamic Elastic Prior—The dynamic elastic prior is based on the dynamic active
contour [37], which minimizes the action integral

(4)

with μ a mass constant and a a scalar regularization field. Whereas a is image dependent in the
case of a dynamic active contour, it is image independent for the dynamic elastic prior; a is a
design parameter for curve regularization. The resulting dynamic elastic prior is

or, when restricted to normal curve propagation, is

(5)

which simplifies to
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where s denotes arc length,  is the unit tangent vector to , and β is the normal speed in the
direction of  [37].

4.2 Vector Fiber Evolution
While only velocities get propagated with the curve in this paper, the dynamical model may
include additional vector fiber states. These could for example be local estimates of state
uncertainty or marker particles. A motion model would be needed for these additional states.

5 Measurements
Measurements are used to drive the observer model’s states to the true system states. The
predicted measurements are based on the current state of the observer. Standard computer
vision algorithms can be used to come up with the “real” measurement. This observer setup
has two crucial advantages:

• Any standard (static or dynamic) segmentation algorithm can be employed for the
measurement. While the dynamic model is a model of a dynamically evolving curve,
the measurement can utilize, for example, area-based or region-based segmentation
algorithms.

• Static and dynamic approaches incorporating shape information exist [38], [39]. If
these approaches are used for the measurement curve, shape information can be
induced into the infinite-dimensional model without the need for explicit
incorporation of the shape information into the dynamical model.

5.1 Position Measurements
A candidate segmentation method is the geodesic active contour:

(6)

where κ denotes curvature,  is the unit inward normal, and g denotes a stopping function that
is small at edges [40], [41]. Alternatively, one can use active contours without edges [42]

(7)

where μ is a curvature gain, ν favors small curves, λ1 and λ2 are balancing constants for the
curve interior and the curve exterior contributions, u0 denotes image intensity, and  and 
are the mean image intensities inside and outside the curve, respectively. Additional contour
measurement options can be found by referencing the active contour segmentation literature.

5.2 Measurement of Vector Fiber Quantities
Measurements of the vector fiber quantities are performed based on the location of the position
measurements, if possible. In the case of dynamically evolving curves, velocities need to be
measured on the measured curve. Given sufficient gradient information at the boundaries of
the measured curve, normal optical flow can be computed as
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where I: IR2↦IR (usually image intensity). If there is insufficient gradient information,
regularization may be performed to obtain the optical flow field reliably; one possibility being
the computation of Horn and Schunck optical flow [43], minimizing

where I denotes image intensity, subscripts denote partial derivatives, and u and v denote the
velocities in x and y directions, respectively.

6 Error Correction
The observer design proposed in this paper requires a methodology to compare the predicted
curve configuration to the measured curve configuration. Minimally, comparison requires
establishing unique correspondences between points on the two curves, e.g., defining a
diffeomorphic homotopy between the two curves. The homotopy will be obtained through the
flow of an error vector field defined between the two curves. Section 6.1 constructs the error
vector field. The curve correction homotopy naturally follows. Section 6.2 discusses the
propagation of state information along the error vector field and the implicit computation of
signed distance functions. Section 6.3 describes the correction procedure for the curve
configuration (curve + fiber).

6.1 The Error Vector Field
The error vector field to be defined is the manifold analog to the measurement residual of an
observer. Due to the geometry of the space of closed curves, there is no unique way to define
the error vector field; its construction is a design choice when defining an observer for closed
curves. Here, the method chosen is a Laplace-equation-based approach [44], [45], [46], whose
error vector field induced flow is a diffeomorphism, which is easy to implement and fast to
compute.

