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Abstract

We present a common framework, for registering images to an atlas and for forming an unbiased 

atlas, that tolerates the presence of pathologies such as tumors and traumatic brain injury lesions. 

This common framework is particularly useful when a sufficient number of protocol-matched 

scans from healthy subjects cannot be easily acquired for atlas formation and when the pathologies 

in a patient cause large appearance changes.

Our framework combines a low-rank-plus-sparse image decomposition technique with an 

iterative, diffeomorphic, group-wise image registration method. At each iteration of image 

registration, the decomposition technique estimates a “healthy” version of each image as its low-

rank component and estimates the pathologies in each image as its sparse component. The healthy 

version of each image is used for the next iteration of image registration. The low-rank and sparse 

estimates are refined as the image registrations iteratively improve.

When that framework is applied to image-to-atlas registration, the low-rank image is registered to 

a pre-defined atlas, to establish correspondence that is independent of the pathologies in the sparse 

component of each image. Ultimately, image-to-atlas registrations can be used to define spatial 

priors for tissue segmentation and to map information across subjects.

When that framework is applied to unbiased atlas formation, at each iteration, the average of the 

low-rank images from the patients is used as the atlas image for the next iteration, until 

convergence. Since each iteration’s atlas is comprised of low-rank components, it provides a 

population-consistent, pathology-free appearance.

Evaluations of the proposed methodology are presented using synthetic data as well as simulated 

and clinical tumor MRI images from the brain tumor segmentation (BRATS) challenge from 

MICCAI 2012.

Index Terms

Low-Rank and Sparse Decomposition; Sparse Images; Unbiased Atlas; Atlas-based Segmentation

I. INTRODUCTION

Herein we present a common framework for (1) registering images to atlases and (2) 

forming unbiased atlases from a collection of images. This framework specifically addresses 
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the challenging situation in which the images contain large, deformation inducing, 

unsegmented pathologies.

Image-to-atlas registration is used to assess and plan the treatment of patients suffering from 

traumatic brain injuries (TBI), brain tumors, or stroke [1]. For these cases, image-to-atlas 

registration is used to estimate tissue priors and to map adjunct information, such as 

functional site locations, from that atlas into the patient. However, when those patient 

images contain large lesions, then lesion-induced appearance changes may inhibit image-to-

atlas registrations and confound the tissue priors and mappings.

Atlas image formation typically involves registering images from a sample of healthy 

subjects, however, in clinical practice, acquiring such a collection of images can be time 

consuming, expensive, and possibly pose a risk to the healthy subjects. For research projects 

having limited time and financial resources or involving new imaging protocols or children, 

it can be problematic to obtain a sufficient number of protocol-matched scans from healthy 

subjects for atlas formation.

Several excellent approaches to image-to-atlas registration involving images containing 

pathologies have been previously proposed. One of the most straightforward methods to 

eliminate a lesion’s influence during registration is “masking.” Masking prevents a lesion’s 

content from being considered during the computation of the image similarity metric. Other 

methods attempt to address this problem by joint registration and segmentation which 

tolerates missing correspondences [2], geometric metamorphosis that separates estimating 

healthy tissue deformation from modeling tumor change [3], or personalized atlas 

construction that accounts for diffeomorphic and non-diffeomorphic changes [4]. While 

effective, these methods require explicit lesion or anatomical structures segmentations or 

initial tumor localizations which, in many cases, are actually the goal of the process. In [5], a 

patient-specific, piecewise, most-similar atlas was proposed by combining subgroups of 

images selected for each local region. The selection criterion was based on the degree of 

contraction and dilation of the structures, thus it can tolerate anatomical variabilities. The 

patient-specific atlas was then used for anatomical structure segmentations for head and 

neck CT images.

