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Abstract

Magnetic resonance imaging (MRI) has become an important imaging technique for quantifying 

the spatial location and magnitude/direction of longitudinal cartilage morphology changes in 

patients with osteoarthritis (OA). Although several analytical methods, such as subregion-based 

analysis, have been developed to refine and improve quantitative cartilage analyses, they can be 

suboptimal due to two major issues: the lack of spatial correspondence across subjects and time 

and the spatial heterogeneity of cartilage progression across subjects. The aim of this paper is to 

present a statistical method for longitudinal cartilage quantification in OA patients, while 

addressing these two issues. The 3D knee image data is preprocessed to establish spatial 

correspondence across subjects and/or time. Then, a Gaussian hidden Markov model (GHMM) is 

proposed to deal with the spatial heterogeneity of cartilage progression across both time and OA 

subjects. To estimate unknown parameters in GHMM, we employ a pseudo-likelihood function 

and optimize it by using an expectation-maximization (EM) algorithm. The proposed model can 

effectively detect diseased regions in each OA subject and present a localized analysis of 

longitudinal cartilage thickness within each latent subpopulation. Our GHMM integrates the 

strengths of two standard statistical methods including the local subregion-based analysis and the 
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ordered value approach. We use simulation studies and the Pfizer longitudinal knee MRI dataset to 

evaluate the finite sample performance of GHMM in the quantification of longitudinal cartilage 

morphology changes. Our results indicate that GHMM significantly outperforms several standard 

analytical methods.

Index Terms

Diseased regions detection; EM algorithm; Gaussian hidden Markov model; Longitudinal 
cartilage thickness; Pseudo-likelihood method

I. Introduction

Osteoarthritis (OA) known as degenerative arthritis represents a group of mechanical 

abnormalities involving degradation of joints, including articular cartilage and subchondral 

bone. Symptoms include swelling, pain, discomfort, locking, and other problems in mobility 

and are often characterized by the progressive loss of joint cartilage [1]. Bone may be 

exposed and damaged without the protection of cartilage. Figure 1 shows the anatomy of the 

human knee and illustrates the cartilage loss. OA is the most common form of arthritis and a 

major cause of chronic disability in the United States [2]. It is estimated that more than 16% 

of all adults 45 years or older suffer from symptomatic OA of the knee [1]. Cartilage loss [3] 

is believed to be the dominating factor in OA. Studying cartilage morphological changes can 

help to understand OA progression and drug development.

In recent years, magnetic resonance imaging (MRI) has increasingly been used in OA 

diagnosis [4], [5], since MRI offers the distinct advantage of detecting signal and 

morphologic changes in articular cartilage in 3D. MRI is the most sensitive and accurate test 

for evaluating the articular cartilage noninvasively [6]. Particularly, MRI can demonstrate 

reactive bone edema or soft tissue swelling as well as small cartilage or bone fragments in 

the joint. However, little is known about the development of such cartilage lesions and their 

natural progression.

Recently, several large MRI databases have been acquired for OA research in order to help 

understand the progression of cartilage loss across OA subjects and to identify risk factors 

(such as genetics, dietary intake, and muscle weakness) associated with such loss [7]–[10]. 

For example, the Pfizer A9001140 is a longitudinal study, including baseline, 3-month, 6-

month, 1-year and 2-year follow-up images of a single knee from 155 subjects [7], [8]; the 

Osteoarthritis Initiative (OAI) is another longitudinal cohort study of risk factors for 

incidence and progression of OA, where 4796 subjects with or at high risk of knee OA were 

recruited and image data was collected annually during 4 years of follow-up [9], [10]. 

Moreover, analyzing such large MRI datasets is necessary to establish knowledge about the 

expected pace of progression in knees with different exposure to risk factors for structural 

progression (e.g. radiographic joint space narrowing [JSN]). Such knowledge can then be 

used for the design of interventional trials.

Statistical analysis of cartilage thickness changes faces two major challenges. The first one 

is the lack of spatial correspondence across subjects and/or time. Observational studies have 
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shown that cartilage loss in OA may not be uniform throughout the cartilage [11], and 

advanced statistical analysis methods are necessary to understand localized cartilage 

thinning. However, the localized analysis requires establishing spatial correspondence across 

time and subjects, and such analysis is challenging due to the small volume of cartilage in 

relation to the rest of the knee. The second challenge is the spatial heterogeneity of cartilage 

progression across subjects. Cartilage thinning may happen at different locations in different 

subjects, which is usually caused by biomechanical factors [12] or local risk factors [13]. 

Cartilage thinning at a particular location may only be consistent for a subset of the full 

subject population. Thus, treating all OA subjects equally and using all of them for standard 

statistical methods (such as voxel-wise analysis and region-of-interest analysis) would be 

problematic. In clinical practice, some non-surgical treatments for OA in the knee (e.g., 

corticosteroid injections) are most likely administered via injection and act globally [14] 

since the exact locations of lesions are unknown. Therefore, it is of great interest to propose 

some methods to detect such locations and refine these treatments.