The variational formulation leading to the Laplace problem is

(8)

such that trace( ) = u−1(0) and trace( ) = u−1(1), where  is the source curve (the measurement
curve), and  is the target curve (the predicted curve). Its solution requires careful construction
of the interior and boundary conditions. The source curve and the target curve define the
following solution domain decomposition of the total space Ω, , Rpi:= int
( ) ∩ int( ), and , where int( ) denotes the interior of the curve , and ⊝ is
the set-symmetric difference; see Fig. 2a for a depiction of the domains.
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To simplify the solution of (8) computationally, set the boundary conditions to 0 for the interior
curve parts ( ) and to 1 for the exterior curve parts (∂(R ∪ Rpi)). The exterior
and the interior curve parts may comprise of subsets of  and  if  and  intersect. These
boundary conditions lead to a globally continuous solution, whose gradient field may have
regions of reversed direction with respect to the gradient field of the original formulation (8).
The reversed orientation is readily corrected to yield the proper gradient field; the quantity of
interest for observer design purposes. Via the calculus of variations, a solution to (8) in the
domain enclosed by the source and target curves with modified boundary conditions satisfies

(9)

where Δ = Δ2, with the boundary conditions

(10)

which is a simple reformulation of the minimization problem (8) based on the domain
decomposition depicted in Fig. 2. Of note, the solution of (10) is sufficient to define the error
vector field. However, to facilitate easy numerical computations of the error vector field, we
extend the solution to the remainder of the image domain3 by solving an additional Laplace
equation on Rlo and a Poisson equation4 on Rpi

(11)

(12)

with boundary conditions

(13)

The combined solution

(14)

defines the error vector field Xerr on Ω,

3Note that the combined solution will be continuous everywhere but not necessarily differentiable on C0 and C1. However, by
construction, the gradient directions will align.
4See Evans [47] for background on the Laplace equation and the Poisson equation.
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(15)

on Ω via the normalized gradient.5 To illustrate the behavior of Xerr, assume the measured
curve is , and the predicted curve is , where  is strictly the interior of . Then Xerr becomes
a vector field flowing the measured curve into the predicted curve at unit speed. Flowing at
unit speed implies that particles starting at C0 and flowing according to Xerr will reach C1 at
different times (proportional to the distance covered), an essential property for the geometric
interpolation procedure to be proposed in Section 6.2.

The advantage of the Laplace-based correspondence scheme is that it is fast, parameterization-
free, and admits topological changes. The main disadvantage is that it may lead to unwanted
correspondences since it is not invariant to translations, rotations, or scale. In particular, curve
intersection points remain fixed (i.e., they get identified with each other), which is unnatural
in the case of a translational motion. One may obtain the desired invariances by preceding the
computations with a procedure for image registration based on similarity transformations (i.e.,
by working on the space of shapes). Nevertheless, sensible correspondences can be computed
as long as int( ) ∩ int( ) ≠ ∅, otherwise, source and target are in severe disagreement and a
loss-of-track procedure needs to be employed (e.g., declaring the measurement as the estimate,
leaving the estimate unchanged, or registering estimate and measurement). For visual tracking,
we can assume (given a reasonable motion model) that the displacements between curves will
be small, and thus, the proposed approach will lead to reasonable correspondences.

6.2 Information Transport and State Interpolation
The error vector field Xerr defined in (15) of Section 6.1 will be used to geometrically
interpolate between two curves, thereby defining the curve correction homotopy Φ(Xerr; , ;

) and also inducing a state correction homotopy Φ(Xerr, ( , ŵ), ( , w); K). Geometric
interpolation is achieved by measuring the distance between correspondence points along the
characteristics that connect them, defined by the error vector field, and subsequent flow up to
a certain percentage of this distance. The error vector field will be used to define distance from
a curve since euclidean distances are not desirable for complicated curve shapes [38]. The
procedure entails solving a series of associated transport equations (the transport equation was
described in Section 2.1).

Given a flow field X and a particle p initially located at x0, its traveling distance, d, at position
x is defined as the arc length of the characteristic curve, defined by having local tangents aligned
with X, connecting x0 and x. To measure traveling distances from a complete set of initial
locations, as specified by d−1(·, 0), solve

(16)

5The essential part of the solution lies in R, defining solutions inside and outside of R, as described ensures the monotonicity of the
Laplace solution u outside of R. The monotonicity is convenient for the later definition of the zero level set, which otherwise would need
to be restricted to lie within R.
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where τ is an artificial time parameter for the PDE, X ≠ 0 is assumed, and d : IR2 × IR+ → IR.
Equation (16) is a Hamilton-Jacobi equation for which efficient numerical methods exist [48].
See Fig. 2 for sample distance computations.