On the other hand, forming an unbiased atlas from images containing pathologies has not 

been the focus of much research. However, unbiased atlas formation when lesions are not 

present has been well studied in the context of estimating within-population variability and 

cross-population differences [6]. During most of those atlas formation processes, individual 

images are iteratively mapped into a common coordinate system. This construction process 

can be formulated as a Fréchet mean estimation via diffeomorphic image registrations. 

Typically, lesions in the input images would not only degrade registration accuracy but also 

propagate into the resulting atlas and corrupt its variability estimates.

We propose to eliminate the effects of lesions during image-to-atlas registration and atlas 

formation by leveraging the inherent low-rank structure of the input data. This is combined 

with separating out the sparse components in the data which are not consistent with the low-

rank structure. This technique, commonly referred to as low-rank plus sparse matrix 

Liu et al. Page 2

IEEE Trans Med Imaging. Author manuscript; available in PMC 2016 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



decomposition [7] can mitigate the confounding effects of the pathologies. In a preliminary 

study, cf. [8], we have shown how low-rank plus sparse decomposition can be integrated 

into an iterative image registration framework to match individual images containing 

pathologies to a normal atlas. In this article, we briefly review that work and present a 

common framework that encompasses that work and extends it to include estimating an 

unbiased low-rank atlas from data containing pathologies. The common framework 

represents a new theoretic focus and results in implementation improvements to the original 

work, e.g., introduces a non-greedy optimization strategy. Correspondingly, the experiments 

in this paper are new and primarily focus on the parameters and robustness of the common 

framework and its application to unbiased atlas formation, rather than focusing on 

individual-to-atlas registration evaluation as in [8].

The advantages of unbiased, low-rank atlas formation are two-fold: (1) population 

information is exploited to assess which parts of an image are likely lesions (i.e., they are 

inconsistent with the population) and which parts of an image should be considered normal 

anatomy. This is done without explicit individual pathology segmentations; and (2) the 

recovery of the low-rank structures replaces the visual appearance of the lesion regions (in 

each image) with population-consistent normal appearance. As a result, the effect of 

pathologies on the estimated atlas is greatly reduced, if not eliminated.

The paper is structured as follows: Section II introduces the proposed methodology. Section 

III presents experimental results on both synthetic and clinical data, evaluated in comparison 

to conventional image-to-atlas registration and unbiased atlas building methods. Advantages 

and limitations of the method are discussed in Section IV.

II. METHODOLOGY

We first introduce the low-rank and sparse decomposition technique (Section II-A) and the 

classic unbiased atlas formation method (Section II-B), which are key components of our 

proposed framework (Section II-C).

A. Low-rank and sparse decomposition

In [7] Peng et al., the authors propose to decompose a matrix of vectorized images into the 

sum of a low-rank and a sparse component in the context of simultaneous rigid image 

alignment. The intuition is that the portion of each image that cannot be explained by the 

low-rank model is allocated to the sparse part. Hence, the low-rank component could be 

interpreted as a blending of recorded values and values inferred from the population; the 

sparse component then contains each subject’s anomalous values. Technically, the 

allocation of image intensities to each of those components is driven by the amount of 

linear-correlation across the images. Given a collection of n images with m voxels, we have:

D a M × N matrix in which each image Ii is a column vector that contains the m spatially-ordered voxel intensities in 
Ii.

L a M × N matrix that contains the low-rank representations Li for each of the images in the collection D.

S a M × N matrix that is the sparse component such that Si = Di − Li.

The low-rank representation of D is then defined as
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(1)

where  denotes the nuclear norm (surrogate for the rank) and  denotes the 1-norm 

(surrogate for sparsity). The optimal {L*, S*} can be efficiently computed using an 

augmented Lagrangian multiplier approach [9]. The optimization problem is convex as both 

the nuclear and the 1-norm are convex, the constraint is linear and the problem is defined 

over a convex domain. Hence, a globally optimal solution can be obtained.

By defining

(2)

we can solve the low-rank representation using an augmented Lagrangian function, which is 

defined as

(3)

where Y is the Lagrange multiplier and μ is a positive scalar of the ALM (Augmented 

Lagrangian Multiplier Method). More implementation details can be found at [9].