Subregion-based analysis and the ordered value approach are two major statistical methods 

for quantifying cartilage thickness changes. Subregion-based analysis is one of the most 

popular approaches. Here, average thickness changes in defined anatomic subregions of the 

femorotibial joint are studied. In [15], the tibial cartilage was divided into a central area of 

the total subchondral bone area, and anterior, posterior, internal, and external subregions 

surrounding it. However, this approach is problematic due to the spatial heterogeneity of 

cartilage progression discussed above. In another region-wise statistical analysis method 

[16], a region partitioning process is performed by using a supervised machine learning 

framework on anatomically aligned medial tibial and medial femoral cartilage thickness 

maps, and then a point distribution model is used to establish spatial correspondence and a 

common coordinate system. However, their machine learning procedures are only 

implemented on the thickness maps at baseline. Buck et al. [17] proposed an ordered value 

approach by sorting subregional changes within each knee by ascending order to focus on 

the magnitude of the thickness irregardless of the location, in which subregion the change 

occurs in each subject. The ordered value approach was demonstrated to provide improved 

discrimination between healthy subjects and OA participants longitudinally [17]. The key 

advantage of the ordered value approach is to remove the link between the spatial location 

and the magnitude/direction of the change in cartilage thickness. But the ordered value 

approach still relies on subdivisions of the cartilage and the average thickness within each 

subregion. The subdivisions of the cartilage are purely geometric, and small local changes 

(that happen to a smaller region than the size of a subregion) can be difficult to recover, 

since they may be weakened by averaging over a large subregion. Therefore, to fully 

understand the spatial pattern of OA progression, it is necessary to pinpoint localized 

cartilage thickness changes.

The paper is organized as follows. Section II summarizes the image preprocessing pipeline 

and the key contributions in this paper. Section III introduces a novel Gaussian hidden 

Markov model (GHMM) and its related EM algorithm. In Section IV, simulation studies are 

performed to show the advantages of our proposed model in diseased regions detection. 

Section V applies GHMM to the 2D thickness maps derived from the 3D MRI data of the 

Pfizer Longitudinal Study (PLS-A9001140).
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II. Image Preprocessing and Main Contributions

In this paper, the 3D knee MR images are preprocessed via a set of four image analysis steps 

including (I.1) segmentation, (I.2) 3D thickness map computation, (I.3) registration, and (I.

4) thickness map projection. These four methods summarized in Fig. 2 can successfully 

establish spatial correspondence across subjects and/or time and therefore address the first 

challenge in statistical analysis of cartilage thickness changes.

The main contributions of this paper include (i) a statistical method based on GHMM to 

appropriately address the spatial heterogeneity of cartilage progression across OA subjects 

and quantify their longitudinal cartilage morphology changes and (ii) a systematic 

evaluation of our analysis method by using simulations and real data analysis. Moreover, we 

have developed companion software for GHMM and will release it to the public through 

http://www.nitrc.org/ and http://www.bios.unc.edu/research/bias.

The path diagram of GHMM is presented in Fig. 3. Specifically, a novel hidden Markov 

random field (HMRF) [18]–[27] is proposed to specifically discover the diseased regions for 

each OA subject and to integrate cartilage progression in different diseased regions with 

different change magnitudes/directions across OA subjects. Moreover, based on the 

correspondence established in the preprocessing step, our GHMM allows us to carry out a 

localized analysis of longitudinal cartilage thickness at each voxel. Therefore, GHMM 

integrates the strengths of both the local subregion-based analysis and the ordered value 

approach in a single framework.

III. Background and Methods

A. Cartilage Segmentation

Cartilage segmentation in the knee has been investigated for several decades. Many 

segmentation approaches have been proposed, e.g., region growing methods [28], [29], 

watershed methods [30], live wire methods [31], active contour methods [32], [33], and 

graph cut methods [34]. However, all the aforementioned methods are semi-automatic, 

which precludes their applications to large image databases. Recently, several automatic 

methods have been proposed for cartilage segmentation, including pattern recognition 

methods [35], model-based segmentation method [36], and graph-based method [37]. 

However, the spatial interactions between neighboring pixels are neglected in [35]; the 

model-based segmentation method [36] is prone to local minima in the fitting process; the 

graph-based method [37] generally suffers from grid bias, also known as metrication errors.

Here we applied the automatic cartilage segmentation method [38], which is an extension of 

the multi-atlas segmentation approach initially proposed by us for cartilage segmentation in 

[39]. The main difference in these two cartilage segmentation approaches is how label-

fusion is achieved once multiple segmentation candidates (from the multiple atlases) are 

available. In [39], a simple locally weighted label-fusion strategy was used, whereas in [38] 

the locally weighted label-fusion was compared to the baseline majority-voting approach 

and a more advanced non-local patch-based label fusion approach was also investigated. The 

latter approach turned out to be superior to the other two label-fusion strategies. In general, 
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the segmentation method [38] has the following advantages. First, the method is fully 

automatic and requires no user interaction (besides quality control). Secondly, the method is 

robust as it benefits from multi-atlas-based strategies. Thirdly, both spatial and local 

appearance information are utilized in the segmentation. Local tissue classification is 

probabilistic (unlike [35]) and combined with the spatial prior to generate the final 

segmentation within a segmentation model. Furthermore, the segmentation model is convex 

and thus allows for the computation of global optimal solutions which cannot be guaranteed 

by active contour models, active shape models or active appearance models. The 

segmentation model also allows for the incorporation of spatial and temporal regularization.

The approach that we use for segmenting cartilage and to compute local thicknesses works 

in a three-dimensional (3D) space. Specifically, our segmentation produces a 3D label map 

for femoral and tibial cartilage. Given a segmentation, we compute thickness using a 

Laplace-equation approach [40] through which we define a top and a bottom of the structure 

and correspondence lines between them. Each point on such a correspondence line is then 

assigned the thickness value (distance between beginning and end of this line) resulting in a 

3D distance map. It should be noted that, all the segmentations are performed for each 

subject independently and in their own untransformed coordinate systems to avoid any bias 

introduced by resampling the image. For the same reason, the thickness maps are computed 

in the native image spaces obtained from cartilage segmentations.