6.2.1 Curve Correction Homotopy—When Ψ̂ and Ψ implicitly represent the curves and
, the interpolation can be accomplished implicitly to subpixel accuracy. To compute the

traveling distances, the approach for the level-set reinitialization proposed in [49] will be
modified. Specifically, to determine the traveling distance from each curve to the other along
Xerr compute

(17)

where d̂ is the traveling distance associated with the predicted curve, and dm is the same for
the measured curve, τ is an artificial time parameter for the PDE, and

Here, S(x) denotes a smoothed sign function used for the bidirectional measurement of traveling
distance along Xerr (positive distance values) and in the opposite direction of Xerr (negative
distance values). The results are signed distance level set functions whose distances conform
to travel along the error vector field Xerr. The distance error functions, d̂ and dm, obtained by
solving (17) are pointwise interpolated to yield the interpolated distance function di

(18)

which subsequently gets redistanced according to

(19)

arriving at the corrected distance function Ψ̂i. The weighting factor α geometrically interpolates
the estimated and the measured curve. Several interpolations are illustrated in Fig. 3a.

6.2.2 Vector Fiber Transport—In order to compare and correct the vector fiber quantities,
they need to be transported to the new interpolated curve, located within the region R. The
measured quantities w and the estimated quantities ŵ utilize the corresponding transport
equations

(20)

respectively, to propagate the values throughout the domain, defining p, p̂: IR2 → W.
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6.3 Performing the Error Correction
The error correction scheme builds on the results of Sections 6.1 and 6.2. We assume that the
correction function can be written as

The error correction for the curve position is then

(21)

which amounts to curve interpolation as per the implicit method, described in Section 6.2.1

Vector fiber information needs to be exchanged and compared between the measured and the
estimated curves (see Fig. 3). Further, the final filtering results need to be associated with 
(+). This is accomplished by the error correction for the vector fiber

which amounts to pointwise filtering for each component i, computed as

and evaluated at (+), where repeated indices are summed over, and  is assumed to be block
diagonal and decomposes into a gain matrix for the fiber quantities ( ) and for the curve

position error ( ). The computation of p and p̂ was described in Section 6.2.2. Table 1 gives
a description of the overall geometric observer algorithm. The choice of gain is problem
dependent and should be done based on experimental evidence.

7 Results
This section contains a variety of example scenarios utilizing the active contour to analyze
video sequences. For each example, a performance metric is given to compare the standard
implementation versus the observer-based implementation. It must be emphasized that for all
of the sequences, the associated parameter settings for generating the measurements were
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precisely the same between the standard implementation and the observer-based
implementation.

Every example is meant to highlight a specific property of the observer framework:

1. The synthetic tracking example illustrates curve prediction, measurement, and
estimation for an elastically deforming object with and without topology changes
(Section 7.1).

2. The tracking through turbulence example shows the utility of the observer framework
to impose temporal coherence (Section 7.2).

3. The biomembrane tracking example illustrates the behavior of the dynamic elastic
motion prior when the system becomes locally unobservable for a short-time period
(Section 7.3).

4. The fish tracking example demonstrates the advantages of a curve-based filtering
scheme over pre-filtering of images (Section 7.4).

5. The aerial tracking example demonstrates how the observer framework can be
integrated with a particle-filter-based sensing strategy (Section 7.5).

7.1 Synthetic Tracking Example
To demonstrate proof of concept and to highlight some properties of the proposed observer,
the observer is applied to the tracking of a synthetically created elastically deforming blob.

The setup of the algorithm is given as follows: 1) Prior. Due to the deformations of the blobs,
the dynamic elastic prior was chosen with μ = 1 and a = 0.05. 2) Measurement. The Chan and
Vese region-based evolution (7) generated the measurements. Horn and Schunck optical flow
calculations generated the normal speed measurements. 3) Correction. The error correction

gains were , and .