B. Unbiased low-rank atlas formation

An unbiased atlas of a sample population is defined as the representative image Î that 

requires the least amount of energy to deform into each individual image Ii from the 

population [6]. The energy can be formulated as:

(4)

where the regularity term Reg[Φi] measures the smoothness of the deformation, and the 

similarity term  measures the differences between the estimated atlas and the 

deformed individual images. The deformation fields Φi(t) are defined as the flow of smooth 

time-indexed velocity fields vi(t) and are generated by integrating vi(t), forward in time. The 

penalty on the diffeomorphic deformation between the pair of images are formulated as the 

Sobolev norm via a partial deferential operator κ on the time-dependent velocity vector 

fields v(t). This differential operator κ also governs the smoothness of the resulting 

deformation fields. Image similarity is measured by the the sum-of-squared intensity 

differences (SSD): .
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The minimization of the energy in Eq. (4) can then be simplified by an alternating 

optimization scheme in which, for fixed Φi, the image Î that minimizes the energy is the 

voxel-wise arithmetic mean of the deformed images:

(5)

The stability convergence study in [6] suggests that roughly ten images are needed to create 

a stable atlas representing neuroanatomy.

C. Iterative low-rank image registration framework

In our preliminary study [8], we have proposed to integrate low-rank plus sparse 

decomposition into an iterative registration framework in which a group of input images, 

potentially containing large pathologies and deformations, are registered to a normal-control 

atlas. Our premise is that by identifying the low-rank plus sparse components of each input 

image, its low-rank component, which contains reduced or eliminated pathologies, can be 

more accurately registered with a normal-control atlas, compared to the direct registration of 

an image containing a pathology to an atlas.

The low-rank plus sparse decomposition exploits the fact that lesions generally do not 

manifest in consistent locations or with consistent appearance in populations. These 

inconsistencies result in lesions being reduced in the low-rank component and allocated to 

the sparse component. In this iterative registration framework, we seek to minimize the 

following energy:

(6)

where i denotes the identifier of input image Ii, Reg[Φi] is the regularity measure for 

deformation Φi, penalizing spatially non-smooth transformations; Li is the low-rank image 

from the low-rank plus sparse matrix decomposition; Î is the target reference image to which 

each Li is mapped onto during each registration step and  is the image 

similarity measurement between the deformed low-rank image  and the atlas Î.

When applying this framework to atlas-based segmentation applications, Î is fixed to be a 

provided atlas which is often a population atlas formed by a group of selected images from 

healthy individuals from unrelated imaging sources.

When extending this framework to forming an unbiased atlas, on the other hand, the goal is 

to estimate an atlas such that it is central with respect to the data population. In this sense, 

we replace Î in the above framework with an average low-rank image  which will converge 

to an unbiased atlas of the low-rank population, namely the unbiased low-rank atlas. The 

advantage of the low-rank atlas is its ability to recover a “normal” atlas from “corrupted” 

input images.
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Our alternating optimization strategy to solve the minimization problem with energy Eq (6) 

is as follows: we first keep  fixed while solving for {Φi} and subsequently keep the 

transformations {Φi} fixed while solving for . The first part performs independent pairwise 

registrations between Li and the fixed image . The second part requires minimizing the 

dissimilarity measurement

(7)

which is achieved by the arithmetic mean of the images, i.e.,

(8)

Note that when fixing the atlas , unbiased atlas construction simplifies to a group-wise 

registration. The group-wise approach is essential because it allows for improved 

decomposition of the images into low-rank/sparse components.