Once these measures have been computed, population comparisons require a common 

coordinate system for the statistical analysis across time-points and subjects, which requires 

an additional registration step to this common space. Note that this may cause slight local 

distortions (depending on the quality of the registration), but it will not change the actual 

thickness measures as they are computed in the native image spaces. Here, we have used an 

affine transformation followed by a B-Spline transform based on the bone segmentations for 

each cartilage thickness volume. Since we are dealing with sheet-like structures, which we 

have approximately axis-aligned in atlas space, we simply compute the local median values 

of this 3D thickness map in the axial directions, where thicknesses are approximately 

constant.

B. Gaussian Hidden Markov Model

We consider a longitudinal thickness map dataset with thickness data {yij(sk) : k = 1, …, m} 

measured at time tij for j = 1, …, Ti and i = 1, …, n, where n is the total number of subjects, 

S0 = {s1, …, sm} is the set of m pixels in a common template, denoted by , and Ti is the 

total number of time points for the i-th subject. Let xi represent disease status of OA for each 

subject such that xi = 0 and 1, respectively, represent normal control and patient with OA.

We introduce a latent partition of  for each subject. Specifically, it is assumed that for the 

i–th subject,  can be decomposed into the union of normal region Ri0, moderately diseased 

region Ri1, and severely diseased region Ri2, that is
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Here we also assume that normal controls are expected to be perfectly healthy, i.e. to not 

have any cartilage loss or lesions. Then, both Ri1 and Ri2 should be the empty set for normal 

controls. For OA patients, the size and location of Ri1 and Ri2 may vary across subjects and 

play a critical role in establishing spatial correspondences of diseased regions at different 

locations across subjects. Statistically, we introduce an unobserved random effect bi(sk) ∈ L 

= {0, 1, 2} to label Ri0, Ri1, and Ri2 at each pixel sk of  for the i–th subject. Thus, bi(sk)s 

are label configurations of three nonoverlapping regions {Ri0, Ri1, Ri2}. It is also possible to 

extend GHMM to the scenarios with more than two types of diseased regions.

Our Gaussian hidden Markov model consists of a spatial random effect model and a Potts 

model [20], [21], [23]. Spatial random effects models (SREM), also called hidden Markov 

models, are very useful for image segmentation and restoration in image analysis [18], [19], 

[22], [24]–[27].

We first propose SREM to model the conditional distribution of the observed thickness 

maps given two sets of random effects including bi = {bi(sk) : sk ∈ } and vi = {vi(sk) : sk ∈ 

}, where vi(sk) will be defined below. We present the path diagrams of SREM in Fig. 3. 

Given bi and vi, we propose a general spatial random effect model as

(1)

where wij is a qw × 1 vector of covariates (e.g., time, gender, or genetic marker) that usually 

includes an intercept 1, but is independent of disease status. Moreover, β(sk) and vi(sk) are 

both qw × 1 vectors of regression coefficients. It should be noted that, if wij only comprises 

an intercept 1 and time, β(sk) represents both the average thickness at baseline and average 

thickness change rate at time point tij, while the two components in vi(sk) indicate the 

individual thickness difference relative to the average thickness at baseline and the 

individual difference of the thickness change rate relative to the average thickness change 

rate at time point tij respectively. The c(xi, wij, bi(sk), ᾱ) is defined as

where δ(·, ·) is the Kronecker function and ᾱ = (ᾱ(1)T, ᾱ(2)T)T is a 2qw × 1 vector of 

coefficients, in which ᾱ(1) and ᾱ(2) respectively characterizes the dynamic thickness 

differences in the diseased regions Ri1 and Ri2 in addition to the dynamic thickness changes 

at pixel sk in normal regions. Thus, c(xi, wij, bi(sk), ᾱ) equals zero for all pixels for normal 

controls and the pixels with bi(sk) = 0 for OA patients. For OA patients, pixels in different 

diseased regions may have different dynamic thickness changes. Throughout the paper, we 

assume wij = (1, tij)T, β(sk) = (β1(sk), β2(sk))T and set qw = 2 for simplicity. Generally, the 

time measurement tij in the first two terms of model (1) is not required to be the same as the 

one in the last item of model (1). In principle, age is used as tij in the first two terms of (1) to 

capture the average thickness changes across age, whereas time to diagnosis is used in the 
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last term of (1) to character the relative thickness changes in the diseased regions caused by 

OA. However, neither the age nor time to diagnosis are available in this dataset. Instead, the 

scan date is the only time measurement in this dataset. Since the range of thickness changes 

is small compared to the thickness at baseline and the time range (2 years) is also small 

relative to the age of each subject (all subjects are middle aged [41]), it is reasonable to use 

the scan date as tij throughout the model (1). In this paper, for each subject, the fist scan date 

was set to 0 and the following scan dates were calculated in years, e.g., 0.5 means six 

months. Therefore, it is straightforward to consider some basis functions (such as spline or 

wavelet) for wij. Moreover, εij(sk)s are independent measurement errors across subjects, 

time, and pixels, following .