Results—Figs. 4 and 5 show tracking results on a single blob and on two blobs, respectively.
Initial conditions (the bold solid curves) were chosen far from the initial measurement curves
(dash-dotted curves). For the single blob case, the estimated curve (solid curve) converges
nicely to the measurement curve over time. For the two blobs case, the estimated curve
undergoes topological changes;6 the curves merge and split naturally.

7.2 Tracking through Deep Turbulence
This example extends prior work on tracking of a high-speed projectile through deep turbulence
using knowledge-based segmentation (KBS) [50], where the objective is to precisely track a
target being sensed by a laser-based imaging system. Due to the large distance traveled by the
laser, turbulence is a primary source of uncertainty in the visual signal. Turbulence introduces
intensity fluctuations and minor random shifts of the target on the image plane. The authors’
experiences are such that smoothing of the noisy image does not improve performance due to
the nondeterministic effects of turbulence. Furthermore, smoothing of the track signal degrades
performance or leads to negligible improvements (in the best of cases). The KBS algorithm,
which is an adaptive thresholding algorithm utilizing statistical analysis of the image together
with Bayes’ rule for tracking, has shown significant improvement in track fidelity while
preserving bandwidth. The Bayesian step operates like an observer modulating the current

6Strictly speaking, the Laplace-equation correspondence approach will not be able to establish correspondences for a set of measure zero
when topological changes occur and may require special computational handling for the critical points.
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likely measurement with the prior observation. Here, we demonstrate that observer-based
active contours may function in a manner similar to Bayesian segmentation.

The observer design comprises of the following procedures:

1. Prior. Because the system already has a coarse outer loop tracker, the target is
expected to lie within the vicinity of the image center, meaning that a static prior can
be used.

2. Measurement. In order to replicate the statistical measurement model of the KBS
algorithm, the measurements are based on the active contour analog to likelihood
maximization [51]

where the means, μ1 and μ2, and standard deviations, σ1 and σ2, are computed based
on the interior and exterior statistics, respectively, of the contour.

3. Correction. Since the model is a first-order static model, only the position gain is
needed. It is .

4. Track point. The track point for the target is found by utilizing a weighted centroid
to find an interior point on the target. From this point, the contour segment in the
direction of travel of the target is sought. A local average of this tip segment generates
the track point (depicted in Fig. 6).

Results—The results of applying the active contour measurement algorithm (denoted AC)
and also the observer-augmented version (denoted ACO) to three image sequences are provided
in Table 2 (each sequences is 2,500 frames long). Two performance measures are indicated,
the first being cross-correlation with the ground truth (higher is better), and the second being
standard deviation of the error with respect to the ground truth (lower is better). The
improvement percentage is with respect to the weighted centroiding algorithm (CENT), the
currently accepted standard for this tracking problem. The observer framework improves the
active contour performance by 30 percent, resulting in similar performance to the KBS
algorithm.

7.3 Biomembrane Tracking
The example scenario presented here involves the tracking of a biomembrane. Imaging at the
microscopic scale requires magnifying optics, resulting in a signal-to-noise ratio lower than
that of traditional imaging systems. In addition to noisy imagery, the control objectives are in
conflict with the observation objectives. In Fig. 7, the red arrow points to a laser-controlled
bead interacting with the biomembrane (blue arrow). The interaction is used to estimate the
mechanical properties of the biomembrane to control the location of the membrane and/or to
deform the membrane boundary shape [52], [53], [54], [55]. The act of measuring the cell
membrane elasticity involves pressing up against the membrane with a manipulator, i.e., the
laser-controlled bead, temporarily creating an obstruction, an unobservable component of the
biomembrane, and/or a disturbance of the biomembrane.

The observer setup for the biomembrane sequence is given as follows: 1) Prior. Because of
the elasticity of the biomembrane, the normal dynamic elastic prior is used (5). 2)
Measurement. For the position measurements, edge-based geodesic active contours are used

Niethammer et al. Page 16

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(6) within a scale-space pyramid. Three averaging filters of differing support are applied to the
image (5 × 5, 9 × 9, and 15 × 15) smoothing it. Edge-based active contour evolution is applied
to each of the smoothed images starting with the smoothest image and ending with the least
smoothed. The velocity measurements are obtained from multigrid optical flow calculations
[56]. 3) Correction. The position correction gain is , and the normal speed gain is

.