The general unbiased low-rank atlas framework for our method is shown in Fig. 1. The 

algorithm steps are listed as follows:

(0) Initialization: Affinely align input images, with respect to (w.r.t.) a common 

reference atlas image, to prepare the initial iteration data , set k = 1;

(1) For iteration k, compute the low-rank image  from  via low-rank 

and sparse decomposition, solving Eq. (1);

(2) Compute the arithmetic mean image  from ;

(3) Solve for diffeomorphic transforms , each  maps the low-rank 

image  to the current low-rank atlas ;

(4) Apply the transforms from the previous step to update the input images: 

;

(5) Set k ← k + 1 and continue with step (1) until convergence.

Note that in step (3) we first deform the low-rank image  back to the original input 

image’s physical space using the inverse transform of the previous iteration’s deformation 

 before calculating the mapping. The purpose is to avoid accumulated errors when 

composing the deformations over the iterations. This non-greedy strategy is theoretically 

more rigious and is considered to be a major improvement comparing to the greedy version 

proposed in [8]. Convergence is reached when the total change in deformation is small 

enough (a numerically small tolerance threshold can be set).

Setting the parameters of our equations is straightforward. Convergence typically occurred 

within 5~10 iterations. The weight λ in Eq. (1) was adjusted for each data type, e.g., T2 MRI 
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or FLAIR MRI. The range was roughly 0.5~1.0. The weight could be determined by any of 

several factors, including the type of imaging modality, sample size, image dimensions, and 

lesion intensity contrast. At first, we heuristically determined the weight for each experiment 

by evaluating several different weights on the initial input images for a low-rank and sparse 

decomposition, and we picked the one which seemed to produce the best separation between 

the low-rank/normal and the sparse/lesion variations within the populations. Subsequently, 

we conducted a simple weight sensitivity study using the synthetic example. That study is 

given in Section III-B2, and it revealed that our method converges to similar results for a 

relatively wide range of weight values.

The precise control of the quality of the decomposition would require the precise 

quantification of the efficacy of the sparse components, and such considerations are highly 

application specific and beyond the scope of this initial theoretic and exploratory paper.

Implementation—The proposed framework is largely implemented in Python1 and uses 

ANTS [10] for image registrations. Running on 8-input MRI volumes (of a voxel size 

140×190×155) on a dual-core 16GB RAM PC takes about 3 to 5 hours. Each low-rank plus 

sparse decomposition merely takes a minute and most of the computation time is spent 

during dense diffeomorphic registrations. With recent advances in adapting image 

registration algorithms to the GPU, total runtime could potentially be reduced to minutes.

III. VALIDATION

In this section, we first introduce the evaluation metrics and then present a series of 

experimental results.

A. Evaluation metrics

The following metrics are used to evaluate our iterative atlas-based image registration 

framework:

1) TCSD for atlas-based segmentation accuracy—The premise of atlas-based 

segmentation is that by registering an atlas with a target image, the tissue labels in the atlas 

provide spatial priors for the tissues in the target image. When image-to-atlas registration is 

successful, the tissue labels of the atlas should align with the corresponding tissue labels in 

the target image. Therefore we compute the standard deviation of the target image intensities 

under each tissue label in the atlas. Smaller tissue-class standard deviation (TCSD) values 

indicate more accurate image-to-atlas registrations. It is important to note that we exclude 

the tumor region when calculating TCSD for each tissue class.

2) Dissimilarity Metrics for low-rank atlas estimation accuracy—For simulated 

ground-truth (pathology-free) data to which corruptions are artificially added, we can easily 

measure the accuracy of the estimated low-rank atlas by comparing it with an unbiased atlas 

formed from the ground-truth.

1available online at https://github.com/KitwareMedical/pyLAR
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Two metrics are used to compare the atlases. First, we use the same similarity metric, i.e., 

SSD, that we used to drive the optimization in Eq. (4) to measure the dissimilarity between 

the estimated low-rank atlas and the unbiased ground-truth atlas. Second, we use geodesic 

distance (GD) which measures the amount of diffeomorphic deformation it takes to match 

one atlas to the other. Geodesic distance is calculated by integrating the deformable 

registration’s velocity field over time. In most cases these two metrics are consistent with 

each other (e.g., larger SSD values typically indicate larger amounts of deformation).