Second, we model the random effects bi and vi as follows. First, it is assumed that bi = 

(bi(s1), …, bi(sm))T and vi = {vi(sk) : k = 1, …, m} are mutually independent. Moreover, 

vi(sk) are assumed to be mutually independent across pixels and vi(sk) follows N(0, Σvsk) at 

pixel sk. It is assumed that bis are independent across subjects and each bi follows a Potts 

model [20], [21], [23], whose Gibbs form is given by

(2)

where U(bi) = −Σsk~sl δ(bi(sk), bi(sl)) and τ is introduced to encourage spatial smoothness in 

homogeneous regions. Moreover, C(τ) is the partition function such that p(bi|τ) is a 

probability function. The notation “Σsi~sj” means that si is a neighbor of sj and each 

neighboring pair enters the summation only once. Throughout the paper, we only consider 

the closest 4 neighbors of each pixel.

To illustrate the key ideas of GHMM, we present two path-diagrams of GHMM in Figure 

3(a) and (b). Model (1) has two key novelties compared with the subregion-based analysis 

and the ordered value approach. As shown in the subcomponents (i) and (ii) of Figure 3(a), 

the first novelty is that  allows us to utilize information in all normal regions Ri0 

across all normal subjects and OA patients and then carry out a localized (or pixel-wise) 

analysis of longitudinal cartilage thickness at each pixel. As shown in the subcomponent (iii) 

of Figure 3(a), the second novelty is that the use of c(xi, wij, bi(sk), ᾱ) and ᾱ allows us to 

integrate information in all diseased regions Ri1 ∪ Ri2 across all subjects together and then 

carry out a joint analysis in the union of all moderately diseased regions  (or all 

severely diseased regions ) across all OA patients.

C. Estimation Procedure

Our next problem of interest is to estimate all unknown parameters, denoted as θ, and 

random effects. Here θ is a vector of all unknown parameters consisting of τ, β(sk), ᾱ, , 

and the covariance matrices Σvsk for k = 1, …, m. We decompose the parameter θ into two 

parts: τ, and all others, denoted as θ̄. The maximum likelihood estimate (MLE) of θ̄ can be 

calculated by using the expectation-maximization (EM) algorithm [42], whereas τ can be 

estimated by using a pseudo-likelihood method [43] since the MLE of τ is generally difficult 

to compute due to the normalizing part of the probability function in (2).
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To derive the EM algorithm, we need the complete-data log-likelihood function of GHMM 

as follows. Let yi(sk) = (yi1(sk), …, yiTi (sk))T, Wi = (wi1, …, wiTi), c̄(xi, Wi, bi(sk), ᾱ) = (c(xi, 

wi1, bi(sk), ᾱ), …, c(xi, wiTi, bi(sk), ᾱ))T, , where ITi is Ti × Ti identity matrix. 

Thus, the distribution of yi(sk) conditional on random effects is given by N(zi(sk), Σski), 

where zi(sk) is given by . Thus, the complete-data 

log-likelihood function is given by

(3)

where n0 = #{xi : xi ≠ 0} denotes the number of OA patients. Given the current estimate θ(̃r) 

at iteration r, the value  is obtained via maximizing the following Q-function Qθ̃(r) (θ̄) 

≐ Eθ̃(r) [log L̃(θ)|y, x] with respect to θ̄:

(4)

We consider the E-step and M-step of the EM algorithm as follows.

E-step—In the E-step, we need to calculate four conditional expectations: E[vi(sk)δ(bi(sk), 

l)|yi(sk), x, θ̃(r)], E[vi(sk)|yi(sk), x, θ̃(r)], , and E[δ(bi(sk), l)|

yi(sk), x, θ̃(r)]. In order to calculate these conditional probabilities, the class labels b should 

be estimated first. Here we consider the maximum a posteriori on Markov random field 

(MRF-MAP) estimation, which is efficient and adopted in many existing papers, e.g., [23], 

[44], [45]. First, the conditional probability density function of yi(sk) given xi and bi(sk) is 

derived as

(5)

where  and .

According to the MAP criterion,  is defined as
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(6)

To obtain the optimal solution to (6), in this paper, we adopt the iterated conditional modes 

(ICM) algorithm [20], which which uses a greedy iterative strategy for minimization. 

Convergence is achieved after only a few iterations. As a result, the conditional expectation 

E[δ(bi(sk), l)|yi(sk), x, θ̃(r)] can be calculated as

(7)

where

(8)

Here  is the set of sites neighboring sk.

Given xi and  is normally distributed as

Then, given yi(sk), x, and , we have

Finally, the desired expectations can be estimated as
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(9)

M-step—Taking derivatives of (4) with respect to θ̄ and equating them to zeros, we find the 

updates of θ̄ as follows. For β(sk) and ᾱ(l), we have

(10)

and

(11)

For the covariance matrix Σvsk
, we have

(12)

For  in Σsk i,
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(13)

where .

Since τ in model (2) is not the primary parameter of interest, we use an approximate, but 

computationally efficient method based on a pseudo-likelihood function. A key advantage of 

using the pseudo-likelihood function is its computational simplicity, since it does not 

involve the intractable partition function. The pseudo-likelihood at the r-th step is a simple 

product of the conditional likelihood

(14)

where ∂  denotes the set of points at the boundaries of , and  is given by

Thus, the MPL estimate τ̃(r+1) can be obtained by solving

(15)

The E-step and M-step are repeated until the difference between log L(θ(̃r+1)) and log L(θ̃(r)) 

is smaller than a desired value (e.g., 10−4).