Results—Fig. 8 has snapshots of the biomembrane tracking sequence. The red contour is the
active contour, whereas the blue contour is a manual segmentation using splines. Note that
both are able to grossly track the biomembrane, however, in addition to tracking it, the curvature
along the curve is required, meaning that the contour must approximate well the biomembrane
while also being smooth. Fig. 8c depicts the smoothness index7 of the biomembrane over time
for three different contour signals, the standard (static) active contour segmentation, the
observer-based active contour segmentation, and a manual segmentation. It is based on the
computation of local absolute curvature around the closed contour; a perfect circle would result
in a zero smoothness index. The observer-based segmentation has a lower curvature-based
smoothness index (mean of 1.8) when compared to the standard active contour (mean of 3.0)
and also has a lower standard deviation (0.3 versus 0.5, respectively), making it closer to the
manual segmentation (mean of 1.2 and standard deviation of 0.2).

Using the temporal history of the signal leads to a smoother contour. Furthermore, the temporal
history of the curve allows the observer-based active contour to be somewhat robust to
disturbances. The disturbances come in the form of the bead proper, the image noise (mostly
but not entirely smoothed out by the scale-space pyramid), and the blurring of the membrane
on some frames. The blurring generates a shallow potential well for the geodesic active contour,
which in turn, leads to ambiguous minima for the active contour, meaning decreased
measurement smoothness. Although increasing the curvature-based component of the curve
evolution would result in a smoother curve, the increased contribution of the curvature term
overwhelms the image-based contribution to the flow during low observability, leading to
incorrect segmentations.

On frame 5, the proximity of the bead to the biomembrane causes a disturbance in the
measurement. From frame 25 to 27, the bead penetrates the biomembrane (right side of middle
row), causing a deformation in the biomembrane boundary. After penetration, the interior
motion of the bead continues to induce disturbances in the biomembrane.

7.4 Noisy and Low-Observability Fish Tracking
One motivating factor for incorporating an observer into the active contour framework is to
adequately deal with low-observable imagery. Imaging sensors are designed to operate
optimally within specific environmental conditions; deviation from these conditions leads to
increased noise and/or reduce visibility of targets. Although the target may be visibly apparent
by examining the temporal sequence on any given frame, the target may be incomplete or have
misleading visual content. The image sequences of this example demonstrate such a situation;
they were taken in low-light conditions and have significant noise. Examples of some of the
issues associated with the image sequences can be found in Fig. 9. The cropped samples suffer
from one or more of the following: low contrast/poor visibility, pixel intensity values which
cause it to blend into the background, missing information due to the sampling rate, or high
noise.

7We define the smoothness index as , where κ denotes curvature and s arc length.
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The observer setup for the aquarium sequences is given as follows: 1) Prior. Because of the
time-varying dynamics of the fish, the normal dynamic model was chosen (5). 2)
Measurement. For the position measurements, the Chan and Vese region-based evolution was
chosen (7). The velocity measurements are obtained from multigrid Horn and Schunck optical
flow calculations. 3) Correction. The position correction gain is , and the normal
speed gain is .

Results—The Chan and Vese active contour algorithm was used to track all eight of the
aquarium sequences, as was an observer-based implementation of the same algorithm. In both
cases, the targeted fish are tracked throughout, however, the performance differs between the
two methods. Tracking performance characteristics of the two algorithms is done through
visual inspection, analysis of the contour signal, and analysis of the resulting track points.

Figs. 10 and 11 depict two tracking scenarios comparing the resulting contours to the actual
visual observations, the fish swim from right to left; therefore, the image sequences are depicted
with a frame number increasing from right to left. Both scenarios are difficult to segment on
a per frame basis due to missing or low observable target information, as can be seen in Figs.
10a and 11a, where portions of the fish are not properly segmented. The observer-based tracker
is able to utilize the temporal information to arrive at a more appropriate contour segmentation,
Figs. 10b and 11b. Sequence 4 is difficult to track due to the time-varying blending of the target
fish intensities with the background intensities. A similar problem occurs in sequence 5, which
is exacerbated when a larger fish swims over the target fish, causing a lowering of the overall
illumination and concomitantly reducing the observability of the fish (a blurred portion of the
larger fish’s tail can be seen in the third frame from the left). The observer is able to more
adequately deal with the time-varying imaging characteristics.