3) Visual inspection and entropy measurement for atlas image quality—We can 

qualitatively assess the iterative registration process by visual examinations of the low-rank 

and sparse components of each image, after each iteration.

In image-to-atlas registrations, a particular image’s sparse component at the final iteration 

(i.e., after reaching convergence) should be specific to the lesion(s). Conversely, at the final 

iteration the low-rank component should contain only healthy-looking tissue, that is well 

aligned with the healthy atlas.

To visually evaluate the quality of the unbiased low-rank atlas, we can inspect the 

appearance of the atlas image in terms of the sharpness and shape of high-contrast 

structures. Similar to conventional unbiased atlas formation, the low-rank atlas obtained in 

the first iteration of the registration is typically quite blurry and then sharpens up over the 

iterations. Residues of pathology structures or missing normal structures indicate unexpected 

low-rank plus sparse decomposition results, typically due to the fact that pathologies do not 

constitute random corruptions of the image, but are rather structured outliers. Quantitatively, 

we use image intensity entropy as a goodness metric of the atlas image quality [6], [11]. The 

discrete image entropy is defined as an expected uncertainty in the random variable 

associated with the intensities of the given image, yielding entropy measured in bits. Sharp 

images have relatively low entropy, while blurry or noisy images (relatively flat histograms) 

tend to have higher entropy.

B. Case studies

The following three data sources are used for validation: a) simulated “bullseye” data, used 

as a toy example for testing and illustration; b) synthetic tumor MRI images, generated using 

TumorSim [12] and available as part of the BRATS’12 [13] challenge; c) clinical MRI from 

tumor patients, also available as part of the BRATS’12 challenge.

1) Atlas-based tissue segmentation—Here we summarize a study that we previously 

conducted to assess the utility of our framework when a healthy atlas is used as the target 

atlas  [8]. In this study, the SRI24 atlas [14] was used as the target healthy atlas for image-

to-atlas registrations and to provide gray-matter (GM), white-matter (WM), and 

cerebrospinal fluid (CSF) tissue labels. These labels enabled us to compute, after 

registration, the TCSD metric of Section III-A1 for each tissue class. A subset of 8 FLAIR 

images from the BRATS ’12 challenge data were used.

Quantitatively, the box plots in Fig. 2 show that the overall TCSD for the GM class 

improves over the iterations. Each box summarizes the TCDS values from all 8 patients at 
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each iteration. The numbers in Table I confirm that our framework outperforms BSpline 

registration in most cases in this study. However, our method performs worse on two cases, 

patients 5 and 8. On inspection, we realized that these images are quite different from the six 

other images in the sample. Both have much narrower and more distorted ventricles. Due to 

their distinctive appearance the ventricular areas are allocated to the sparse component 

instead of the low-rank component, and thereby the ventricles are excluded from 

consideration during registration and overall alignment quality is degraded. This is a failing 

of our sample size; eight subjects are too few to fully capture normal variability using our 

framework. If more patient images with similar ventricular variations would have been 

included, it is very likely that the low-rank plus sparse decomposition would have been more 

effective and the ventricles would have appropriately driven the registrations for patients 5 

and 8.

2) Low-rank atlas estimation results on bullseye data—We simulated a group of 

bullseye images, see Fig. 3(a), for testing and illustration purposes. Eight bullseye patterns 

(i.e., a 2D image) are generated by composing three concentric disks of different radii and 

intensity. The radii of the middle ring varies in these images. These radii changes are meant 

to represent normal anatomic variations. Furthermore, we inserted a bright disk with random 

radius at a random location into each image, to simulate pathologies.

Influence of the weight parameter on atlas generation: In theory, the influence of the 

weight parameter could be dependent on the type and size of the pathologies present, sample 

size, amount of normal variation in the data, and numerous other factors. We used the 

bullseye data to study its influence in practice. Fig. 3(a), shows the first iteration of the low-

rank plus sparse decomposition results using two selected weights. With the weight being 

0.6, the initial decomposition allocates not only the “tumor” to the sparse component, but 

also some of the true structural variation, as illustrated by the ring artifacts in Fig. 3(a). 