D. Inference Procedure

After all the parameters are estimated, we carry out formal statistical inference consisting of 

three different statistical tools below. First, we calculate the standard errors of computed 

MLEs, β̂(sk), at each voxel sk and  in the moderately and severely diseased regions. As 

 captures the information in all normal regions Ri0 across all normal subjects and 

OA patients, we calculate the standard errors of β̂(sk) via pixel-wise analysis of longitudinal 

cartilage thickness on all subjects with bî(sk) = 0, in which model (1) is simplified as 

follows:

(16)

Thus, the estimated covariance matrix of β̂(sk) can be approximated by
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(17)

where ñ(sk) is the number of subjects with b̂
i(sk) = 0 at voxel sk. Then the standard errors can 

be estimated by the positive square root of the diagonal elements in (17).

On the other hand, the standard error of α is estimated based on data in the voxels of all 

diseased regions in all OA patients, since α captures the information in all diseased regions 

Ri1 ∪ Ri2 across all subjects together. Since the information of these diseased regions has to 

be estimated from the data, the standard errors associated with α̂ are the standard errors 

conditional on the given diseased regions across subjects. Moreover, the pixel-wise analysis 

is not suitable here, and thus it is impossible to obtain explicit expressions of the estimated 

standard errors. In order to tackle this problem, a resampling approach, wild bootstrap [46], 

is considered here. The idea of wild bootstrap is to leave the regressors at their sample value, 

but to resample the response variable based on the residuals values. This method proceeds as 

follows:

1. Fit the model with the original data and retain the fitted values 

 and the residuals εî(sk) = yi(sk) − ŷi(sk) for i 

= 1, …, n and k = 1, …, m;

2. Create synthetic response variables yi(sk)* = ŷi(sk) + aiε̂
i(sk), where ai is a random 

variable following standard normal distribution;

3. Refit the model using the synthetic response variables yi(sk)* and retain the 

estimates ;

4. Repeat Steps 1 and 2 independently B times to give B independent realizations of 

, denoted by ;

5. The bootstrap covariance matrix of  is estimated by

(18)

where  for l = 1, 2. The standard error of  can be 

estimated by the positive square root of the diagonal element of (18).

It has been shown that 50 to 100 bootstrap replications (B = 100 in this paper) are generally 

sufficient for standard error estimation [47].

Second, several hypothesis testing problems are quite interesting in real applications. 

Specifically, we are interested in testing (i) whether there is any cartilage progression across 

time at each pixel site in normal regions; (ii) whether there is any difference of cartilage 

thickness at baseline between normal regions and moderately (or severely) diseased regions; 
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and (iii) whether there is any difference of cartilage progression across time between normal 

regions and moderately (or severely) diseased regions. They can written as

(19)

(20)

(21)

(22)

(23)

where ᾱl′(l) is the l′th component of ᾱ(l), l = 1, 2. A sequence of t tests can be used here. 

The standard errors of estimates β̂
2(sk), k = 1, …, m, and , l = 1, 2 can be obtained as 

described above. The false discovery rate (FDR) adjustment method [48] is employed here 

to calculate the adjusted p-values corrected for the multiple comparison problem (19).

Third, after obtaining the diseased region labels across all pixel sites for each OA subject, 

we calculate the empirical probabilities of both the moderately diseased region and severely 

diseased region at each pixel across all OA subjects. The related formula is listed below:

(24)

where #A denotes the number of the elements in set A.

IV. Simulation Studies

We examine the finite sample performance of GHMM for diseased region detection. We 

first fitted the model (1) to the femoral cartilage thickness data of all the normal controls 

derived from the 3D MRI data of the Pfizer Longitudinal Study (PLS-A9001140) and then 

we used the obtained parameter estimators of β(sk), Σvsk, and  as their true values for 

simulations. Moreover, ᾱ(1) and ᾱ(2) were set (−0.17, −0.19)T and (−0.26, −0.33)T, 

respectively. The covariate vector wi for each subject was generated according to the real 

data set analyzed in Section V. We generated 20 subjects from 3 groups of OA patients with 

7 patients in group 1, 7 patients in group 2, and 6 patients in group 3. Without loss of 

generality, the location of all diseased regions is predetermined and does not vary for 

subjects in the same group, whereas it varies across groups. Fig. 4 presents different lesions 

that were manually designed and inserted into the thickness maps and the diseased regions 

associated with the three simulated groups.

We applied GHMM to detect the diseased regions in each subject. We randomly selected 

one subject from each group and presented its detection results in Fig. 5. For all selected 
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subjects, the diseased regions can be successfully detected with few misclassifications in the 

results. To show the average detection performance among subjects in each group, the 

Jaccard index [49], Dice index [50], Rand index [51], and adjusted Rand index [52] were 

calculated to compare the detection results with the truth. Finally, we calculated the averages 

of all index values taken over all subjects in each subgroup. For all these indices, a higher 

index value indicates a more accurate detection result. Simulation results based on all the 

three groups are presented in Table I, where the related standard deviations are also shown 

in parentheses. For all these groups, the average of the four index values are all larger than 

86 percent, and the related standard deviations are all less than 0.05. Figure 5 and Table I 

indicate that GHMM performs very well in diseased region detection of cartilage MRI data.

V. Real Data Analysis

We consider the MRI dataset from the Pfizer longitudinal non-treatment study on 

osteoarthritis (PLS-A9001140). This dataset contains T1-weighted (3D SPGR) images from 

155 subjects imaged at baseline, 3, 6, 12, and 24 months at a resolution of 1.00 × 0.31 × 

0.31mm3. All the subjects are females. Some of them have missing scans and thus we have 

706 MRIs in total. The Kellgren-Lawrence grades (KLG)1 [53] were determined for all 

subjects from the baseline extended weight-bearing radiographs, classifying 81 subjects as 

normal control (KLG0), 1 subject as KLG1 (mild OA), 40 subjects as KLG2 (severe OA), 

and 33 subjects as KLG3 (severe OA). It seems that most of the OA patients in this dataset 

were selected to have predominantly medial OA.