Figs. 12a and 12b contain the smoothness index of the contour signal and the smoothness index
of the track point signal, respectively, for all aquarium sequences. As explored in the
biomembrane example, an added benefit of the observer framework is to result in smoother
signals, both in terms of the segmenting contour and the associated track point. The first two
sequences differ significantly from the remaining ones because the fish in them are about 10
times smaller than the other fish (sequence 1 is depicted as the leftmost sample in Fig. 9).

As with the vesicle sequence, smoothing the contour using the curvature weight would result
in a loss of measurement (this is slightly visible in Fig. 11). Lowering the curvature term to
capture more of the fish would cause the observation to be noisier and, in some cases, would
cause bleeding into the background of the active contour. Smoothing of the image is not
possible since this would obliterate what little image-based information is available to the
observer, further degrading the measurements. For example, examine the top portion of the
middle fish in Fig. 11; smoothing destroys the little intensity information available, which is
providing enough information for the observer to track. It should also be noted that the
sequences with similar image characteristics utilized the same parameters setting for the active
contours and for the observer framework. In isolation, the parameter choice was not optimal
on each sequence for the standard active contour, however, good tracking was possible for all
sequences when the observer was introduced. Ideally, one would like the system to be adaptive
and robust to imaging conditions. The observer-based framework confers some degree of
robustness to the parameters settings but does fail once the measurement model persistently
fails.

7.5 Integrating with Particle Filters
The final tracking scenario discusses the implementation of a particle filtering algorithm [57]
for aerial tracking. A closer examination of the implementations described in [11] and
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summarized in Table 3 reveals that the particle filter is not a particle filter implementation in
the traditional sense. Strictly speaking, the particle filter framework in [11] provides a
mechanism to start at multiple initial guesses in order to arrive at the proper observation. The
algorithm is more like RANSAC and other randomized strategies that seek to determine a
measurement or estimate based on a search over a subset of the true search domain/data set.
In the flight scenario, the unknown camera motion results in random translations of the target
on the image plane (justifying the authors’ use of only translations in the described particle
framework). Due to the random shifts, the initial guess for the active contour gradient descent
need not lie within the potential well of the true observation. Consequently, the particles act
as random initial guesses for gradient descent; at least one of the particles should be within the
vicinity of the potential well associated with the energy to minimize. Choosing a sufficient
amount of particles will lead to high confidence in the occurance of this event.

In deriving the final estimated observation, there is no predicted model to compare against.
The authors therefore give special care to the postprocessing of the samples to ensure that the
observation strategy does not overly rely on the image information; the sensing strategy limits
the number of iterations in the gradient descent procedure for active contours and does not go
to steady state. This can lead to erroneous results during measurement model failure, as there
is no natural way of knowing a priori what the optimal number of iterations should be, nor
whether this will be constant for a given image sequence. Strictly speaking then, the strategy
proposed in [11] is a particle sensor; it uses a collection of particles to infer the best current
measurement.

In the observer-based strategy proposed here, the contour goes to steady state. If the initial
gradient search location is incorrect, the contour will vanish (either by shrinking to a point or
blowing up to incorporate the entire sensing window), allowing that particle to be rejected. The
best measurement is compared against the predicted measurement and corrected to arrive at
the final observation. Having a predicted dynamic model completely independent of the
particle measurements provides robustness to measurement error while also minimizing
measurement error since the particles are now allowed to reach steady state. The proposed
algorithm is listed as follows: 1) Prior. In order to capture the rolling moments of the target
plane, a constant velocity model was used. 2) Measurement. The position measurements were
obtained using the particle sensing strategy found in Table 3, except that the active contour
evolution is allowed to reach steady state. 3) Correction. The position correction gain is

, and the normal speed correction gain using positional error information is

 (with ).