When the estimation converges after seven iterations, the sparse components contains much 

less non-tumor structures, while the low-rank component visually appears much sharper and 

closer to the true mean geometry. When the weight is set to be 1.0, after a single iteration the 

separation between the background geometry and the inserted “tumor” blobs are much 

cleaner as shown on the lower half of the Fig. 3(a). After convergence, it too produced an 

atlas that is appears to be similar to the true mean geometry. Most importantly, while neither 

weight produces optimal decompositions for all cases in the first iteration, both weights do 

converge after a similar number of iterations and do produce similar atlas images that are 

very close to the ground truth.

A quantitative analysis of the influence of the weight parameters on the final atlas generated 

is shown in Fig. 3(b). The relatively flat curve between the weights 0.4 and 1.6, and their 

small SSD values, shows that the proposed framework converges to a stable low-rank atlas 

for a wide range of weight values.

Influence of the portion of data containing pathologies: In order to evaluate the 

robustness of the proposed method to the presence of pathologies, we studied how the final 

atlas varies when the portion of patients that contain pathologies in the input population is 

changed. Specifically, we generated various mixtures of the “tumor-free” and the “tumor” 
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injected data from the BRATS challenge and compared low-rank atlas results with 

traditional unbiased atlas results using those mixtures. The results are given in Fig. 3(c). 

Low-rank atlas formation exhibits stable performance when the input sample has patients 

with no pathologies or when every patient has a pathology, while traditional atlas building 

results degrade dramatically when the portion of tumor data is increased in the input sample.

3) Low-rank atlas estimation results from brain MRI with simulated tumors—
The synthetic brain tumor dataset in BRATS’12 was created by injecting tumors into the 

MRI data from five normal BrainWeb [15] subjects. Tumors were injected into the tumor-

free images via a series of physical and statistical modeling techniques [12]. Local image 

deformations were induced to simulate inter-subject variations. While the use of simulated 

inter-subject differences may induce bias and degrade generalizability of results, the utility 

of this data arises from being a public standard dataset used in the BRATS MICCAI 

challenge and from the fact that the expected unbiased healthy atlas for these data can be 

computed as the unbiased atlas formed from the five healthy MRI images (without tumor 

injection), which were used to generate the tumor cases. We refer to this tumor-free atlas as 

the tumor-free sample mean. A challenge with this data, however, is that the tumor insertion 

software changes the intensities of all tissues in the images, as can be seen from Fig. 5. 

Therefore, when we compute the distance between estimated atlases and the tumor-free 

sample mean, the mutual information (MI) metric must be used instead of SSD.

Comparison with the tumor-free sample mean: Using 8 synthetic FLAIR images that 

have tumor(s) injected at different locations in the brain, as shown in Fig. 4, we compared 

our estimated low-rank FLAIR atlas (middle) with the traditional unbiased atlas building 

results from that tumor data (left) and the tumor-free sample mean (right). The geodesic 

distances of the traditional unbiased atlas and the low-rank atlas to the tumor-free sample 

mean are 1.29e−2 and 1.10e−2, respectively. Our low-rank atlas is also slightly sharper 

(measured by image entropy).