We first computed the cartilage segmentations in the knee MRI data. We randomly chose 

two subjects with different KLG from the dataset, and presented the related 2D thickness 

maps for the chosen subjects at baseline in Fig. 6.

After extraction of the 2D thickness maps, we first applied the linear mixed model for voxel-

based analysis to the thickness maps from the whole dataset and calculated the parameter 

estimation at each pixel site. The model is described as below

(25)

where wij, xi, vi(sk) and εij(sk) are all defined the same as those in (1). Compared with 

GHMM, the reduced model (25) cannot handle the spatial heterogeneity of cartilage 

progression across subjects, and thus it can only capture the diseased regions at population 

level instead of individual level. The estimates of α1(sk) across all the pixels in both femoral 

and tibial cartilages are presented in Fig. 7(a) and (d). We carried out a sequence of t tests on 

the hypotheses H0(sk) : α1(sk) = 0 versus H1(sk) : α1(sk) ≠ 0 across all pixels to identify the 

regions with substantial differences between OA patients and normal controls. Figure 7(b) 

and (e) present the FDR adjusted − log10(p)-value [48] at each pixel in both femoral and 

tibial cartilages. Based on the testing results, we are able to detect some significant 

subregions in the cartilage. Furthermore, for better visualization, we used the K-means 

1According to the definition of KLG [53], the radiographic score is from 0–4, where KLG0 is healthy, KLG1 is considered borderline 
or mild OA, and KLG2-KLG4 are severe OA.
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clustering method [54] to cluster voxels into several sub-regions based on the FDR adjusted 

−log10(p)-map. We chose clustering −log10(p)-values, since the p-value indicates the 

statistical significance of the effect sizes. The clustering results are also presented in Fig. 

7(c) and Fig. 7(f), where four subregions are discovered for both femoral and tibial cartilage. 

The mean values of FDR adjusted −log10(p)-value for all the pixel sites in each cluster are 

also summarized in Table II. Table II reveals that the first three clusters are diseased regions, 

whereas the fourth one is a normal region. Such results are averages across all the subjects. 

Since the cartilage thinning happens at different locations for different subjects, the voxel-

based analysis based on model (25) fails to capture the diseased regions for individual OA 

subjects.

As a comparison, we applied GHMM to the whole dataset. As an illustration, the estimates 

of β(sk) across all the pixels in both femoral and tibial cartilages and their standard errors 

obtained via wild bootstrap are presented in Fig. 8(a)–(h). From Fig. 8(c)–(d) and (g)–(h), 

coefficients of most pixels show the range of cartilage thickness changes in normal regions 

similar to those in [17]. However, coefficients of some pixels show progression in normal 

regions. One of the reasons for these progressions may be that some regions may undergo 

tissue swelling, diluting, or even masking cartilage loss in adjacent pixels [15]. The FDR 

adjusted −log10(p)-value for test (19) at each pixel is calculated in Fig. 8(i) and (j). The 

inference results of α, including estimation, standard error and −log10(p)-value for tests 

(20)–(23), are presented in Table III as well. Fig. 8 and Table III reveal that (i) there is 

significant cartilage progression across time on only a few pixel sites in normal regions; (ii) 

the difference of cartilage progression across time between normal regions and moderately 

(or severely) diseased regions is highly significant with respect to their cartilage thickness at 

baseline; and (iii) both the difference of cartilage thickness at baseline and difference of 

cartilage progression across time between normal regions and severely diseased regions are 

larger than those between normal regions and moderately diseased regions. Then we chose 

two pixel sites from the femoral and tibial cartilages, respectively, and presented them in 

Fig. 9(a). Fig. 9(b)–(g) show the dynamic changes of cartilage thickness at two given pixel 

sites across time. We also included both the estimated curves and thickness changes of some 

chosen subjects. The estimated cartilage thicknesses at both two pixel sites follow a trend of 

decline across time for OA patients. Moreover, the estimated cartilage thickness in severely 

diseased regions decreases more quickly than that in moderately diseased regions. We 

randomly selected 3 subjects with different KLGs, i.e., 1 KLG1 subject, 1 KLG2 subject, 

and 1 KLG3 subject, and presented their diseased regions in Fig. 10. Fig. 11 presents the 

empirical probabilities of both moderately diseased region and severely diseased region. The 

locations of diseased regions change across subjects, and the detected diseased regions are 

more inclined to locate in some regions (e.g., center) of the cartilage. This indicates that the 

cartilage loss in OA may not be uniform throughout the cartilage, but OA may affect certain 

regions more frequently than others [11].

Furthermore, we investigate whether there are some subgroups among patients and delineate 

their associated diseased region pattern in each subgroup. To achieve this, we used a 

clustering method to cluster all estimated maps {b̂
i}i≥1 at the subject level. Since the number 

of informative pixels is much larger than the number of OA subjects, e.g., m = 4484 and n = 
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74 for tibial cartilage, we adopted a sparse k-means clustering method and its associated R 

package sparcl (http://www.icesi.edu.co/CRAN/web/packages/sparcl/) [55], which 

combines a Lasso-type penalty with the K-means clustering method to cluster observations. 