Results—The two algorithms were applied to three image sequences; see Figs. 13, 14, and
15. In the figures, the blue dash-dotted box depicts the sensing window of the winning particle
and the red contour/lines depict the foreground/background boundaries segmenting the target
from the background. Both algorithms utilized 15 particles for all sequences. In the first
sequence, both are able to track through the entire sequence. In the second sequence, there is
a piece of dirt on the lens introducing an imaging disturbance that the particle sensor captures
when the target enters the region of the image plane where the dirt lies. It is a minor disturbance
but does introduce an error in the tracking signal. In the last sequence, there is large interframe
motion leading to motion blur, most likely a wind-induced disturbance on the following plane.
The motion blur causes problems for the particle sensor algorithm due to the limited amount
of allowed evolution and the lack of comparison against a predicted model that is independent
of the imagery. For the particle sensor, an incorrect patch of the image results in a lower energy
and is thus incorrectly classified as the target. Because of the limited number of gradient descent
iterations, some final results may appear to be valid when in fact they are not. In contrast, the
proposed particle filtering model is able to attenuate the disturbance and does not lose track.
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8 Conclusions AND FUTURE WORK
8.1 Conclusions

This paper proposed a geometric design methodology for observing or filtering dynamically
evolving curves over time. State measurements are performed via static measurement methods,
making the framework flexible and powerful, since any relevant technique may be used for
the measurement step, including methods incorporating shape information. In comparison to
most previous approaches, the model is infinite dimensional. Further, the observer framework
is geometric, leading to geometrically meaningful observer gains. For the sake of simplicity
in our presentation, this paper was restricted to dynamically evolving curves (see Section 2),
however, the overall scheme extends to closed hypersurfaces of codimension one.

To assess the behavior of the observer framework in comparison to different tracking strategies
and scenarios, it was applied to a variety of tracking examples, highlighting different aspects
of the methodology. The examples showed the utility of curve-based temporal filtering in the
presence of noise, for low observability, and in combination with a particle-based sensing
strategy.

8.2 Future Work
The positive results obtained in this investigation suggest several avenues to explore regarding
the control-theoretic analysis of computer vision algorithms for performance and robustness
enhancement. In particular, alternative methods for obtaining image measurements and
establishing state correspondences (in the case of this paper, a homotopy between curves)
across time. Unlike for finite-dimensional systems, there is no longer a unique comparison and
correction method, therefore, this step becomes a part of the observer design process. Second,
a principal omission in the currently proposed observer scheme is the lack of statistical
information, i.e., a “measure of trust” for measurements and observed states. Introducing
statistical information will require the notion of a mean shape of curves and curve covariances
[28]. Future work will introduce adaptive observer gains based on curve statistics.

Most of the sequences contained only about 100–200 frames, which is quite low when
considering the amount of time one would like to track. This, unfortunately, was a consequence
of the image sequences available for testing. We expect to generate longer video sequences to
assess the long-term robustness and stability of the observer framework. Furthermore, since
the examples and analysis in this paper were open loop, i.e., prerecorded imagery, investigating
closed-loop scenarios to validate and extend the results obtained will be part of future research.
This entails the active, real time use of the observer output for closed-loop tracking.
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Fig. 1. General observer structure
In the euclidean case, subtractions and additions are used for estimation error computations
and state corrections. For curves, estimation errors are represented through an error vector
field, relating the prediction to the measurement. The error vector field, Xerr, defines a
homotopy between the predicted and the measured curves. (a) Classical euclidean observer
structure. (b) Symbolic observer structure for curves.
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Fig. 2.
The topology and geometry of curve comparison. (a) Solution domain decomposition. (b)
Distance from estimate to measurement. (c) Distance from measurement to estimate.
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Fig. 3.
Performing the curve and fiber correction. (a) The dash-dotted curve gets geometrically
interpolated to the solid curve. (b) How does one compare the fiber quantities of the two curves?
(c) Comparison occurs after fiber quantities are pushed forward to the same curve.
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Fig. 4.
Tracking of a single blob (Frames 0, 5, 10, and 15). The predicted (bold, solid), measured (dash
dotted), and corrected (solid) curves are depicted.
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Fig. 5.
Tracking of two blobs (Frames 0, 5, 10, 15, 20, 25, 30, 35, and 40). The predicted (bold, solid),
measured (dash-dotted), and corrected (solid) curves are depicted.
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Fig. 6.
Demonstration of tip seeking for tracking.