Influence of imaging modality: We repeated the above experiment using the corresponding 

T1 images, as seen in Fig. 5(a). This alternative MRI protocol was chosen because in it the 

lesion intensity nearly matches the intensity range of healthy tissues; potentially 

confounding the low-rank decompositions. Fig. 5(b)–(d) shows low-rank atlas results 

(middle) in comparison with traditional unbiased atlas results (left) and the tumor-free 

sample mean (right). We also computed the SSD metric and geodesic distances between the 

computed atlases, the tumor-free sample mean, and a published population atlas, i.e., the 

SRI24 normal T1 atlas. Those results are given in Table. II. The low-rank atlas has a slightly 

lower entropy (3.5058) than the unbiased atlas (3.5071). The low-rank and traditional atlases 

perform nearly equally well with respect to the tumor-free sample mean in terms of SSD and 

GD, and the the low-rank atlas was a much closer match to the published population atlas 

than the traditional unbiased atlas. As predicted, compared to the FLAIR images, the 

benefits of our low-rank framework are reduced due to the reduced conspicuity of the 

tumors, but the benefits of our framework do persist.
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4) Low-rank atlas estimation results from clinical brain tumor data—The 

BRATS’12 challenge also provided clinical FLAIR data from patients with brain tumors, 

see Fig. 6(a). We used that data to illustrate the expected clinical utility of low-rank atlas 

formation.

Large and high-contrast lesions in the clinical tumor data makes the advantage of the low-

rank strategy even pronounced compared to the results from conventional atlas building, 

which clearly fails as shown in Fig. 6(b). Our low-rank atlas calculated from 16 input 

FLAIR images, see Fig. 6(c), recovers major structures regardless of the presence of large 

tumors in these clinical data. Fig. 7 shows the image entropy values for each iteration during 

the atlas formation for both low-rank atlas and unbiased atlas. As the low-rank atlas gets 

sharper over the iterations, its entropy values decreases gradually. On the other hand, the 

traditional unbiased atlas suffers from the corrupted data from the beginning and can not 

recover with more iterations.

IV. DISCUSSION AND CONCLUSION

The proposed low-rank image registration framework is able to handle large pathologies/

lesions when registering input images to a normal atlas or when computing an unbiased 

atlas. Its results are insensitive to the value of its main parameter, the weight parameter 

which influences the allocation of image data into low-rank and sparse components based on 

normal variation observed in the training sample.

Our experiments show that the low-rank atlases produced by our framework match well with 

the atlas that would have been formed if the patients data did not contain tumors. The atlases 

it produces are insensitive to the portion of training patients that contain tumors. The atlases 

it produces are similar to healthy population atlases.

The low-rank and sparse decompositions of each individual’s data can also serve as a spatial 

prior for tissue segmentation. However, as discussed above, each image’s sparse component 

may contain some “normal” anatomic variation that may arises due to (a) normal variation 

that isn’t well represented by the sample, (b) limited lesion conspicuity relative to normal 

anatomic variation, or (c) cross-patient lesion correlations that cause those correlations to be 

assumed as normal anatomy.

The method does require that the lesions are randomized spatially across the training 

sample. This is especially critical when the sample size is small, as normal anatomic 

variations which are weakly represented may be incorrectly allocated to the sparse 

component and common parts of the tumors may be interpreted as normal anatomic 

variation and thereby allocated to the low-rank component. For example, as shown in Fig. 8, 

when lesions repeatedly appear at nearly the same locations across the training sample, the 

decomposition is not able to to statistically distinguish those lesions from “normal“ tissue 

and therefore will not allocate them to the sparse component. Instead, the resulting low-rank 

atlas will contain the “averaged“ appearance of the repeated lesions at those locations.

The method performs better when the lesions are more conspicuous in the data. As indicated 

in our comparison in applying our method to T1 and FLAIR synthetic brains, our method 
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works better for those imaging modalities where the lesions have high contrast with respect 

to normal tissues. When the intensity ranges of the lesion and the normal tissues overlap, it 

is mathematically challenging to separate the intensity differences caused by geometric 

variation and the pathology in the current framework.

The novel contributions of this paper are 1) the use of low- rank plus sparse image 

decomposition in image-to-atlas registration, 2) the integrated formulation of this 

decomposition into atlas formation, and 3) the use of sparse components as a prior for lesion 

identification and segmentation. These contributions allow images containing pathologies to 

drive atlas formation, and they allow images containing pathologies (large lesions and 

deformations) to nevertheless be well registered with normal-control atlases. The robustness 

of proposed methods is validated on both synthetic and clinical MRI datasets.