We applied sparcl to the estimated maps {b̂
i}i≥1. Two subgroups were detected for the 

femoral cartilage, whereas three subgroups were identified for the tibial cartilage. The KLG 

information of subjects in each subgroup is presented in Table IV. Inspecting Table IV 

reveals that for the femoral cartilage case, the group membership of most patients is 

consistent with their KLG information. Specifically, most KLG2 subjects belong to Group 1, 

whereas most KLG3 subjects fall into Group 2. Similar to the procedures in voxel-based 

analysis, the diseased region pattern of each group in the average sense can also be 

calculated based on the detection results. For every group, the diseased-region detection 

results of two randomly chosen subjects and their related pattern are presented in Fig. A1, 

which can be found in Supplementary Materials. It reveals the spatial heterogeneity of 

cartilage progression across OA subjects.

VI. Conclusion

We have developed a GHMM for longitudinal cartilage quantification in OA patients, while 

addressing these two issues: the lack of spatial correspondence across subjects and time and 

the spatial heterogeneity of cartilage progression across subjects. Our GHMM is designed to 

efficiently account for the spatial heterogeneity of cartilage progression across subjects. We 

have developed an efficient algorithm to estimate unknown parameters in the GHMM. The 

proposed model can effectively detect diseased regions in each OA subject and present a 

localized analysis of longitudinal cartilage thickness within each latent subpopulation. Our 

GHMM integrates the strengths of two standard statistical methods: the local subregion-

based analysis and the ordered value approach. Simulation studies and real data analysis 

have demonstrated that GHMM can effectively detect diseased regions in localizing 

longitudinal cartilage thickness.

Several important issues need to be addressed in our future research. First, it is assumed that 

the disease effect bi is an ordinal variable at each location and follows a Potts model. 

However, if the disease effect is strongly associated with the continuous loss of cartilage 

thickness, then it may be more reasonable to treat them as continuous variables. In this case, 

computational and theoretical challenges may arise. For example, we may need to introduce 

another hidden Markov model for continuous disease effects, and thus both the estimation 

and inference procedures have to be rederived. Second, we plan to apply GHMM to other 

knee MRI datasets, such as OAI, to investigate other clinical questions of interest. Third, it 

is interesting to extend GHMM to the group analysis of various neuroimaging data sets, such 

as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database [56]. Most group 

analysis methods (e.g., Statistical Parametric Mapping (SPM)) assume the spatial 

homogeneity and spatial correspondence of effect regions across subjects, which may not be 

valid for many neuroimaging studies. For instance, in Alzheimer’s disease (AD) studies, 

quantifying patterns of structural change during early stages of AD is a major challenge. 

Brain atrophy in the early stages of AD may be relatively subtle and spatially distributed 

over different brain regions, and the patterns of atrophy have been found spatially 

heterogeneous [57]. Moreover, the error associated with structural measurements can vary 
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throughout the brain and across subjects and time points. In this case, our GHMM can be 

used to capture complex morphological characteristics that distinguish AD from normal 

controls, furthermore to determine which patterns are most informative from a diagnostic 

perspective.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Anatomy of human knee and illustration of cartilage loss. (left) A sagittal slice of a healthy 

knee. Bones are annotated in blue, femoral cartilage in purple and tibial cartilage in orange. 

(middle) A coronal slice of the same healthy knee. (right) A coronal slice of an OA knee 

with cartilage loss indicated by the red arrow.
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Fig. 2. 
Path diagram of the 3D knee MR image data preprocessing toolbox: ➀ extracting the joint 

region and obtaining the cartilage segmentation; ➁ computing the 3D cartilage thickness 

map; ➂ registering all thickness maps to a common atlas space; and ➃ projecting 3D 

thickness map onto a 2D plane.
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Fig. 3. 
Path diagrams of GHMM component. (a) Path diagram of GHMM for four different 

subjects (one normal control and three OA subjects). The change of the map thickness at 

pixel site k includes three parts in the proposed model, i.e., (i) the common dynamic change 

in both normal controls and OA subjects, (ii) the change caused by random effects and 

measurement errors, and (iii) the change caused by different diseased regions (moderately 

diseased region (yellow) and severely diseased region (red)). (b) Path diagram of GHMM 

for one subject at two neighboring pixel sites across time. Following the convention of path 

diagrams, observed variables are framed with rectangles whereas latent variables are framed 

with ellipses. Regression associations are depicted as (solid) one-headed arrows 

(parent=predictor, child=response); correlations between diagnosis result, the diseased 

region label and the observed thickness are described as (dotted-dashed) one-headed arrows; 

and the correlation of diseased region labels in the Potts model is shown as (solid) double-

headed arrow. For easier interpretation, the following color-codes are used: exogenous 

variables (light red), endogenous variables (purple), continuous latent variables (blue), 

discrete latent variables (green), and measurement errors (yellow).
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Fig. 4. 
Visualizations of simulated lesions in femoral cartilage sheets: normal region (blue); 

moderately diseased region (light blue); severely diseased region (orange).
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Fig. 5. 
Diseased region detection for subjects from three groups: (a) subject with 5 time points in 

group 1; (b) subject with 3 time points in group 2; (c) subject with 4 time point in group 3. 