Niethammer et al. Page 29

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
Control bead and biomembrane.
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Fig. 8.
Comparison of standard versus observer-based tracking for biomembrane sequence. The
snapshots of the tracking sequence were taken every odd frame (1 to 41, from left to right).
The blue curve in both snapshot series is the human generated contour, whereas the red curve
is the appropriate active contour. The smoothness index of all three contour signals is also
plotted. (a) Tracking snapshots with standard active contours. (b) Tracking snapshots with
observer-based active contours. (c) Smoothness index based on local curvature. (d) Frame 20
of sequence.
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Fig. 9.
Sample cropped portions of the aquarium sequences.

Niethammer et al. Page 32

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2009 December 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
Comparison of standard versus observer-based tracking for aquarium sequence 4. On a frame-
per-frame basis, there is not enough information to preserve the fish, but overall, there is
sufficient information to track. (a) Tracking snapshots with standard active contours. (b)
Tracking snapshots with observer-based active contours. (c) Frame 25 of sequence 4.
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Fig. 11.
Comparison of standard versus observer-based tracking for aquarium sequence 5. The angle
of the fish and the source of the lighting renders the top portion of the fish poorly observable.
The observer-based contour more faithfully captures the geometry of the fish. (a) Tracking
snapshots with standard active contours. (b) Tracking snapshots with observer-based active
contours. (c) Frame 25 of sequence 5.
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Fig. 12.
Contour signal and track signal smoothness indices for the aquarium series. (a) Active contour
boundary smoothness index. (b) Track signal smoothness index.
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Fig. 13.
Comparison of the particle sensing strategy versus the proposed particle filtering strategy for
flight sequence 1. On standard imagery, they have equivalent performance with the difference
that the observer-based strategy will have a smoother contour. (a) Tracking snapshots with
particle sensing strategy [11]. (b) Tracking snapshots with the proposed particle filtering
strategy. (c) Frame 40 of flight sequence 1.
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Fig. 14.
Comparison of particle sensing strategy versus the proposed particle filtering strategy for flight
sequence 2. The dirt speck on the lens is captured by the particle sensor method, whereas the
proposed particle filter method rejects it. (a) Tracking snapshots with particle sensing strategy
[11]. (b) Tracking snapshots with the proposed particle filtering strategy. (c) Frame 77 of flight
sequence 2.
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Fig. 15.
Comparison of particle sensing strategy versus the proposed particle filtering strategy for flight
sequence 3. The camera experiences motion blur on the captured imagery. The particle sensor
cannot track through this temporary model failure. (a) Tracking snapshots with particle sensing
strategy [11]. (b) Tracking snapshots with the proposed particle filtering strategy. (c) Frame
90 of flight sequence 3.
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TABLE 1

Description of the Geometric Observer Algorithm

Geometric observer algorithm:

repeat

1 Propagate curve under the prediction model (Section IV) for the time-span between
two image measurements (usually given by the camera frame rate). Initial conditions
are given by the current observer state.

2 Obtain curve measurements by image segmentation, optical flow, etc. (Section V).

3 Reconcile internal observer state with the measurements by error correction
(Section VI):

a. Establish the error vector field (to induce correspondences; Section VI-
A).

b. Flow measurements and observer states along the error vector field
(Section VI-B).

c. Perform update of the internal observer state (Section VI-C).

until end of tracking sequence
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TABLE 3

Description of the Particle Sensing Algorithm in [11]

Particle sensing algorithm:

for i = 1, …, N, do

 Draw states x0
(i) from prior p(xo).

end

for k = 1, 2, …, do

 Propagate forward the samples under prediction model.

 Perform L steps of curve evolution for each sample.

 Evaluate the importance weights.

 Normalize the weights.

 Select the sample with the largest weight to be the measurement.

 Resample from the particle distribution to obtain TV particles with weights 1
N .

end
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