For future work, adding spatial coherence constraints during the low-rank and sparse 

decomposition optimization may mitigate some of the limitations seen when the sample size 

is small and the lesions are less conspicuous. The definition of the constraints could, for 

example, be customized according to expected lesion patterns. For example, it could be 

useful to penalize thin structures or surfaces allocated to the sparse part thereby discouraging 

normal variation to be allocated to the sparse component. Conversely, one could encourage 

spatially contiguous regions to be allocated to the sparse part. This could likely be achieved 

by some form of total variation penalty on the sparse component.
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Fig. 1. 
An illustration of the proposed low-rank atlas formation framework, where Ii refers to the i-

th input image, Di is the i-th vector of the input matrix D, Li is low-rank component of the 

input image and ϕi refers to the registration map generated from diffeomorphic image 

registration at each iteration.
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Fig. 2. 
Change in TCSD values for GM labels transcribed from the atlas after each iteration of our 

method.
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Fig. 3. 
Evaluation of low-rank atlas building on the bullseye dataset.

(a) Low-rank atlas estimation results, after a single iteration of our framework, on a group of 

8 simulated bullseye images. The upper half shows the first iteration low-rank and sparse 

decomposition result with a weight of 0.6: the top row shows the original input images, the 

second row shows the low-rank components and the third row shows the sparse components; 

The lower half visualizes the first iteration decomposition results with a weight of 1.0. Note 

that the sparse images are rescaled to highlight the differences for illustration.

(b) SSD (to the ground-truth atlas) of the estimated low-rank atlas with varying weights on 

the sparse component. The estimated atlases are displayed at four weight values from the left 

to the right: 0:4, 0:6, 1:0 and 1:9. The ground truth atlas, for comparison, is displayed on the 

rightmost.

(c) SSD comparison between the estimated low-rank atlases and the traditional unbiased 

atlases as the portion of patients containing pathologies in the training sample is increased.
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Fig. 4. 
Low-rank atlas estimation results on synthetic FLAIR images: a) The axial slices of the 

eight input FLAIR images. Our estimated low-rank FLAIR atlas (c) is compared with the 

conventional unbiased atlas (b) and the sample mean T1 atlas (d) formed from healthy 

BrainWeb images.
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Fig. 5. 
Low-rank atlas estimation results on synthetic T1 images : a) The axial slices of the eight 

input T1 images. Our estimated low-rank atlas (c) is compared with the conventional 

unbiased atlas (b) and the sample mean T1 atlas (d) formed from healthy BrainWeb images.
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Fig. 6. 
Low-rank atlas estimation results on real patients’ FLAIR images: a) The axial slices of the 

16 input FLAIR images. The sparse images b) and low-rank images c) are in correspondence 

with the input images. Our estimated low-rank atlas e) with an entropy of 3.13, is compared 

with the conventional unbiased atlas d) with an entropy of 3.76).
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Fig. 7. 
Intensity entropy measurement over the iterations during the atlas formation of 16 FLAIR 

images (Fig. 6) : unbiased atlas v.s. low-rank atlas.
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Fig. 8. 
A low-rank atlas will be degraded when the training images have tumors in consistent 

locations (indicated by the red and blue arrows). The low-rank atlas (image at the far right 

and outlined in red) contains tumor intensities at locations that repeatedly had tumors in the 

training data.
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TABLE II

Comparison of the T1 low-rank atlas with conventional unbiased atlas using both SSD and geodesic distance 

(GD), with respect to the sample mean (BrainWeb) and a population mean (SRI24).

w.r.t. sample mean w.r.t. SRI24

SSD GD SSD GD

Unbiased atlas 4.08e8 1.88e−2 19.42e+8 1.91e−2

Low-rank unbiased atlas 4.29e8 1.64e−2 18.64e+8 1.87e−2
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