This is the simulated result and hence we have an imposed ground truth, which is shown in 

Fig. 4. In each group, the image with green background indicates the detection result, i.e., 

normal region (blue); moderately diseased region (light blue); severely diseased region 

(orange), the remaining ones are the observations for the time points, where the color bar for 

all the observations is presented on the right side of the fist raw in (a)–(c).
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Fig. 6. 
Local cartilage thickness (mm) for subjects with automatic segmentations at baseline with 

different KLGs: (top) femoral cartilage (FC) thickness map (left) and tibial cartilage (TC) 

thickness map (right) for subjects with KLG0; (bottom) femoral cartilage (FC) thickness 

map (left) and tibial cartilage (TC) thickness map (right) for subject with KLG3. The medial 

(M), lateral (L), anterior (A), and posterior (P) directions are annotated in the thickness map 

(top & left).
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Fig. 7. 
Voxel-wise analysis based on linear mixed model (25): (a) estimates of α1(sk) in femoral 

cartilage; (b) FDR adjusted −log10(p)-values in femoral cartilage; (c) clustering results based 

on FDR adjusted −log10(p)-values in femoral cartilage: cluster 1 (light blue), cluster 2 

(yellow), cluster 3 (orange), cluster 4 (dark red); (d) estimates of α1(sk) in tibial cartilage; 

(e) FDR adjusted −log10(p)-values in tibial cartilage; and (f) clustering results based on FDR 

adjusted −log10(p)-values in tibial cartilage: cluster 1 (light blue), cluster 2 (yellow), cluster 

3 (orange), and cluster 4 (dark red).
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Fig. 8. 
Inference results of β(sk) based on GHMM: (a) estimates of β1(sk) in femoral cartilage; (b) 

standard errors of estimates β1̂(sk) in femoral cartilage; (c) estimates of β2(sk) in femoral 

cartilage; (d) standard errors of estimates β̂
2(sk) in femoral cartilage; (e) estimates of β1(sk) 

in tibial cartilage; (f) standard errors of estimates β̂
1(sk) in tibial cartilage; (g) estimates of 

β2(sk) in tibial cartilage; (h) standard errors of estimates β̂
2(sk) in tibial cartilage; (i) FDR 

adjusted −log10(p)-values for test (19) across all pixel sites in femoral cartilage; and (j) FDR 

adjusted −log10(p)-values for test (19) across all pixel sites in tibial cartilage.
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Fig. 9. 
Dynamic changes of cartilage thickness at randomly selected pixel sites across time: (a) two 

randomly selected pixel sites on femoral cartilage and tibial cartilage; (b) dynamic changes 

of cartilage thickness at sk1 of subjects with bi(sk1) = 0 across time, i.e., estimated curve 

(solid line) and chosen subjects with bi(sk1) = 0 (dashed lines); (c) dynamic changes of 

cartilage thickness at sk2 of subjects with bi(sk2) = 0 across time, i.e., estimated curve (solid 

line) and chosen subjects with bi(sk2) = 0 (dashed lines); (d) dynamic changes of cartilage 

thickness at sk1 of OA patients with bi(sk1) = 1 across time, i.e., estimated curve (solid line) 

and chosen OA patients with bi(sk1) = 1 (dashed lines); (e) dynamic changes of cartilage 

thickness at sk2 of OA patients with bi(sk2) = 1 across time, i.e., estimated curve (solid line) 

and chosen OA patients with bi(sk2) = 1 (dashed lines); (f) dynamic changes of cartilage 

thickness at sk1 of OA patients with bi(sk1) = 2 across time, i.e., estimated curve (solid line) 

and chosen OA patients with bi(sk1) = 2 (dashed lines); and (g) dynamic changes of cartilage 

thickness at sk2 of OA patients with bi(sk2) = 2 across time, i.e., estimated curve (solid line) 

and chosen OA patients with bi(sk2) = 2 (dashed lines).
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Fig. 10. 
Diseased region detection for subjects with different KLGs, including 1 KLG1, 1 KLG2, 

and 1 KLG3. Detection results of femoral cartilage thickness map (top) and tibial cartilage 

thickness map (bottom) for every subject are shown in each row, i.e., normal region (light 

blue); moderately diseased region (yellow); severely diseased region (orange).
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Fig. 11. 
Empirical probabilities of both moderately diseased region and severely diseased region 

based on estimated diseased region labels: (a) empirical probability of moderately diseased 

region in femoral cartilage; (b) empirical probability of severely diseased region in femoral 

cartilage; (c) empirical probability of moderately diseased region in tibial cartilage; and (d) 

empirical probability of severely diseased region in tibial cartilage.
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Huang et al. Page 32

TABLE I

Average detection performance among subjects in different groups

Group 1 Group 2 Group 3

Jaccard index 0.8509 (0.0045) 0.9200 (0.0113) 0.8683 (0.0040)

Dice index 0.9142 (0.0026) 0.9583 (0.0078) 0.9295 (0.0023)

Rand index 0.9794 (0.0114) 0.9592 (0.0124) 0.9721 (0.0097)

Adjusted Rand index 0.9242 (0.0399) 0.8749 (0.0500) 0.8853 (0.0367)
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Huang et al. Page 33

TABLE II

Mean values of FDR adjusted −log10(p)-value for all the pixel locations in each cluster

Cartilage Cluster 1 Cluster 2 Cluster 3 Cluster 4

femoral 1.2565 2.3616 3.8733 0.3111

tibial 1.5198 3.0583 5.0483 0.3491
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Huang et al. Page 35

TABLE IV

KLG information of patients in each group

Femoral cartilage

Group KLG1 KLG2 KLG3 Total

1 0 36 8 44

2 1 4 25 30

Tibial cartilage

Group KLG1 KLG2 KLG3 Total

1 0 26 26 52

2 1 13 0 14

3 0 1 7 8
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